# INDUSTRIAL AND COMMERCIAL VENTILATION



















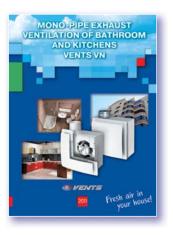




Air handling units AIRVENTS (Catalogue no. 3)

Energy saving air handling units with air capacity up to 40 000 m<sup>3</sup>/h, for use in large residential, industrial and commercial objects.




# Energy saving ventilation Geothermal systems GEO VENTS (Catalogue no. 4)

Energy saving system GEO VENTS with use of the earth's surface layers heat. High ventilation system energy efficiency and low operating costs.



Domestic fans (Catalogue no. 7)

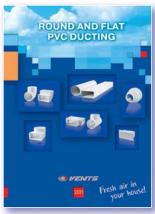
Domestic fans with air capacity up to 365 m<sup>3</sup>/h with extra functions: timer, humidity sensor, motion sensor, etc. Applied for premises up to 30 m<sup>2</sup>.



VENTS VN Mono-pipe exhaust ventilation (Catalogue no. 8)

Exhaust ventilation in houses with mono-pipe ventilation system based on VENTS VN fans.




Plastic grilles for ventilation and air conditioning (Catalogue no. 11)

PROFIPLAST extruded plastic grilles for ventilation and air conditioning.



Metal grilles for ventilation, air conditioning and heating (Catalogue no. 12)

Metal grilles made of extruded metal profile for ventilation and air conditioning.



Flat and round PVC air ducts (Catalogue no. 15)

Flat and round PVC ducts PLASTIVENT for ventilation of residential, office and commercial premises and connection of exhaust ventilation equipment (kitchen extractors, hoods, exhaust boxes, etc). Wide product range of fittings.



Energy saving ventilation. Single room energy recovery ventilators. (Catalogue no.16)

Single room reverse ventilators with energy regeneration for efficient ventilation and lowest investments in ready-built and brand new premises.







# **Catalogue section**

# Page

| Contents                              | 4   |
|---------------------------------------|-----|
| Quick fan selection                   | 10  |
| Quick selection of air handling units | 11  |
| About us                              | 12  |
| Ventilation in our life               | 14  |
| System of round ducts                 | 22  |
| Round duct fans                       | 24  |
| System of rectangular ducts           | 64  |
| Rectangular duct fans                 | 66  |
| Chimney centrifugal fans              | 92  |
| Sound-insulated fans                  | 100 |
| Centrifugal fans                      | 124 |
| Axial fans                            | 140 |
| Roof fans                             | 156 |
| Supply and exhaust units              | 180 |
| Air Handling units with heat recovery | 206 |
| X-Vent in-line units                  | 254 |
| AirVents Air handling units           | 256 |
| Air-Heating units                     | 262 |
| Accessories                           | 276 |
| Electrical accessories                | 348 |
| Alphabetical index                    | 376 |
|                                       |     |

**ROUND DUCT FANS VENTS TT VENTS VK** page page Duct mixed-flow fan Duct centrifugal fan 32 26 **VENTS VKM VENTS VK VMS** page page Multiple-inlet centrifugal fan Duct centrifugal fan 38 36 **VENTS VKMz VENTS VC** page page Duct centrifugal fan Duct centrifugal fan 46 42 **VENTS VCN VENTS VKP** page page Exhaust centrifugal fan Duct centrifugal fan 54 50 **VENTS VP VENTS VKP mini** page page Duct centrifugal fan Centrifugal ceiling fan 56 58 **RECTANGULAR DUCT FANS VENTS VKPFI VENTS VKPF** page Duct centrifugal heat- and page 68 Duct centrifugal fan sound-insulated fan 68 VENTS VKP EC **VENTS VKPI EC** Duct centrifugal fan Duct centrifugal fan page page with EC-motor with EC-motor 76 80 **VENTS VKPI VENTS VKP** Duct centrifugal heat- and page page Duct centrifugal fan Sound-insulated fan 84 84

# CHIMNEY CENTRIFUGAL FANS



**VENTS KAM** Chimney centrifugal fan

page **94** 

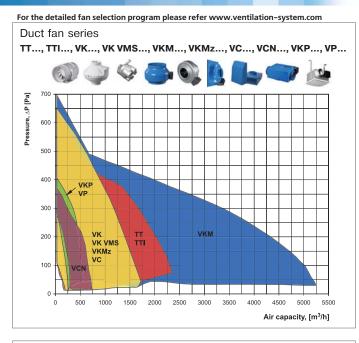
| SOUND-INSULATE  | ED FANS                                     |             |    |                                          |             |
|-----------------|---------------------------------------------|-------------|----|------------------------------------------|-------------|
|                 | <b>VENTS VS</b><br>Sound-insulated fan      | page<br>102 | 60 | <b>VENTS KSA</b><br>Sound-insulated fan  | page<br>108 |
|                 | <b>VENTS KSB</b><br>Sound-insulated fan     | page<br>112 | N. | VENTS KSD<br>Sound-insulated fan         | page<br>116 |
| CENTRIFUGAL FAM | ٧S                                          |             |    |                                          |             |
|                 | <b>VENTS VCU</b><br>Scroll fan              | page<br>126 |    | <b>VENTS VCUN</b><br>Scroll fan          | page<br>130 |
| AXIAL FANS      |                                             |             |    |                                          |             |
|                 | <b>VENTS OV</b><br>Axial fan                | page<br>142 |    | <b>VENTS OVK</b><br>Axial fan            | page<br>142 |
|                 | <b>VENTS VKF</b><br>Axial fan               | page<br>142 |    | <b>VENTS OV1</b><br>Axial fan            | page<br>148 |
|                 | <b>VENTS OVK1</b><br>Axial fan              | page<br>148 |    | <b>VENTS VKOM</b><br>Axial fan           | page<br>148 |
|                 | <b>VENTS OV1 R</b><br>Axial fan             | page<br>152 |    |                                          |             |
| ROOF FANS       |                                             |             |    |                                          |             |
|                 | <b>VENTS VKV</b><br>Centrifugal roof fan    | page<br>158 |    | <b>VENTS VKH</b><br>Centrifugal roof fan | page<br>158 |
|                 | <b>VENTS VKV EC</b><br>Centrifugal roof fan | page<br>164 |    | VENTS VKH EC<br>Centrifugal roof fan     | page<br>164 |

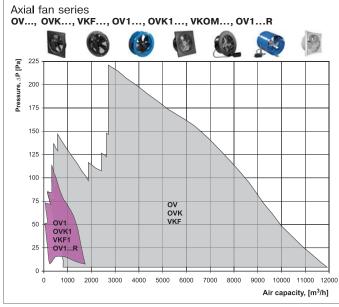
|                 | <b>VENTS VKMK</b><br>Centrifugal roof fan                                                                | page<br>172 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VENTS VOK</b><br>Axial roof fan                                                                       | page<br>174 |
|-----------------|----------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|
|                 | <b>VENTS VOK1</b><br>Axial roof fan                                                                      | page<br>176 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |             |
| SUPPLY AND EXHA | UST UNITS                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |             |
|                 | <b>VENTS VPA</b><br>Series supply units                                                                  | page<br>182 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VENTS MPAE</b><br>Series supply units                                                                 | page<br>186 |
|                 | <b>VENTS MPAW</b><br>Series supply units                                                                 | page<br>186 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VENTS PAE</b><br>Series supply units                                                                  | page<br>196 |
|                 | <b>VENTS PAW</b><br>Series supply units                                                                  | page<br>196 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VENTS VA</b><br>Series supply units                                                                   | page<br>204 |
| AIR HANDLING UN | ITS WITH HEAT RECOVERY                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |             |
|                 | <b>VENTS VUT mini</b><br>Air Handling unit with heat<br>recovery                                         | page<br>212 | Construction of the second sec | <b>VENTS VUT mini</b><br>with EC-motor<br>Air Handling unit with heat<br>recovery                        | page<br>214 |
| 0               | <b>VENTS VUE 100 P mini</b><br>Air Handling unit with heat<br>recovery                                   | page<br>216 | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>VENTS VUT H</b><br>Air Handling unit with heat<br>recovery                                            | page<br>218 |
| E CONTRACTOR OF | <b>VENTS VUT H with EC Motor</b><br>Air Handling unit with heat<br>recovery                              | page<br>222 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VENTS VUT EH and</b><br><b>VENTS VUT WH</b><br>Air Handling units with heat<br>recovery               | page<br>224 |
|                 | VENTS VUT EH Air Handling<br>units with heat recovery with<br>EC motor and VENTS VUT<br>WH with EC motor | page<br>234 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VENTS VUT PE Air Handling<br>units with heat recovery with<br>EC motor and VENTS VUT<br>PW with EC motor | page<br>240 |

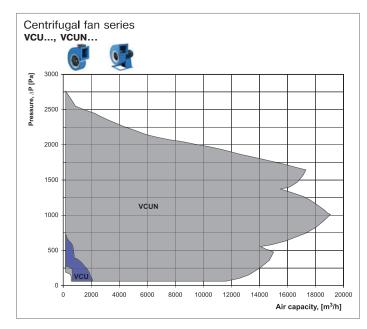
WWW.VENTILATION-SYSTEM.COM

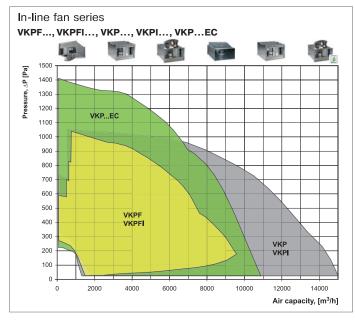


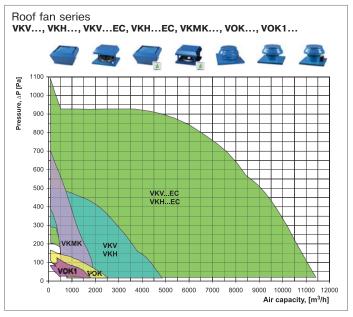
VUT R EH Air Handling units with heat recovery with EC motor and VUT R WH with EC motor

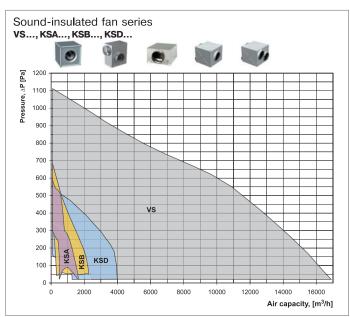


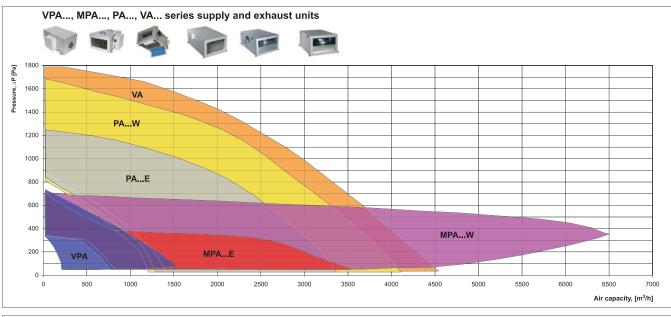


|               | RRV, RRVA, RRVAF<br>Air flow regulators<br>VVG, VVGF<br>Flexible connectors | page<br>340<br>page<br>344 |              | KG<br>Gravitation backdraft dampers<br><br>SKRA<br>Mixing sections                                               | page<br>342<br>page<br>345 |
|---------------|-----------------------------------------------------------------------------|----------------------------|--------------|------------------------------------------------------------------------------------------------------------------|----------------------------|
|               | <b>CZK, CZ, C, CB, CBR</b><br>Clamps                                        | page<br>346                |              |                                                                                                                  |                            |
|               | RS series                                                                   | page                       |              | RSA series                                                                                                       | page                       |
|               | Thyristor speed controllers<br>                                             | 352                        | and a second | Transformer speed controllers                                                                                    | 356                        |
|               | <b>VFED series</b><br>Frequency speed controllers                           | page<br>361                |              | <b>RTS series, RTSD series,</b><br><b>TST series, TSTD series,</b><br><b>RT series</b><br>Temperature regulators | page<br>362                |
| - Solar       | P2, P3, P5 series<br>Speed switches                                         | page 365                   |              | <b>R series</b><br>EC-motors regulators                                                                          | page<br>367                |
| C R<br>anna R | <b>T series, TH series,</b><br><b>TF series, TP series</b><br>Sensors       | page<br>368                |              | <b>Differential pressure switch</b><br>DTV 500                                                                   | page<br>369                |
| 620           | <b>Thermostat</b><br>F-3000                                                 | page<br>370                | - 6          | <b>Electric triac temperature</b><br><b>controller</b><br>PULSER-M                                               | page<br>371                |
|               | <b>Duct temperature sensors</b><br>TG-K                                     | page<br>372                |              | External temperature<br>regulator for chimney fans<br>TS-1-90                                                    | page<br>373                |
| 97<br>11      | <b>CO<sub>2</sub> sensor</b><br>CO2-1, CO2-2                                | page<br>374                |              |                                                                                                                  |                            |

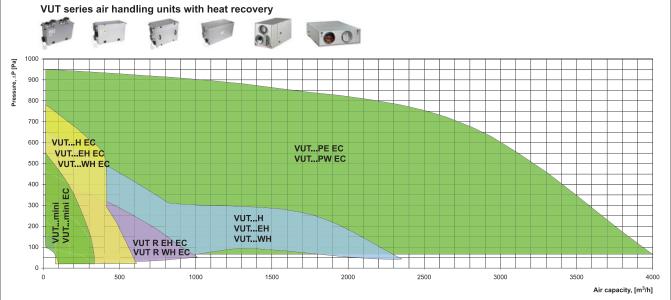

WWW.VENTILATION-SYSTEM.COM

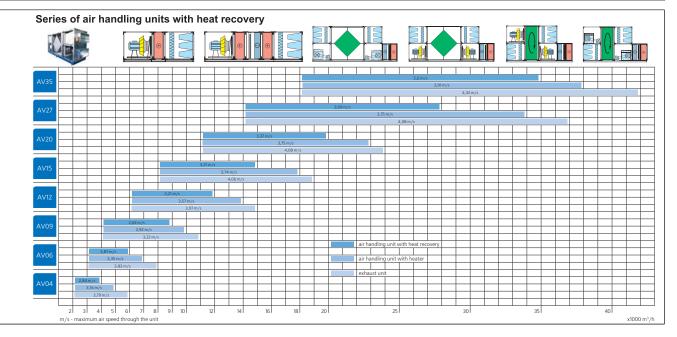

# **QUICK FAN SELECTION**





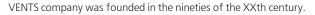






## **QUICK SELECTION OF AIR HANDLING UNITS**








# WELCOME TO THE VENTS WORLD!





Dynamic development of the enterprise and ongoing study of the consumer demand enabled rapid international leadership of the company in the ventilation industry.

VENTS company is one of few companies that manufacture independently a wide range of products for arrangement of ventilation systems of any complexity. The corporate affiliates are located worldwide and make the VENTS product easy available for the consumers all around the world.

VENTS is a powerful research and development enterprise with about 2500 professionals working as a single team to ensure a full production cycle from idea to end product. The production base of the company is located at more than 60 000 m<sup>2</sup> area. It includes 16 workshops equipped under the international standards and each of them is comparable to a separate plant.

Modern equipment, active implementation of advanced technologies and highly automated production are the characteristic features of VENTS company.

The company undergoes rapid dynamic development; fundamental researches and effective designs in climatic equipment industry are in the focus of the company's business strategy.

The joint cooperation of the corporate design department, test laboratories and production workshops let us introduce high quality products to the market.

Special attention is paid to the manufacturing of the goods during all manufacturing stages including monitoring of the technological conditions. Technical characteristics of supplied raw materials are thoroughly checked. Quality control system which meets international standard requirements ISO 9001:2000 was implemented at the enterprise.

Environmental protection is one of the basic components of the corporate development. The technological process at the enterprise is arranged in such a way as to exclude any negative impact to the environment. To solve the global energy saving problem we develop a special climatic equipment that provides comfortable conditions for people and reduces the energy demand significantly.







Metal processing workshop



Powder coating workshop





Air handling units workshop



Spiral air ducts workshop



Wet coating workshop



Flexible air ducts workshop



Aluminum grilles and diffusers workshop



Injection moulding workshop



Ventilation grilles workshop

AirVents air handling workshop



Extrusion workshop

Electric motors workshop



Electrical accessories workshop



Industrial fans workshop



Extruded grilles workshop

VENTS is the only exporter of ventilation equipment in Ukraine. Our goods gained consumers' acceptance in more than 80 countries of the world including the countries of Europe, America, Asia that confirms the company reliability and top quality of our products. Since 2008 VENTS is the only Ukrainian member of the USA Ventilation and Conditioning Association HARDI. Worldwide recognition witnessed that VENTS is the leader of the world ventilation market.








Get benefit from cooperation with VENTSTM and enjoy the maximum range of products of the top quality from one manufacturer.

# **VENTILATION IN OUR LIFE**



## • What Is Ventilation?

Ventilation is a complex of actions and facilities used for air exchange arrangment to provide the specified air condition in the premises and in working places. Ventilation systems maintain admissible meteorological parameters in various premises. Ventilation system should create the internal atmosphere that meets the specified hygienic standards and technological requirements.

#### What Is Ventilation Required For?

We are surrounded with air and breathe in and out 20 000 litres of air every day. How much healthy is the air we breath in? There is a range of aspects to determine air quality.

Oxygen and Carbon Dioxide Concentration In the Air. Oxygen decrease and carbon dioxide cause stuffiness in the premises.

Content of Harmful Substances and Dust In the Air. High content of dust, tobacco smoke and other substances in the air are harmful for the human organism and can cause various lung and skin diseases.

• Odours. Bad smell causes discomfort or irritates nervous system.

• Air Humidity. Increased or decreased moisture cause discomfort and even can result in acute attacks of disease for sick people. Air humidity is important also for the internal atmosphere. For instance, doors, window frames, furniture may dry up of decreased humidity in winter; but in the premises with increased humidity (e.g. in swimming-pools, bathrooms) they can expand.

▶ Air Temperature. A person feels comfortable in a premise with the temperature 21-23°C. Temperature variation causes the change of «comfort» well-being more or less that influences a person's physical and mental activity.

• Air Motion. Increased air speed in the premises causes the feeling of draft, and decreased speed causes air blanketing. Being inside we feel the impact of any of these factors.

## Ventilation system arrangement

Properly arranged ventilation system is the only solution in this situation. It provides filtered air supply in summer and filtered and warmed outdoor air in winter as well as extract stale air removal from the premises.

Any ventilation system must include simultaneous fresh air supply and extract air exhaust thus ensuring the ideal air balance in the room. In case of poor or unsufficient air intake from outside the oxygen content decreases, humidity and dustiness level increase. If exhaust ventilation is not provided or it is not effective, polluted air, smells, humidity and harmful substances are not removed.

One more important factor for properly arranged ventilation system is joint operation of supply and exhaust air vents. Take into account that with the only air vent (e.g. only exhaust fan is mounted in the bathroom unit), air flows from all possible gaps in windows, doors and walling. Such air supply leads to dust ingress, smells in the premises and drafts.

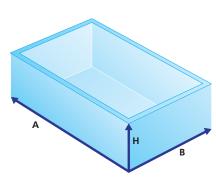
Natural sources of the organized air supply for making compensation to the exhausted air may serve vent grids mounted in doors of the bathroom unit, wall or window vents, opened ventlights, windows. Otherwise it may be the system of artificial ventilation when air flows to the premises in a centralized way.

# Calculation of the required air exchange. Engineering recommendations

#### Calculation of Air Exchange According to Air Exchange Rate:

Ventilation air volume is determined for each premise separately taking into account harmful impurities (substances) or it is specified on the basis of researches. If the nature and number of harmful impurities (substances) cannot be counted, air exchange is determined with the formula:

L= V prem. \* Ach  $[m^{3}/h]$ ,


where **V prem.** – air space [m<sup>3</sup>]; **Ach** – minimum air exchange per hour, see air exchange table.



How to determine the premise volume? Use a simple formula:

## length x width x height = volume of the premises m<sup>3</sup>

$$A \times B \times H = V [m^3]$$



Example: the premise with 7 m length, 4 m width and 2.8 m height. To determine the air volume required for ventilation of this premises, calculate the volume of the room: 7x4x2.8=78.4 m<sup>3</sup>. After that determine the required efficiency of the fan using the following tables of recommended ventilation rate.

Calculation of air exchange according to the number of people in the premises:

$$L = L_1 * N_L \quad [m^3/hour],$$

where  ${\bm L}_1$  – rated value for air volume per one person, m³/hour\*person;  ${\bm N}_L$  – number of people in the premises

20-25 m<sup>3</sup>/hour per one person at low physical activity 45 m<sup>3</sup>/hour per one person at light physical activity 60 m<sup>3</sup>/hour per one person at heavy physical activity

Calculation of air exchange with moisture evaporation:

$$L = \frac{D}{(d_v - d_n) * \rho} [m^3 / hour]$$

where  $\boldsymbol{\mathsf{D}}$  – moisture, g/hour;

 ${\bf d_v}$  – moisture content in the exhaust air, gram of water/kg of air;  ${\bf d_n}$  – moisture content in the intake air, gram of water/kg of air;

 $\rho$  - air density, kg/m<sup>3</sup> (at 20°C = 1,205 kg/m<sup>3</sup>);

### Calculation of air exchange to remove excessive heat:

$$L = \frac{Q}{\rho * C_{p} * (t_v - t_n)} [m^3 / hour]$$

Q - heat release in the premises, kW;

t<sub>v</sub> – exhaust air temperature, °C;

**t**<sub>n</sub> - intake air temperature, °C;

 $\rho$  – air density [kg/m<sup>3</sup>] at 20°C = 1,205 kg/m<sup>3</sup>;

 $C_p$  - heat capacity of air [kJ/(kg.K)] at 20°C;  $C_p$ =1,005 kJ/(kg.K)

#### Air ventilation rate:

|                                        | Premise                                                  | Air exchange rate                                                                                   |
|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                        | Living room of apartments or hostel residential premises | 3 m <sup>3</sup> /h for 1 m <sup>2</sup> in residential premises                                    |
|                                        | Kitchen in flat or hostel                                | 6-8                                                                                                 |
| SES                                    | Bathroom                                                 | 7-9                                                                                                 |
| גםכוווום ול זווכםוווסר                 | Shower cabin                                             | 7-9                                                                                                 |
| lic bi                                 | WC                                                       | 8-10                                                                                                |
| IIG 2                                  | Home laundry room                                        | 7                                                                                                   |
|                                        | Cloakroom                                                | 1,5                                                                                                 |
|                                        | Storeroom                                                | 1                                                                                                   |
|                                        | Garage                                                   | 4-8                                                                                                 |
|                                        | Cellar                                                   | 4-6                                                                                                 |
|                                        | Theatre, cinema, confrence hall                          | 20-40 m <sup>3</sup> per each visitor                                                               |
|                                        | Office                                                   | 5-7                                                                                                 |
|                                        | Bank                                                     | 2-4                                                                                                 |
|                                        | Restaurant                                               | 8-10                                                                                                |
|                                        | Bar, café, pub, billiard room                            | 9-11                                                                                                |
|                                        | Professional kitchen                                     | 10-15                                                                                               |
|                                        | Supermarket                                              | 1,5-3                                                                                               |
|                                        | Chemist's                                                | 3                                                                                                   |
| ~                                      | Garages and vehicle repair shops                         | 6-8                                                                                                 |
|                                        | Public WC                                                | 10-12 (or 100 m³ per<br>each WC pan)                                                                |
| ge                                     | Dance Halls and disco clubs                              | 8-10                                                                                                |
| I I I                                  | Smoking rooms                                            | 10                                                                                                  |
| ts al                                  | Server rooms                                             | 5-10                                                                                                |
| industrial premises and large premises | Sport hall                                               | 80 m <sup>3</sup> or more for<br>each sportsman and<br>20 m <sup>3</sup> or more for<br>each viewer |
| =                                      | Hair dresser's                                           |                                                                                                     |
|                                        | Up to 5 working places                                   | 2                                                                                                   |
|                                        | More than 5 working places                               | 3                                                                                                   |
|                                        | Warehouses                                               | 1-2                                                                                                 |
|                                        | Laundryroom                                              | 10-13                                                                                               |
|                                        | Swimming pool                                            | 10-20                                                                                               |
|                                        | Industrial painting shop                                 | 25-40                                                                                               |
|                                        | Machine shop                                             | 3-5                                                                                                 |
|                                        | School classroom                                         | 3-8                                                                                                 |
|                                        |                                                          |                                                                                                     |

Calculation of air exchange depending upon maximum permissible concentration of aggressive substances in the air:

$$L = \frac{G_{co_2}}{U_{pDK} U_p} [m^3/hour]$$

 $\mathbf{G}_{\mathbf{co2}}$  -CO<sub>2</sub> release amount [l/hour],

 $\mathbf{U}_{\mathbf{PDK}} - \mathbf{CO}_2$  maximum permissible concentration, I/m<sup>3</sup>,  $\mathbf{U}_{\mathbf{p}}$  – gas content in the intake air, I/hour.

70

#### CO, permissible concentration norms, I/m<sup>3</sup>

| Permanent residential premises   |                               |      |
|----------------------------------|-------------------------------|------|
| Hospitals and child care centers |                               |      |
| Periodically occupied premises   |                               |      |
| Short stay premises              |                               |      |
|                                  | Populations centers (village) | 0,33 |
| Open air: Small towns            |                               | 0,4  |
|                                  | 0,5                           |      |

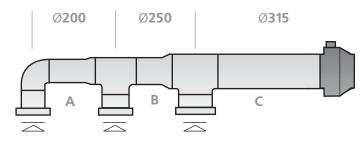
#### What is pressure loss?

Air resistance in ventilation system is mainly determined by air speed in this system. Resistance grows as the air speed increases. This phenomenon is called pressure loss. Static pressure, produced by a fan, causes air motion in the ventilation system with a certain resistance. The higher the resistance of such a system is, the less air capacity moved by the fan is. Calculation of friction losses for air in air ducts, as well as resistance of the networking equipment (a filter, silencer, heater, valves and dampers, etc.) can be performed with help of tables and diagrams mentioned in the catalogue. The general pressure loss is equal to the total amount of all the resistance indices of all the elements in the ventilation system.

#### Recommended air motion speed rate inside the air ducts:

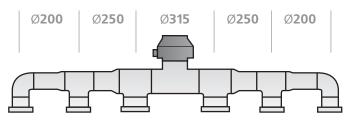
| Туре                   | Air speed, m/s |
|------------------------|----------------|
| Main air ducts         | 6,0 - 8,0      |
| Side branches          | 4,0 - 5,0      |
| Air distribution ducts | 1,5 - 2,0      |
| Intake ceiling grilles | 1,0 - 3,0      |
| Extract grilles        | 1,5 - 3,0      |

### Calculation of air speed in the air ducts:


 $\textbf{L}-air\ capacity\ [\ m^{_3}/hour];$ 

**F** – duct cross section [m<sup>2</sup>];

#### Recommendation 1.


Pressure loss in the duct system can be reduced due to larger duct section which

provides relatively equal air speed in the whole system. The figure below shows how to provide relatively equal air speed in the duct system with the minimum pressure loss.

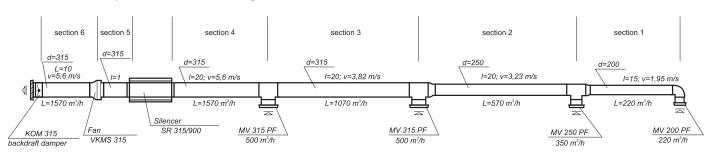


#### **Recommendation 2.**

The systems with large air duct length and large number of grilles should incorporate a fan in the middle of the ventilation system. Such solution has several advantages. On the one hand, pressure losses are reduced, on the other hand, smaller ducts are used.



#### Ventilation system calculation example:


Start the calculation with the system drafting, showing the location of the air duct, ventilation grilles, fans and also the air duct section lengths between T-joint. Then calculate the air capacity at each section.

To calculate the pressure loss in the sections 1-6, use the pressure loss diagram for round air ducts. For that the required air duct diameters and pressure loss shall be determined under condition of permissible air sped in the duct.

**Section 1:** air capacity is 200 m<sup>3</sup>/h. On the assumption that the air duct diameter is 200 mm, air speed is 1.95 m/s the pressure loss makes 0.21 Poa/m x 15 m = 3 Pa (refer to the pressure loss diagram in the air ducts).

Section 2: the same calculations shall be performed considering that the air speed through this section makes  $220+350=570 \text{ m}^3/\text{h}$ . On the assumption that the air duct diameter is 250 mm and the air speed is 3.23 m/s the pressure loss value makes  $0.9 \text{ Pa/m} \times 20 \text{ m} = 18 \text{ Pa}$ .

**Section 3:** air capacity through this section makes 1070 m<sup>3</sup>/h. On the assumption that the air duct diameter is 315 mm and the air speed is 3.82 m/s the pressure loss value makes  $1.1 \text{ Pa/m} \times 20 \text{ m} = 22 \text{ Pa}$ .



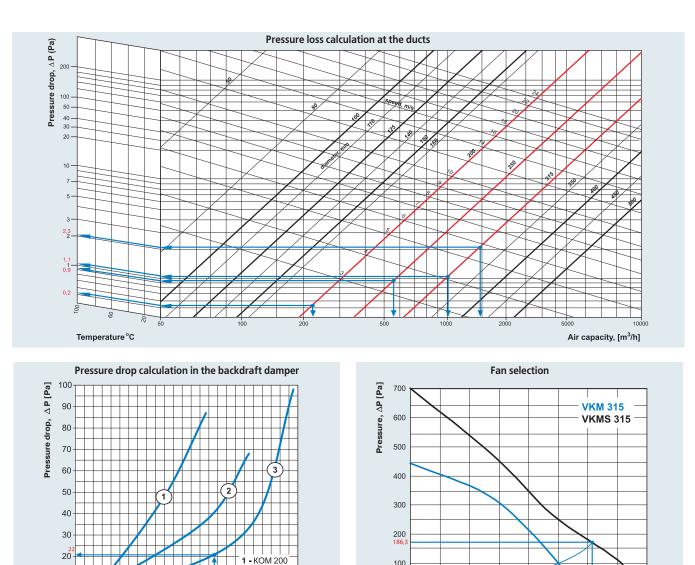
Section 4: air capacity through this section makes  $1570 \text{ m}^3/\text{h}$ . On the assumption that the air duct diameter is 315 mm and the air speed is 5.6 m/s the pressure loss value makes 2.3 Pa/m x 20 m = 46 Pa.

Section 5: air capacity through this section makes 1570 m<sup>3</sup>/h. On the assumption that the air duct diameter is 315 mm and the air speed is 5,6 m/s the pressure loss value makes 2.3 Pa/m x 20 m = 2.3 Pa.

**Section 6:** air capacity through this section makes 1570 m<sup>3</sup>/h. On the assumption that the air duct diameter is 315 mm and the air speed is 5.6 m/s the pressure loss value makes 2.3 Pa x 10 m = 23 Pa. The total pressure loss in the air duct makes 114.3 Pa.

As the last section pressure loss calculation is over calculate the pressure loss in the network elements as silencer SR 315/900 (16 Pa) and in the backdraft damper KOM 315 (22 Pa). Make also the calculation of the pressure loss in the tapping to the grilles. The total air resistance of 4 tappings makes 8 Pa.

## Pressure loss calculation at the duct bends


The diagram enables calculation of the pressure loss in the tapping on the basis of bend angle, air duct diameter and air capacity.

**Example.** Calculate the pressure loss for 90° bend,  $\emptyset$  250 mm and air capacity 500 m<sup>3</sup>/h. For that find the intersection point of the vertical line that shows the air capacity with the vertical line. Find the pressure loss on the vertical line on the left for 90° pipe bend which makes 2 Pa.

We consider PF ceiling air diffusers and calculate their resistance according to the diagram which makes 26 Pa.

Now let us sum up all the pressure losses for the sraight air duct section, network elements, bends and grilles. The ought quantity is 186.3 Pa.

We have calculated the whole system and have come to the conclusion that we need the exhaust fan to remove 1570 m<sup>3</sup>/h during the system resistance 186.3 Pa. Considering all the required operating characteristics VENTS VKMS 315 fan suits our requests.



0

0

500

1000

1500

2000

Air capacity, [m3/h]

2 - KOM 250

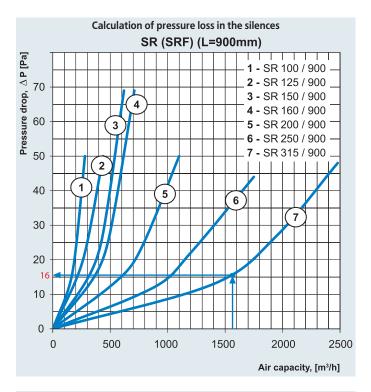
3 - KOM 315

2500

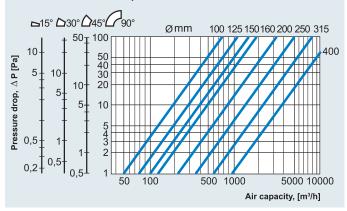
2000

Air capacity, [m3/h]

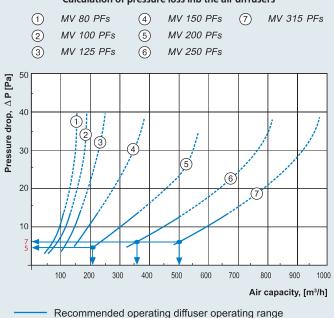
10


0

0


500

1000


1500

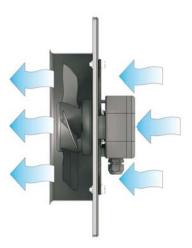


Calculation of pressure loss in the air duct bends



Calculation of pressure loss inb the air diffusers




## Fan types:

**Fans** are mechanical units designed for air transportation in the ducts, direct ais supply or air exhaust from the premises. Air is moved due to pressure drop at the fan intake and exhaust.

Axial-flow fan has the form a cylindrical-cased wheel with the impeller fixed to a bushing at some angle to rotation plane. As the impeller blades rotate air is trapped betwen and is moved further axially. Air is not transferred in the radial direction. The axial fan blades are mostly set directly on the motor shaft.

#### Application:

 air supply and exhaust through free entries or in one set with no more then 3 m air ducts placed horizontally with low aerodynamic resistance of the network.



**Mixed flow fans combining the features of centrifugal and axial fans** can transfer air in the motor axis direction. Such fans are widely applied in the ventilation systems with round air ducts.

Round duct fans are available in standard sizes ranging from 100 up to 450 mm with the capacity ranging from 250 to 5200 m<sup>3</sup>/h. The impellers with backward-curved blades are powered by the asynchronous external rotor motors. The ball bearings are applied for long service life. The fan casings are made of plastic, steel with polymeric coating or galvanized steel to ensure corrosion resistance and pleasant aesthetic look.



#### Application:

• air exhaust and supply in large ventilation systems with high air dynamic resistance. **Centrifugal fans** consist of two basic components - turbine and scroll casing. Impeller of centrifugal fan is a hollow cylinder with mounted blades inside, circumferentially fixed with disk plates. The hub for mounting the impeller on the shaft is located at the center of the strengthening ring.

During the impeller operation air is trapped between the blades and moves radially from the center compressed. Under centrifugal force air is transported

to the scroll casing and then moved to the exhaust pipe. Centrifugal fans incorporate forward- or backwardcurved blades. Use of centrifugal impellers with backward-curved blades allows up to 20% energy saving. Another important privilege of backward-curved blades is their high air overload capability.

Centrifugal fans with forwardcurved blades ensure the same air capacity and pressure characteristics





Backward curved blades

as the backward-curved blades do but they require smaller impeller diameter and lower speed. So they are able to attain the required result demanding less space and producing less noise.

#### Application:

 air exhaust and supply in ventilation systems with largeextnsion ventilation systems and high air dynamic resistance.

Forward curved blades

#### Fan speed control

Speed control is effected by means of thyristor or transformer speed controllers.

#### Thyristor speed control.

Smooth speed controllers are designed for manual motor speed control and produces by ths fans air flow capacity respectively. Speed controller operation is based on smooth voltage output by means of the thymistor.

Several motors can be controlled simultaneously if their total current does not exceed the maximum permissible value of the controller current.

Such controllers are featured with high control efficiency and accuracy. When operating in low-speed mode the fans can produce more noise. For that reason such fan is not recommended for low-noise application. Low-voltage motor application results in reducing bearings service life. The recommended control interval is 60-100% of the rated voltage.

#### Transformer speed control.

Transformer speed controller operation is based on five-staged autotransformer for control of motor power supply voltage. During the controller operation the frequency does not change.

Transformer controllers are designed for voltage-conrolled motor speed control. One transformed can control several fans in case their total current does not exceed the controller rated current value.

During transformer speed controlling the motor does not produce more noise while operating in low-speed mode. However the motor bearings service life can be reduced as a result of continuous low-voltage operation mode (speed 1 or 2).

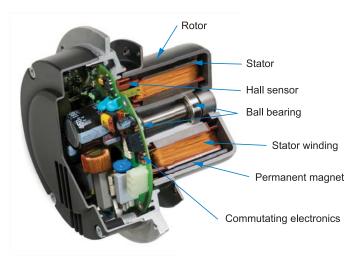
#### Fan motors

#### **External rotor motors**

External rotor motor design is similar to asynchronous motor design but the motor rotor is located outside of the stator winding and the stator with the windings is located in the motor centre. Such original modification ensures the compact size of the unit. The motor shaft rotates on the ball bearings mounted inside the stator. The impeller is fixed on the rotor casing. Such design provides air cooling of the electric motor which allows using the fans in the wide temperature range. All the motors and impellers are statically and dynamically balanced at the manufacturing facility.

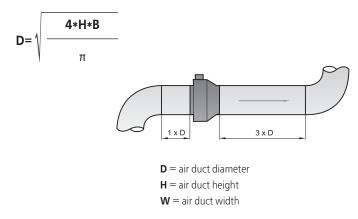


#### EC-motor powered equipment


EC motor is an electric motor driven by electronically commutated direct current controller that has no friction or wear parts such as commutator and brushes in standard direct current motors. This function is performed by maintenance-free EC-controller PCB. New electric motors are featured with high efficiency and the best control over ther whole speed range. EC-motor electronic controller enables extra functions as speed control as a function of temperature sensor or pressure sensor reading or other parameters.

#### EC-motor advantages:

- efficient performance at any motor speed up to zero;
- lowered heat generation;
- fan overall dimensions can be reduced due to external rotor motor configuration;
- maximum motor speed dos not depend on the mains power supply frequency and operation both at 50 and 60 Hz is possible;
- high efficiency at low speed;
- data exchange between PC and fan for setting and controlling the operating characteristics;
- > centralized control of several fans integrated into a single system.


Custom designed software provides high accuracy control of the fans integrated into network.

The LED-display of the computer shows all the system parameters and the operation mode can be set individually for each fan in the network. Operating characteristics of a specific fan integrated into the network can be centrally corrected to match the ventilation system parameters. Such technology provides adjusting the ventilation system in compliance with the customer requirements.



#### General mounting recommendations

To reduce the airstream turbulence induced losses a straight air duct segment shall be laid at the fan inlet and outlet. The minimum straight segment length shall be at least 1 air duct diameter at inlet and 3 air duct diameters at outlet. These segments shall not incorporate filters or other similar equipment. For rectangular ducts the respective air duct diameter is calculated as follows:



### Fan noise characteristics

Noise characteristics of the equipment are shown in the tables indicating:

▶ Sound-power level LWA in dBA i frequency bands to inlet, outlet and environment of the fan.

• The total sound power level dB(A) at 3 m distance.

The frequency band has eight wave groups. Each group has a definite mediumd frequency: 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2 kHz, 4 kHz and 8 kHz. Any noise is distributed to definite frequency bands and the sound energy is dissipated to various frequency.

The sound produced by the operating fan is spread along the air duct, partially attenuates inside the unit and penetrates through the grilles inside the premise. Ventilation system design is based on acoustic calculation which is an integral part of any premise ventilation design. The calculation is aimed to define the octave-frequency band in the operating points and the required sound attenuation level by means of comparing this spectrum with the permissible values according to hygienic regulations. After selection of construction and acoustic means for sound attenuation the expected sound-pressure levels are tested to check the efficiency in the selected operating points.

| dBa | Characteristics    | Sound source                                                                                                                                            |
|-----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | no noise           |                                                                                                                                                         |
| 5   | almost not audible |                                                                                                                                                         |
| 10  | annost not audiple | low leaves rustling                                                                                                                                     |
| 15  | hardly audible     | medium leaves rustling                                                                                                                                  |
| 20  | hardly addible     | human whisper (1 m distance)                                                                                                                            |
| 25  |                    | human whisper (1 m distance)                                                                                                                            |
|     | quiet              | whisper, wall clock ticking                                                                                                                             |
| 30  |                    | standard sound level for residential premises<br>from 23.00 till 07.00                                                                                  |
| 35  |                    | low speech                                                                                                                                              |
| 40  | quite audible      | conventional speech<br>standard sound level for residential premises<br>from 07.00 till 23.00                                                           |
| 45  |                    | conventional conversation                                                                                                                               |
| 50  | definitely audible | conversation, typing                                                                                                                                    |
| 55  | definitely addible | Norm for A office premises (EN)                                                                                                                         |
| 60  |                    | office standard                                                                                                                                         |
| 65  | noisy              | loud conversation (1 m)                                                                                                                                 |
| 70  | noisy              | severa loud conversations (1 m)                                                                                                                         |
| 75  |                    | shout, laughter                                                                                                                                         |
| 80  |                    | shouting, operating motorcycle with a silencer                                                                                                          |
| 85  | very noisy         | loud shouting, operating motorcycle<br>with a silencer                                                                                                  |
| 90  | very noisy         | Loud shouts, freight car (7 m)                                                                                                                          |
| 95  |                    | moving subway train (7 m)                                                                                                                               |
| 100 | Eutomol .          | Orchestra, subway car (abruptly), thunder<br>Maximum permissible sound pressure for<br>headphones of a personal stereo (according to<br>European norms) |
| 105 | Extremely noisy    | inside the airplane (before 1980s)                                                                                                                      |
| 110 |                    | helicopter                                                                                                                                              |
| 115 |                    | sandblaster (1 m)                                                                                                                                       |
| 120 | Almost unbearable  | pneumatic hammer (1 m)                                                                                                                                  |
| 130 | Pain threshold     | airplane at start                                                                                                                                       |

#### What is IP?

During the equipment selection and installation location it is extremely important to ensure matching the protection rating to the equipment operating conditions. Any electrical appliance shall meet two protection requirements simutaneously, i.e. to ensure safery to the user and the maintenance staff and to protect the electrical components located inside the appliance against environmental impact, i.e.Ingress Protection (IP). IP rating refers to dust-proof and moisture protection of the equipment and its electrical safety. Information regarding protection rating marked IP and two digits indicating protectiont degree is shown in the documentation and on casing of the equipment, i.e. IP20 or IP65. The first digit of IP designation shows the degree of protection against access to hazardous objects. Protection characteristics defined by the first digit is shown in the table 1. The second digit shows the degree of protection against water ingress and its characteristics are shown in the table 2.

#### Table 1

| First digit | Protection characteristics       | Description                                                                                                                                                         |
|-------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х           | Protection rating is not defined | Oped construction, no dust protection and protection against contact with current-carrying parts.                                                                   |
| 1           | Large-scale objects protection   | Protection from OBJECTS EQUAL TO OR GREATER THAN 50 mm and hand accidental touch to current-carrying parts.                                                         |
| 2           | Medium-size objects protection   | Protection from OBJECTS EQUAL TO OR GREATER THAN 12 mm. and fingers touch to current-carrying parts.                                                                |
| 3           | Small-size objects protection    | Protection from OBJECTS EQUAL TO OR GREATER THAN 2,5 mm and entry by tools, wires or fingers.                                                                       |
| 4           | Sand protection                  | Protection from OBJECTS EQUAL TO OR GREATER THAN 1 mm and entry by tools, wires or fingers.                                                                         |
| 5           | Dust protection                  | Significant dust quantity can be accumulated inside the casing which does not disturb the rated operation. Full protection against touch to current-carrying parts. |
| 6           | Dust-tight protection            | No dust penetration inside the configuration                                                                                                                        |

#### Table 2

| Second digit | Protection characteristics                                  | Description                                                                                                                              |
|--------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| х            | Protection rating is not defined                            | Open construction with no protection against water                                                                                       |
| 1            | Protection against VERTICALLY<br>DRIPPING WATER             | Water drops dripping vertically do not damage equipment                                                                                  |
| 2            | Protection from vertically dripping water<br>(15° tilted)   | Water drops falling vertically at 15° do not damage equipment                                                                            |
| 3            | Protection from sprayed water                               | Water falling as a spray at any angle up to 60° from the vertical shall have no harmful effect.                                          |
| 4            | Protection from splashed water                              | Water splashing against the enclosure from any direction shall have no harmful effects for the equipment in the casing.                  |
| 5            | Protection from jetting water                               | Water projected by a nozzle against enclosure from any direction shall have no harmful effects for the equipment in the casing.          |
| 6            | Protection from powerfully jetting water                    | Water projected in powerful jets against the enclosure from any direction shall have no harmful effects for the equipment in the casing. |
| 7            | Protection against temporary immersion                      | Ingress of water in harmful quantity shall not be possible when the equipment is immersed in water.                                      |
| 8            | Protection against complete, continuous submersion in water | The equipment is suitable for continuous immersion in water under conditions which shall be specified by the manufacturer.               |

#### Certification



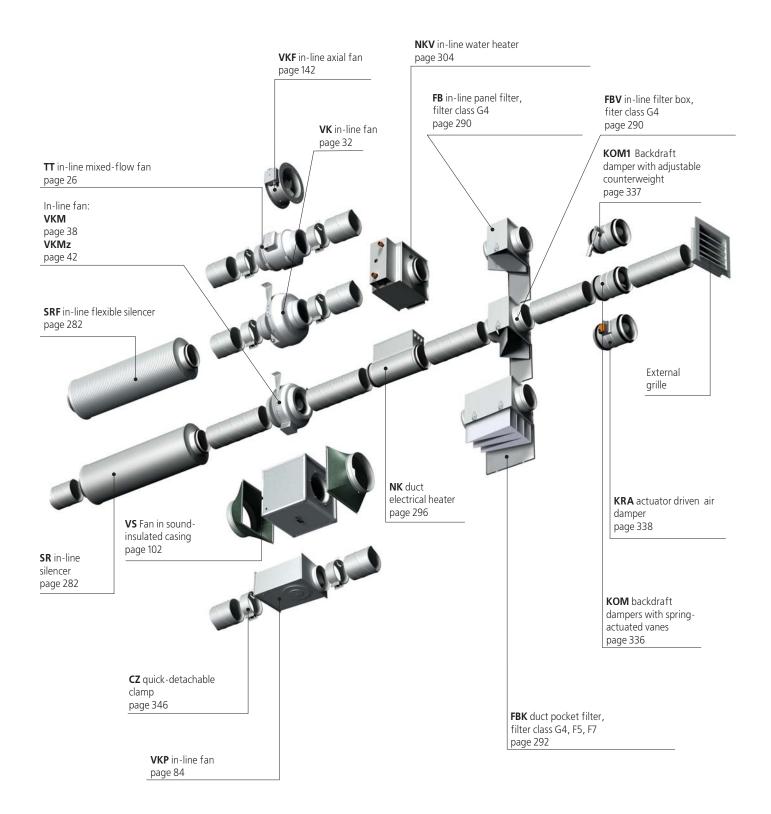
certification).

CE-marked equipment means that the goods are produced in compliance with the quality and safety standards provided by EU regulations for the current item (marked by the manufacturer). Mark of conformity to the European Quality Standards and electrical safety issued by Association for Technical Inspection (Technischer Überwachungsverein, Germany). Mark of conformity to the Polish Quality Standards and electrical safety issued by PCBC (Polish center for testing and

Mark of conformity to the Ukrainian Quality Standards and electrical safety issued by Ukrtest.



Mark of conformity of the goods subject to obligatory certification in DSTR sustem as well as technical norms and standards acting at Russian Federation.




Insulation class: double insulation.

Mark of conformity to the Slovak Quality Standards and electrical safety issued by EVPU (Slovakia).

4 Applicance protection rating (refer to tables 1, 2).

# **ROUND DUCTS SYSTEM**



# SELECTION TABLE FOR ROUND ITEMS

|                               | d=100 mm     | d=125 mm     | d=150 mm     | d=160 mm     | d=200 mm     | d=250 mm     | d=315 mm     |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Fans                          | TT 100       | TT 125       | TT 150       | TT 160       | TT 200       | TT 250       | TT 315       |
|                               |              | TT 125 S     |              |              |              |              |              |
|                               | VK 100 Q     | VK 125 Q     |              |              | VK 200       | VK 250 Q     | VK 315       |
|                               | VK 100       | VK 125       | VK 150       | VK 160       | VKS 200      | VK 250       | VKS 315      |
|                               | VKM 100 Q    | VKM 125 Q    |              |              | VKM 200      | VKM 250 Q    | VKM 315      |
|                               | VKM 100      | VKM 125      | VKM 150      | VKM 160      | VKMS 200     | VKM 250      | VKMS 315     |
|                               | VKMz 100 Q   | VKMz 125 Q   |              |              | VKMz 200 Q   | VKMz 250 Q   | VKMz 315 Q   |
|                               | VKMz 100     | VKMz 125     | VKMz 150     | VKMz 160     | VKMz 200     | VKMz 250     | VKMz 315     |
|                               | VC 100 Q     | VC 125 Q     |              |              | VC 200       | VC 250 Q     | VC 315       |
|                               | VC 100       | VC 125       | VC 150       | VC 160       | VCS 200      | VC 250       | VCS 315      |
|                               | VCN 100      | VCN 125      | VCN 150      | VCN 160      | VCN 200      |              |              |
|                               | VKP 100 mini |              |              |              |              |              |              |
|                               | VKP 100      | VKP 125      | VKP 150      | VKP 160      | KSB 200      | KSB 250      | KSB 315      |
|                               | KSB 100      | KSB 125      | KSB 150      | KSB 160      | KSB 200 S    |              |              |
|                               |              |              |              |              | VKF 2E 200   | VKF 2E 250   | VKF 2E 300   |
|                               |              |              |              |              |              | VKF 4E 250   | VKF 4E 300   |
|                               |              |              |              |              |              |              |              |
| Filters                       | FB 100       | FB 125       | FB 150       | FB 160       | FB 200       | FB 250       | FB 315       |
|                               | FBV 100      | FBV 125      | FBV 150      | FBV 160      | FBV 200      | FBV 250      | FBV 315      |
|                               | FBK 100-4    | FBK 125-4    | FBK 150-4    | FBK 160-4    | FBK 200-4    | FBK 250-4    | FBK 315-4    |
|                               | FBK 100-5    | FBK 125-5    | FBK 150-5    | FBK 160-5    | FBK 200-5    | FBK 250-5    | FBK 315-5    |
|                               | FBK 100-7    | FBK 125-7    | FBK 150-7    | FBK 160-7    | FBK 200-7    | FBK 250-7    | FBK 315-7    |
|                               |              |              |              |              |              |              |              |
| Heaters                       |              |              |              |              |              |              |              |
| electrical                    | NK 100 0,6-1 | NK 125 0,6-1 | NK 150 1,2-1 | NK 160 1,2-1 | NK 200 1,2-1 | NK 250 1,2-1 | NK 315 1,2-1 |
|                               | NK 100 0,8-1 | NK 125 0,8-1 | NK 150 2,4-1 | NK 160 2,4-1 | NK 200 2,4-1 | NK 250 2,4-1 | NK 315 2,4-1 |
|                               | NK 100 1,2-1 | NK 125 1,2-1 | NK 150 3,4-1 | NK 160 3,4-1 | NK 200-3,4-1 | NK 250-3,0-1 | NK 315 3,6-3 |
|                               | NK 100 1,6-1 | NK 125 1,6-1 | NK 150 3,6-3 | NK 160 3,6-3 | NK 200 3,6-3 | NK 250 3,6-3 | NK 315 6,0-3 |
|                               | NK 100-1,8-1 | NK 125 2,4-1 | NK 150 5,1-3 | NK 160 5,1-3 | NK 200 5,1-3 | NK 250 6,0-3 | NK 315 9,0-3 |
|                               |              |              | NK 150 6,0-3 | NK 160 6,0-3 | NK 200 6,0-3 | NK 250 9,0-3 |              |
|                               |              |              |              |              |              |              |              |
| water heating coils           | NKV 100-2    | NKV 125-2    | NKV 150-2    | NKV 160-2    | NKV 200-2    | NKV 250-2    | NKV 315-2    |
|                               | NKV 100-4    | NKV 125-4    | NKV 150-4    | NKV 160-4    | NKV 200-4    | NKV 250-4    | NKV 315-4    |
|                               |              |              |              |              |              |              |              |
| Silencers                     | SR 100       | SR 125       | SR 150       | SR 160       | SR 200       | SR 250       | SR 315       |
|                               | SRF 100      | SRF 125      | SRF 150      | SRF 160      | SRF 200      | SRF 250      | SRF 315      |
|                               |              |              |              |              |              |              |              |
| Dampers, shutters             | KOM 100      | KOM 125      | KOM 150      | KOM 160      | KOM 200      | KOM 250      | KOM 315      |
|                               | KOM1 100     | KOM1 125     | KOM1 150     | KOM1 160     | KOM1 200     | KOM1 250     | KOM1 315     |
|                               | KR 100       | KR 125       | KR 150       | KR 160       | KR 200       | KR 250       | KR 315       |
|                               | KRA 100      | KRA 125      | KRA 150      | KRA 160      | KRA 200      | KRA 250      | KRA 315      |
|                               |              |              |              |              |              |              |              |
| Flexible connectors           | VVG 100      | VVG 125      | VVG 150      | VVG 160      | VVG 200      | VVG 250      | VVG 315      |
|                               |              |              |              |              |              |              |              |
| Clamps                        | CZK 100      | CZK 125      | CZK 150      | CZK 160      | CZK 200      | CZK 250      | CZK 315      |
|                               | CZ 100       | CZ 125       | CZ 150       | CZ 160       | CZ 200       | CZ 250       | CZ 315       |
|                               | C 100        | C 125        | C 150        | C 160        | C 200        | C 250        | C 315        |
|                               | CB 100       | CB 125       | CB 150       | CB 160       | CB 200       | CB 250       | CB 315       |
|                               |              |              |              |              |              |              |              |
| Speed controllers             |              |              |              |              |              |              |              |
| thyristor speed controllers   | RS series    |
| transformer speed controllers | RSA series   |

# **ROUND DUCT FANS**

#### VENTS TT series



In-line mixed fans in the plastic casing with the air capacity up to 2350 m<sup>3</sup>/h. Designed for supply and exhaust ventilation.

#### VENTS VK series



In-line centrifugal fans in the plastic casing with the air capacity up to 1700 m<sup>3</sup>/h. Designed for supply and exhaust ventilation systems.



• In-line centrifugal fans in the steel casing with polymeric coating (air capacity up to 5260 m<sup>3</sup>/h) or in casing made of galvanized steel (air capacity up to 1540 m<sup>3</sup>/h). Designed for supply and exhaust ventilation systems.



In-line centrifugal fans with the air capacity up to 1880 m<sup>3</sup>/h. Designed for supply and exhaust ventilation systems.

VENTS VCN series



VENTS VKP and VKP mini series



In-line centrifugal fan in the steel casing with the air capacity up to 710 m $^3$ /h, for outdoor wall mounting. Designed for exhaust ventilation system.

Compact centrifugal VKP fans for round ducts in steel casing with the air capacity up to 553 m<sup>3</sup>/h.

Compact centrifugal VKP mini fans for round ducts in steel casing with the air capacity up to 176 m<sup>3</sup>/h supporting constant air flow at alternating pressure in the system. Designed for supply and exhaust ventilation systems.







|           | In-line mixed-flow fan<br>VENTS TT                 | page |
|-----------|----------------------------------------------------|------|
| Carl Carl | Air capacity – up to 2350 m³/h                     | 26   |
|           | VENTS VK<br>In–line centrifugal fan                | page |
|           | Air capacity – up to 1700  m³/h                    | 32   |
|           | VENTS VK VMS 125<br>Multiple-inlet centrifugal fan | page |
| <b>W</b>  | Air capacity – up to 335 m³/h                      | 36   |
|           | VENTS VKM<br>In–line centrifugal fan               | page |
|           | Air capacity – up to 5260 m³/h                     | 38   |
|           | VENTS VKMz<br>In-line centrifugal fan              | page |
|           | Air capacity – up to 1540 m³/h                     | 42   |
|           | VENTS VC<br>In-line centrifugal fan                | page |
|           | Air capacity – up to 1880 m³/h                     | 46   |
|           | VENTS VCN<br>Exhaust centrifugal fan               | page |
|           | Air capacity – up to 710 m³/h                      | 50   |
|           | VENTS VKP<br>In–line centrifugal fan               | page |
|           | Air capacity – up to 553 m³/h                      | 54   |
|           | VENTS VP<br>Centrifugal ceiling fans               | page |
|           | Air capacity – up to 310 m³/h                      | 56   |
|           | VENTS VKP mini<br>In-line centrifugal fan          | page |
|           | Air capacity – up to 176 m³/h                      | 58   |

# FANS FOR ROUND DUCTS

# Series VENTS TT



casing with the air capacity up to 2350 m<sup>3</sup>/h.

#### Applications

VENTS TT series full-featured fans combine manifold possibilities and high features of axial and centrifugal fans and applied for supply and exhaust ventilation systems that require high pressure, powerful airflow and low noise level and compatible with 100, 125, 150, 160, 200, 250, 315 mm round ducts. Fans of TT series are the best solution for air exhaust systems of premises with high humidity such as bathrooms or kitchens as well as for ventilation of flats, cottages, shops, cafés, cinemas etc. The wide model range and many options allows selecting the best suitable fan.

#### Design

The casing is made of high-quality durable ABS plastic (TT 100-200) or fire resistant polypropylene (TT 250-315). Motor with impeller and terminal box are fixed on the casing by means of special clamps with latches, designed in such a way as to ensure easy

#### Designation key:

dismantling without any special skills or tools. Such design ensures easy service and maintenance access. All the models can be fitted with adjustable timer with turn-off delay from 2 to 30 minutes (TT...T). Power cord with plug can be provided for easy connection and operation (TT...R).

#### Motor

One-phase motor with ball bearings has two speeds. Some standard sizes have motors with more powerful features (TT...S). The motors are equipped with builtin overheating protection with automatic restart. Motor protection rating IP X4.

#### Speed control

The double-speed motor is controlled with builtin speed switch (models TT....V) or with an external speed switch for multi-speed fans (available upon separate order). Smooth speed control is possible with an integrated speed controller (models TT...P) or with an external triac or autotransformer speed controller (available upon separate order) when connected to the terminal of the maximum speed.

#### Mounting

The fan can be mounted in any place of duct system and at any angle, vertically or horizontally. Several fans can be mounted in parallel to increase the air capacity or in series to increase the operating pressure. The casing is fitted with a mounting plate for wall mounting. Installation with special support bracket PTT 100...315 (not included in the equipment list) is also possible. The mounting box can be installed in any position for easy installation and connection.



# TT Fan with TSC electronic speed control module with temperature sensor

TT...U model fan with electronic temperature and speed module is the perfect solution for ventilation of greenhouses or any other premises requiring permanent temperature control. The fan is equipped with built-in TSC electronic speed control module with temperature sensor providing fan speed automatic control as a function of the air temperature.

The TSC front panel is equipped with two control knobs for presetting the minimum fan speed and the maximum indoor temperature level. The module is fitted with indoor temperature sensor located either remote (4 m long and protected against mechanical damages) or mounted inside the casing.

The LED indicator for thermostat switching on is placed at the front panel of the fan.

| Designation | key:                                                                                                                                                     |                             |          |                                                                   |  |  |  |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Fan series  | E                                                                                                                                                        | Ouct connection<br>diameter |          | Options                                                           |  |  |  |  |  |  |  |  |  |
| VENTS TT    | ITS TT100; 125; 150; 160;<br>200; 250; 315S - high-powered motor;<br>T - timer;<br>U - speed controller module with the built in temperature sensor;<br> |                             |          |                                                                   |  |  |  |  |  |  |  |  |  |
|             | -SM                                                                                                                                                      |                             | -        | Accessories                                                       |  |  |  |  |  |  |  |  |  |
| 0           | Q                                                                                                                                                        | 3                           |          |                                                                   |  |  |  |  |  |  |  |  |  |
| page 282    | page 290                                                                                                                                                 | page 292                    | page 296 | 16 page 304 page 336 page 338 page 347 page 362 page 365 page 366 |  |  |  |  |  |  |  |  |  |

# TT operation pattern with electronic temperature and speed module

Set the required air temperature with thermostat controller knob (thermostat operating threshold). Set the required rotation speed (air flow) with controller knob. As the air temperature rises and the thermostat operating threshold is exceeded, the motor switches automatically to the maximum rotation speed (maximum air flow). As the air temperature drops below the thermostat operating threshold the motor switches automatically to the preset rotation speed. The switching delay disables frequent motor switching if the set ambient temperature is equal to the threshold temperature.

Two patterns of delay are applied for various cases: 1. Temperature sensor delay (TT...U): as the temperature rises at least by 2°C above the set threshold for thermostat switching, the motor switches to the increased rotation speed. The motor switches to the preset (low) speed as the temperature drops below the set threshold for thermostat switching. This pattern can be applied to keep air temperature to within 2°C. In this case the fan switches are rare.

2. Timer delay (TT...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold . The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.

#### Example for timer delay switches:

Initial conditions:

- set rotation speed = 60% of maximum speed
- set operating threshold = 25°C
- air temperature in the duct =20°C

motor operates with the motor speed =60%

- temperature in the duct rises motor operates with the rotation speed =60%

- temperature in the duct reaches 27°C motor switches to the rotation speed =100%
- temperature in the duct goes down motor operates with the rotation speed =100%

- temperature in the duct reaches 25°C motor switches to the preset rotation speed =60%

# Example for timer delay switches:

Initial conditions:

- set rotation speed = 60% of maximum speed

- set operating threshold =25°C

- air temperature in the duct =20°C

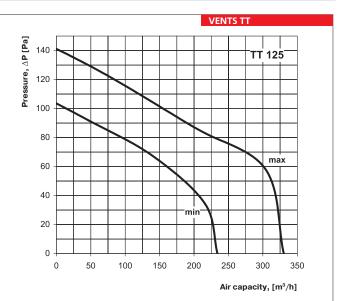
motor operates with the rotation speed =60%
- temperature in the duct rises, reaches 25°C and keeps rising
the motor switches to the rotation speed =100%, at the same moment the
5 minutes timer activates
- temperature in the duct goes down,
motor operates with the rotation speed =100%
- temperature in the duct reaches 25°C and keeps going down
after the timer stops, the motor switches to the preset rated speed
(=60%). After the speed switch the timer switches again for
5 minutes on.
- temperature in the duct rises, reaches 25°C and keeps rising
after the timer stops, the motor switches to the maximum speed
(=100%). After the speed switch the timer switches again for
5 minutes on.

Thus, in timer delay pattern the delay timer activates every time the fan speed changes.

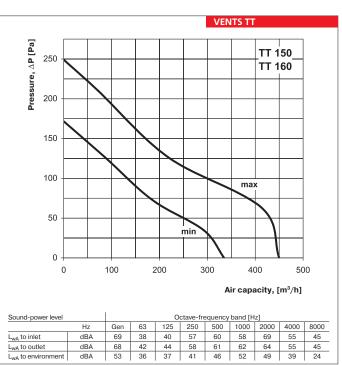


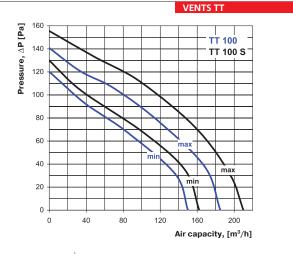
VENTS TT...U with speed control module and temperature sensor



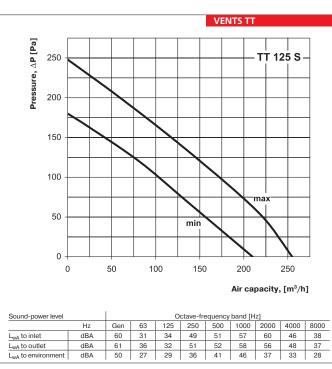

VENTS TT...P with built-in speed controller




VENTS TT...RV is fitted with the power cord and speed control switch


# FANS FOR ROUND DUCTS

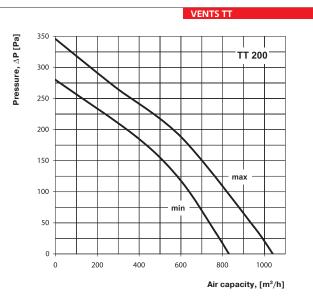
| Technical data:                      |       |        |       |          |       |        |       |      |          |        |
|--------------------------------------|-------|--------|-------|----------|-------|--------|-------|------|----------|--------|
|                                      | TT    | TT 100 |       | TT 100 S |       | TT 125 |       | 25 S | TT 150 / | TT 160 |
| Speed                                | min.  | max.   | min.  | max.     | min.  | max.   | min.  | max. | min.     | max.   |
| Voltage [V / 50 Hz]                  | 1~    | 230    | 1~    | 230      | 1~    | 230    | 1~2   | 230  | 1~2      | 230    |
| Power [W]                            | 23    | 25     | 23    | 25       | 25    | 30     | 28    | 54   | 30       | 60     |
| Current [A]                          | 0,10  | 0,11   | 0,10  | 0,11     | 0,11  | 0,13   | 0,12  | 0,16 | 0,17     | 0,27   |
| Maximum air flow [m <sup>3</sup> /h] | 150   | 185    | 162   | 210      | 234   | 330    | 210   | 255  | 335      | 450    |
| RPM [min <sup>-1</sup> ]             | 1795  | 2260   | 1980  | 2545     | 1535  | 2265   | 1850  | 2510 | 1680     | 2460   |
| Noise level at 3 m [dBA]             | 24    | 28     | 27    | 32       | 29    | 34     | 31    | 42   | 33       | 44     |
| Maximum operating temperature [°C]   | 6     | 60     | 6     | 0        | 6     | 0      | 6     | 0    | 6        | 0      |
| Protection rating                    | IP X4 |        | IP X4 |          | IP X4 |        | IP X4 |      | IP       | X4     |



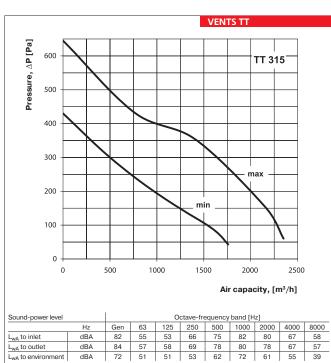

| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |  |  |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|--|--|--|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dBA | 51  | 25                         | 24  | 41  | 47  | 49   | 50   | 39   | 32   |  |  |  |
| L <sub>wA</sub> to outlet      | dBA | 53  | 25                         | 29  | 42  | 45  | 49   | 48   | 42   | 32   |  |  |  |
| L <sub>wA</sub> to environment | dBA | 39  | 21                         | 24  | 28  | 32  | 40   | 33   | 28   | 20   |  |  |  |

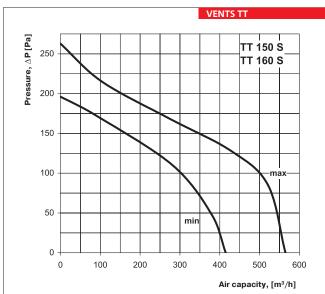




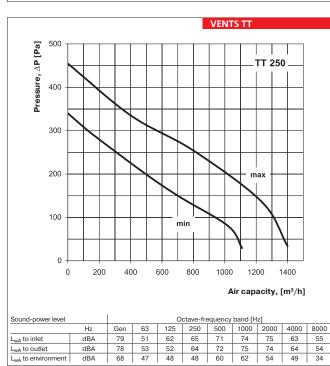

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |  |  |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|--|--|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet       | dBA | 47                         | 23 | 21  | 37  | 41  | 44   | 42   | 37   | 27   |  |  |
| L <sub>wA</sub> to outlet      | dBA | 48                         | 24 | 24  | 38  | 42  | 45   | 38   | 38   | 26   |  |  |
| L <sub>wA</sub> to environment | dBA | 37                         | 20 | 19  | 23  | 30  | 34   | 26   | 26   | 17   |  |  |
| TT 100 S                       | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet       | dBA | 53                         | 26 | 23  | 41  | 46  | 50   | 47   | 41   | 31   |  |  |
| L <sub>wA</sub> to outlet      | dBA | 54                         | 27 | 27  | 43  | 47  | 50   | 42   | 42   | 29   |  |  |
| L <sub>wA</sub> to environment | dBA | 41                         | 23 | 22  | 26  | 34  | 39   | 29   | 29   | 19   |  |  |




TT 100


**Technical data:** 

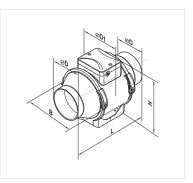
|                                    | TT 150 S | / TT 160 S | TT : | 200  | TT   | 250  | тт : | 315  |
|------------------------------------|----------|------------|------|------|------|------|------|------|
| Speed                              | min.     | max.       | min. | max. | min. | max. | min. | max. |
| Voltage [V / 50 Hz]                | 1~ 1     | 230        | 1~   | 230  | 1~   | 230  | 1~ : | 230  |
| Power [W]                          | 42       | 50         | 90   | 125  | 125  | 177  | 225  | 330  |
| Current [A]                        | 0,19     | 0,22       | 0,4  | 0,55 | 0,54 | 0,79 | 0,98 | 1,43 |
| Maximum air flow [m³/h]            | 415      | 565        | 830  | 1040 | 1110 | 1400 | 1760 | 2350 |
| RPM [min <sup>-1</sup> ]           | 1940     | 2620       | 2045 | 2510 | 1955 | 2440 | 1980 | 2660 |
| Noise level at 3 m [dBA]           | 37       | 46         | 45   | 52   | 47   | 55   | 49   | 58   |
| Maximum operating temperature [°C] | 6        | 0          | 6    | 0    | 6    | 0    | 6    | 0    |
| Protection rating                  | IP       | X4         | IP   | X4   | IP   | X4   | IP   | X4   |




| Sound-power level              |                                           |    |    | 0  | ctave-fre | equency | band [H | z] |    |    |
|--------------------------------|-------------------------------------------|----|----|----|-----------|---------|---------|----|----|----|
|                                | Hz Gen 63 125 250 500 1000 2000 4000 8000 |    |    |    |           |         |         |    |    |    |
| L <sub>wA</sub> to inlet       | dBA                                       | 75 | 51 | 51 | 60        | 69      | 69      | 76 | 66 | 57 |
| L <sub>wA</sub> to outlet      | dBA                                       | 76 | 53 | 58 | 60        | 67      | 69      | 72 | 67 | 56 |
| $L_{\text{wA}}$ to environment | dBA                                       | 62 | 47 | 47 | 43        | 55      | 60      | 55 | 51 | 38 |






| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |  |  |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|--|--|--|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dBA | 54  | 36                         | 34  | 40  | 45  | 51   | 48   | 41   | 25   |  |  |  |
| L <sub>wA</sub> to outlet      | dBA | 64  | 39                         | 40  | 55  | 57  | 58   | 63   | 56   | 44   |  |  |  |
| L <sub>wA</sub> to environment | 67  | 38  | 40                         | 52  | 57  | 57  | 63   | 55   | 42   |      |  |  |  |

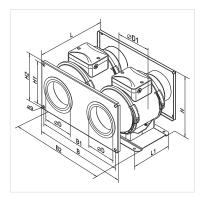


# FANS FOR ROUND DUCTS

## Fan overall dimensions:

| Turpo    |     | Di  | mensions [mi | m]  |       | Mass |
|----------|-----|-----|--------------|-----|-------|------|
| Туре     | ØD  | ØD1 | В            | Н   | L     | [kg] |
| TT 100   | 97  | 164 | 196          | 226 | 302,5 | 1,54 |
| TT 100 S | 97  | 164 | 196          | 226 | 302,5 | 1,54 |
| TT 125   | 123 | 164 | 196          | 226 | 258,5 | 1,51 |
| TT 125 S | 123 | 195 | 223          | 250 | 295   | 3,0  |
| TT 150   | 146 | 195 | 223          | 250 | 295   | 3,0  |
| TT 150 S | 148 | 187 | 220          | 247 | 289   | 2,1  |
| TT 160   | 158 | 195 | 233          | 250 | 295   | 3,0  |
| TT 160 S | 158 | 187 | 220          | 247 | 289   | 2,1  |
| TT 200   | 199 | 209 | 239          | 261 | 295,5 | 6,4  |
| TT 250   | 247 | 257 | 287          | 323 | 383   | 8,3  |
| TT 315   | 310 | 323 | 362          | 408 | 445   | 11,4 |




Overall dimensions for fans connected in series:

| Turpo              |     |     | Dim | ensions [r | nm] |     |     | Mass |
|--------------------|-----|-----|-----|------------|-----|-----|-----|------|
| Туре               | ØD  | ØD1 | В   | B1         | Н   | L   | L1  | [kg] |
| TT 100 in series   | 97  | 163 | 192 | 140        | 235 | 606 | 450 | 3,7  |
| TT 100 S in series | 97  | 163 | 192 | 140        | 235 | 606 | 450 | 3,7  |
| TT 125 in series   | 123 | 163 | 192 | 140        | 235 | 518 | 410 | 3,5  |
| TT 125 S in series | 123 | 195 | 223 | 140        | 256 | 590 | 440 | 6,3  |
| TT 150 in series   | 148 | 195 | 223 | 140        | 256 | 590 | 440 | 6,3  |
| TT 150 S in series | 148 | 186 | 217 | 140        | 255 | 579 | 440 | 4,8  |
| TT 160 in series   | 158 | 195 | 233 | 140        | 256 | 590 | 440 | 6,3  |
| TT 160 S in series | 158 | 186 | 217 | 140        | 255 | 579 | 440 | 4,8  |
| TT 200 in series   | 197 | 209 | 239 | 190        | 270 | 595 | 440 | 13,5 |
| TT 250 in series   | 247 | 257 | 287 | 190        | 331 | 766 | 580 | 17,6 |
| TT 315 in series   | 310 | 323 | 362 | 240        | 420 | 890 | 700 | 24,2 |



Overall dimensions for fans connected in parallel:

| Time                 |     |     |     | Di  | mensio | ons [mi | m]  |     |     |     | Mass |
|----------------------|-----|-----|-----|-----|--------|---------|-----|-----|-----|-----|------|
| Туре                 | ØD  | ØD1 | В   | B1  | B2     | Н       | H1  | H2  | L   | L1  | [kg] |
| TT 100 in parallel   | 100 | 163 | 320 | 300 | 380    | 201     | 160 | 180 | 328 | 175 | 4,4  |
| TT 100 S in parallel | 100 | 163 | 320 | 300 | 380    | 201     | 160 | 180 | 328 | 175 | 4,4  |
| TT 125 in parallel   | 125 | 163 | 320 | 300 | 380    | 201     | 160 | 180 | 284 | 175 | 4,2  |
| TT 125 S in parallel | 125 | 195 | 395 | 375 | 430    | 228     | 200 | 220 | 295 | 180 | 7,5  |
| TT 150 in parallel   | 150 | 195 | 395 | 375 | 430    | 228     | 200 | 220 | 310 | 180 | 7,5  |
| TT 150 S in parallel | 150 | 186 | 395 | 375 | 380    | 231     | 200 | 220 | 314 | 175 | 6,2  |
| TT 160 in parallel   | 160 | 195 | 395 | 375 | 430    | 228     | 200 | 220 | 310 | 180 | 7,6  |
| TT 160 S in parallel | 160 | 186 | 395 | 375 | 380    | 231     | 200 | 220 | 314 | 175 | 6,2  |
| TT 200 in parallel   | 200 | 209 | 450 | 420 | 492    | 225     | 220 | 240 | 306 | 190 | 15,2 |
| TT 250 in parallel   | 250 | 257 | 580 | 520 | 625    | 287     | 270 | 290 | 398 | 240 | 22,5 |
| TT 315 in parallel   | 315 | 323 | 690 | 670 | 740    | 366     | 335 | 355 | 465 | 340 | 28,4 |







TT fans applications

bathroom ventilation example







FAN SERIES VENTS TT

office ventilation example

 Parallel installation of fans in the storehouse to increase the air capacity

# FANS FOR ROUND DUCTS



In-line centrifugal fans in plastic casing with the air capacity up to 1700 m<sup>3</sup>/h

#### Applications

VK fans are applied for supply and exhaust ventilation systems of commercial, office and other premises. Compatible with Ø 100, 125, 150, 200, 250 and 315 mm round air ducts. Models marked VK...Q are supplied with quiet motors for low-noise applications. Due to the corrosion-resistant durable plastic casing, these models are the perfect solution for the installation in exhaust ventilation systems in humid premises such as bathrooms, kitchens etc.

#### Design

The casing is made of high-quality durable ABS plastic. The fans are equipped with waterproof terminal boxes. Models marked VK..R are supplied with the power cord and a plug.

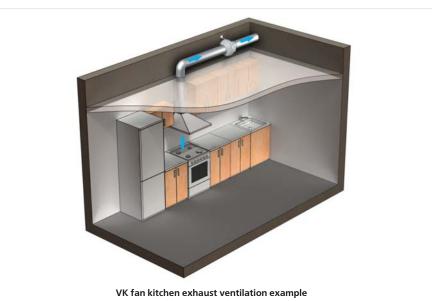
#### Motor

The impeller with backward curved blades is powered by a single-phase asynchronous AC motor with external rotor including the following features:

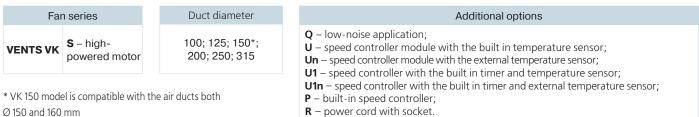
A dynamic balanced impeller with backward curved blades balanced in two planes.

Overheating protection with automatic restart. •

Maintenance-free ball-bearings used with motors and designed for at least 40 000 hours operation. Models marked VKS are supplied with high-powered motors. Motor protection rating IP 44.


#### Speed control

Smooth or stepped speed control can be performed by external thymistor or transformer.


Several fans can be connected to one speed controller if the total power and operating current of fans do not exceed the rated controller values. The VK...P models are equipped with a built-in speed controller.

#### Mounting

Instalation to the wall or ceiling can be performed by means of mounting brackets (included in the delivery) or with additional PVK holders (available upon request). The fan can be mounted at any angle. Electric connection and installation shall be performed in compliance with the manual and the wiring diagram on the terminal box.



#### Designation key:





#### Automatic speed control module

VK..U1 and VK..U1n are the perfect solution for greenhouses and other premises requiring air temperature control. These models are fitted with an integrated electronic speed control module TSC with temperature sensor that provides automatic speed regulation as a function of air temperature in the duct (VK..U1 with integrated temperature sensor) or directly in the ventilated area (VK..U1n with external temperature sensor).

Temperature and minimum speed can be adjusted with two control knobs on the controller panel.

The external temperature sensor (in VK..Un and VK..U1n models) is supplied with 4 m cable and a protecting cover against mechanical damage. The LED indicator for thermostat operation is placed at the front panel of the fan.

Example for temperature sensor delay pattern:

# Automatic speed controller pattern for VK fans.

Set points for the maximum air temperature and the fan speed are manually adjusted by the control knobs. Normally the fan operates with the speed which is set by the knob. If the temperature exceeds the set point, the fan boosts to the maximum speed. After that when the temperature drops down below the set point, the fan goes back to preset speed. The switching delay disables frequent motor switching if the set temperature in the duct is equal to the threshold temperature.

There are two patters of delay that may be used in various cases:

1. Temperature sensor delay (VK...U): if the temperature rises by 2°C above the set thermostat operating threshold the motor switches to the

increased speed. The motor switches to the preset (low) speed as the temperature drops below the set threshold. This pattern can be used to keep air temperature to within  $2^{\circ}$ C. In this case the fan switches are rare.

2. Timer delay (VK...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold. The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.

rated speed is set as 60% of the maximum speed
operating threshold is set as 25°C
air temperature in the duct is 20°C
motor operates with the rated speed =60%
air temperature in the duct rises
motor operates with the rated speed =60%
air temperature in the duct reaches 27°C
motor switches to the speed =100%
air temperature in the duct goes down
motor operates with the speed =100%
temperature in the duct reaches 25°C again

motor switches to the preset rated speed =60%

# Example for timer delay pattern:

Initial conditions:

Initial conditions.

- rated speed is set as 60% of maximum speed

- operating threshold is set as 25°C

- air temperature in the duct is 20°C

motor operates with the rated speed =60%
the temperature in the duct rises, reaches 25°C and keeps rising

fan switches to the maximum speed =100% and the delay timer switches for 5 minutes again on

- the temperature in the duct goes down the motor operates with the maximum speed =100%

- the temperature in the duct reaches 25°C and keeps rising

after the timer stops, the motor switches to the preset rated speed (=60%). After the speed switch the timer switches again for 5 minutes on.

- the temperature in the duct rises, reaches 25°C and keeps rising

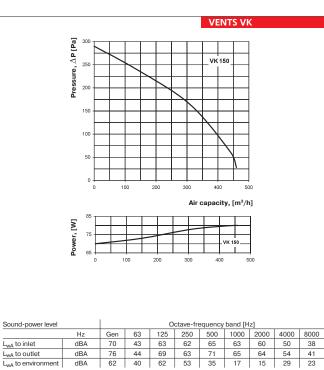
after the timer stops, the motor switches to the maximum speed (=100%). After the speed switch the delay timer switches again for 5 minutes on.

Thus, in timer delay pattern the delay timer activates every time the fan speed changes.



Vents VK...U with the electronic temperature and speed module




Bracket for easy installation supplied with the fan



VENTS VK...P with built-in speed controller VENTS VK...R is equipped with the power cord

# FANS FOR ROUND DUCTS

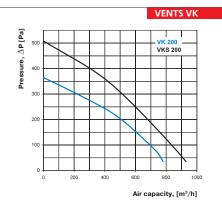
| Technical data:                      |          |         |          |         |         |         |         |
|--------------------------------------|----------|---------|----------|---------|---------|---------|---------|
|                                      | VK 100 Q | VK 100  | VK 125 Q | VK 125  | VK 150  | VK 200  | VKS 200 |
| Voltage [V / 50 Hz]                  | 230      | 230     | 230      | 230     | 230     | 230     | 230     |
| Power [W]                            | 62       | 80      | 61       | 79      | 80      | 107     | 173     |
| Current [A]                          | 0,38     | 0,34    | 0,38     | 0,34    | 0,35    | 0,47    | 0,76    |
| Maximum air flow [m <sup>3</sup> /h] | 205      | 250     | 260      | 355     | 460     | 780     | 930     |
| RPM [min <sup>-1</sup> ]             | 2650     | 2820    | 2610     | 2800    | 2725    | 2660    | 2125    |
| Noise level at 3 m [dBA]             | 36       | 46      | 36       | 46      | 46      | 48      | 51      |
| Maximum operating temperature [°C]   | -25 +55  | -25 +55 | -25 +55  | -25 +55 | -25 +55 | -25 +50 | -25 +45 |
| Protection rating                    | IP X4    | IP X4   | IP X4    | IP X4   | IP X4   | IP X4   | IP X4   |

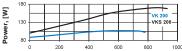


VENTS VK 350 Pressure, ΔP [Pa] VK 125 Q -VK 125 300 250 200 150 100 50 0 100 200 300 400 n. Air capacity, [m<sup>3</sup>/h] Power, [W] 70 VK 125 Q VK 125 60



50


100

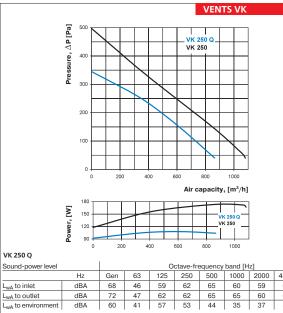

| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |  |  |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|--|--|--|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dBA | 58  | 34                         | 51  | 53  | 53  | 49   | 47   | 37   | 30   |  |  |  |
| L <sub>wA</sub> to outlet      | dBA | 61  | 37                         | 53  | 57  | 62  | 51   | 48   | 39   | 31   |  |  |  |
| L <sub>wA</sub> to environment | dBA | 66  | 48                         | 63  | 61  | 41  | 32   | 13   | 30   | 26   |  |  |  |
| VK 125                         | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dBA | 74  | 55                         | 65  | 66  | 70  | 63   | 61   | 52   | 40   |  |  |  |
| L <sub>wA</sub> to outlet      | dBA | 77  | 58                         | 65  | 71  | 75  | 69   | 61   | 53   | 44   |  |  |  |
| L <sub>wA</sub> to environment | dBA | 63  | 51                         | 60  | 58  | 44  | 35   | 19   | 30   | 25   |  |  |  |

200

300

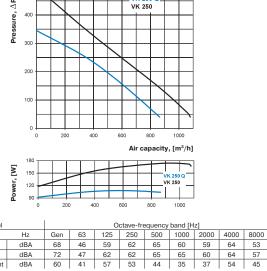
400

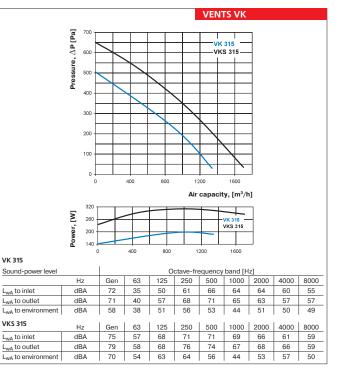





VK 200

| Sound-power level              | Octave-frequency band [Hz] |     |    |     |     |     |      |      |      |      |
|--------------------------------|----------------------------|-----|----|-----|-----|-----|------|------|------|------|
|                                | Hz                         | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA                        | 76  | 47 | 65  | 65  | 70  | 63   | 61   | 61   | 49   |
| L <sub>wA</sub> to outlet      | dBA                        | 81  | 53 | 66  | 71  | 73  | 65   | 68   | 63   | 51   |
| L <sub>wA</sub> to environment | dBA                        | 64  | 45 | 62  | 59  | 48  | 34   | 26   | 45   | 39   |
| VKS 200                        | Hz                         | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA                        | 75  | 51 | 69  | 72  | 71  | 67   | 60   | 60   | 51   |
| L <sub>wA</sub> to outlet      | dBA                        | 81  | 56 | 74  | 71  | 76  | 69   | 62   | 57   | 55   |
| L <sub>wA</sub> to environment | dBA                        | 65  | 49 | 63  | 60  | 47  | 35   | 28   | 47   | 39   |


**Technical data:** 


|                                    | VK 250 Q | VK 250  | VK 315  | VKS 315 |
|------------------------------------|----------|---------|---------|---------|
| Voltage [V / 50 Hz]                | 230      | 230     | 230     | 230     |
| Power [W]                          | 108      | 173     | 200     | 310     |
| Current [A]                        | 0,47     | 0,76    | 0,88    | 1,36    |
| Maximum air flow [m³/h]            | 865      | 1080    | 1340    | 1700    |
| RPM [min <sup>-1</sup> ]           | 2560     | 2090    | 2655    | 2590    |
| Noise level at 3 m [dBA]           | 51       | 50      | 50      | 53      |
| Maximum operating temperature [°C] | -25 +50  | -25 +50 | -25 +50 | -25 +45 |
| Protection rating                  | IP X4    | IP X4   | IP X4   | IP X4   |



125 250

59 62 64 68 69 71 68 72 66 70 62 62





#### Fan overall dimensions:

Hz

dBA

dBA

dBA

Gen 63

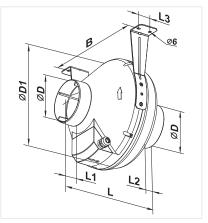
75 73

67

VK 250 Q

VK 250

L<sub>wA</sub> to inlet


L<sub>wA</sub> to outlet L<sub>wA</sub> to environment

| Туре              | Dimensions [mm] |     |     |     |    |    |    | Mass |
|-------------------|-----------------|-----|-----|-----|----|----|----|------|
|                   | ØD              | ØD1 | В   | L   | L1 | L2 | L3 | [kg] |
| VK 100 Q / VK 100 | 100             | 250 | 270 | 230 | 30 | 27 | 30 | 2,15 |
| VK 125 Q / VK 125 | 125             | 250 | 270 | 220 | 30 | 27 | 30 | 2,2  |
| VK 150            | 150/160         | 300 | 310 | 286 | 30 | 30 | 30 | 2,6  |
| VK 200            | 200             | 340 | 354 | 276 | 30 | 30 | 40 | 4,0  |
| VKS 200           | 200             | 340 | 354 | 276 | 30 | 30 | 40 | 4,3  |
| VK 250 Q / VK 250 | 250             | 340 | 354 | 265 | 30 | 30 | 40 | 4,5  |
| VK 315            | 315             | 400 | 414 | 276 | 40 | 55 | 40 | 5,1  |
| VKS 315           | 315             | 400 | 414 | 276 | 40 | 55 | 40 | 5,2  |

58 62 61 50 41 37 45 38

500 | 1000 | 2000 | 4000 | 8000

53 55 46 50





Multiple-inlet centrifugal fan in plastic casing with the air capacity up to **335 m<sup>3</sup>/h** 

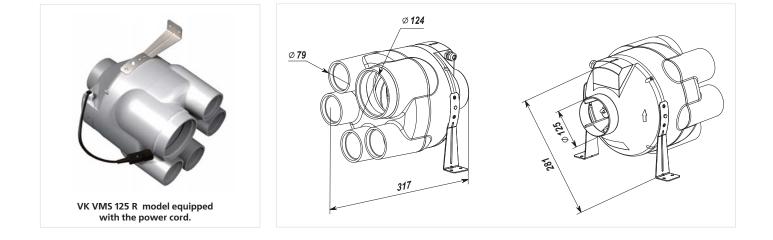
#### Applications

VK VMS 125 is a multiple-inlet fan designed for simultaneous air exhaust from up to 5 premises. It is a perfect solution for bathroom units, kitchens and other residential and small commercial premises requiring exhaust ventilation due to increased humidity. The fan is equipped with four  $\emptyset$  80 mm inlet branch pipes and one  $\emptyset$  125 mm intake branch pipe.

#### Design

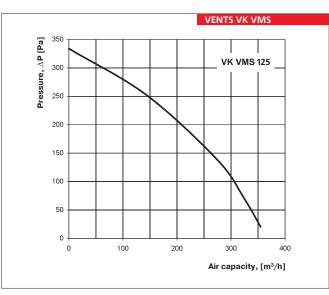
The fan is equipped with a high-quality plastic casing and a waterproof terminal box. For easy connection and operation the power cord with a plug can be provided (VK VMS... R).

#### Motor

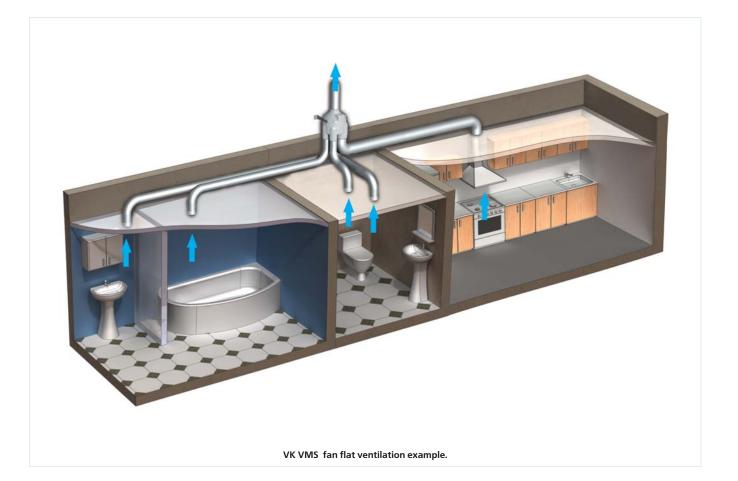

The impeller with backward curved blades is powered by single-phase motor with external rotor and overheating protection with automatic restart. The motor is equipped with ball bearings for long service life designed for at least 40 000 hours.

#### Speed control

Smooth or step speed control is performed with thyristor or autotransformer controller.


#### Mounting

Easy to mount. Mounting at any angle to wall or ceiling is performed by means of fastening brackets.




Designation key: Duct diameter Additional options Fan series **VK VMS** 125 **R** – power cord with a C14 plug. Accessories page 352 page 336 page 346 page 352 page 356 page 357 page 282 page 338

Technical data:



|                                    | <b>VK VMS</b> 125 |
|------------------------------------|-------------------|
| Voltage [V / 50 Hz]                | 230               |
| Power [W]                          | 79                |
| Current [A]                        | 0,34              |
| Maximum air flow [m³/h]            | 355               |
| RPM [min <sup>-1</sup> ]           | 2800              |
| Noise level at 3 m [dBA]           | 46                |
| Maximum operating temperature [°C] | -25 +55           |
| Protection rating                  | IP X4             |
|                                    |                   |



FAN SERIES VENTS VK VMS



#### In-line centrifugal fans in steel casing with the air capacity up to 5260 m<sup>3</sup>/h

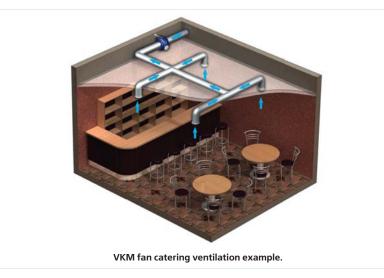
#### Applications

Supply and exhaust systems for various premises. The steel casing provides reliable operation in case of outdoor installation. For premises with high requirements to the noise level we suggest units in low-noise modification (VKM...Q).

#### Design

The fan casing is made of steel with polymeric coating. For easy connection and operation the power cord with a plug can be provided (VKM...R).

#### Motor


The impeller with backward curved blades is powered by the single-phase motor with external rotor and overheating protection with automatic restart. Some standard sizes are available is high-powered modifications (VKMS). **The VKM...E models are equipped with energy-efficient motor with low energy demand.** The motor is equipped with ball bearings for long service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

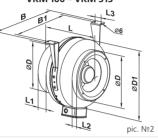
#### Speed control

Smooth or step speed control is performed with thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the controller rated values.

#### Mounting

Mounting to wall or ceiling at any angle is performed with fastening brackets supplied with the unit. The fan is powered through the external terminal box. Electric connection and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.




#### Designation key: \_

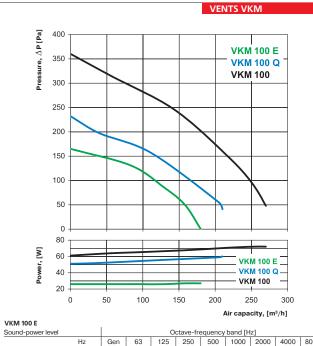


Fan overall dimensions:

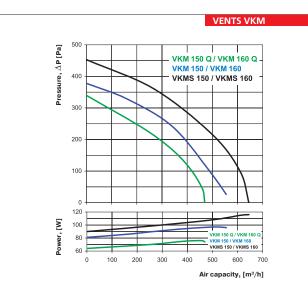
| Turpo     |     |     | D   | imensio | ons [mn | n] |    |     | Mass | Nº   |
|-----------|-----|-----|-----|---------|---------|----|----|-----|------|------|
| Туре      | ØD  | ØD1 | В   | B1      | L       | L1 | L2 | L3  | [kg] | pic. |
| VKM 100 E | 100 | 204 | -   | -       | 195     | 20 | 20 | 258 | 3,9  | 1    |
| VKM 100 Q | 98  | 254 | 298 | 258     | 205     | 20 | 25 | 30  | 4,2  | 2    |
| VKM 100   | 98  | 254 | 298 | 258     | 205     | 20 | 25 | 30  | 4,4  | 2    |
| VKM 125 E | 125 | 204 | -   | -       | 195     | 20 | 20 | 258 | 3,9  | 1    |
| VKM 125 Q | 123 | 254 | 298 | 258     | 205     | 20 | 25 | 30  | 4,1  | 2    |
| VKM 125   | 123 | 254 | 298 | 258     | 205     | 20 | 25 | 30  | 4,3  | 2    |
| VKM 150 Q | 149 | 304 | 349 | 309     | 200     | 20 | 25 | 30  | 5,4  | 2    |
| VKM 150   | 149 | 304 | 349 | 309     | 220     | 25 | 25 | 30  | 5,4  | 2    |
| VKMS 150  | 149 | 340 | 386 | 346     | 226     | 20 | 20 | 40  | 5,7  | 2    |
| VKM 160 Q | 159 | 304 | 349 | 309     | 200     | 20 | 25 | 30  | 5,4  | 2    |
| VKM 160   | 159 | 304 | 357 | 317     | 220     | 25 | 25 | 30  | 5,6  | 2    |
| VKMS 160  | 159 | 340 | 386 | 346     | 226     | 20 | 20 | 40  | 5,7  | 2    |
| VKM 200   | 198 | 344 | 390 | 350     | 240     | 25 | 29 | 40  | 6,6  | 2    |
| VKMS 200  | 198 | 344 | 390 | 350     | 250     | 25 | 29 | 40  | 6,7  | 2    |
| VKM 250 Q | 248 | 344 | 390 | 350     | 249     | 25 | 31 | 40  | 7,1  | 2    |
| VKM 250   | 248 | 344 | 390 | 350     | 249     | 25 | 31 | 40  | 7,3  | 2    |
| VKM 315   | 314 | 404 | 454 | 414     | 260     | 25 | 40 | 40  | 8,1  | 2    |
| VKMS 315  | 314 | 404 | 454 | 414     | 288     | 25 | 40 | 40  | 8,2  | 2    |
| VKM 355 Q | 353 | 460 | 522 | 522     | 506     | 60 | 60 | 70  | 12,8 | 3    |
| VKM 400   | 398 | 570 | 663 | 634     | 570     | 60 | 60 | 70  | 20,0 | 3    |
| VKM 450   | 448 | 608 | 700 | 670     | 644     | 60 | 60 | 80  | 30,0 | 3    |
|           |     |     |     |         |         |    |    |     |      |      |





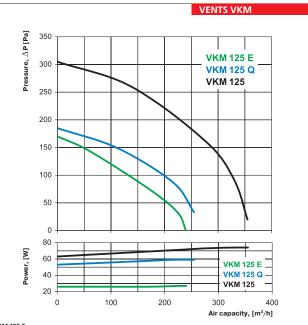



#### Technical data:

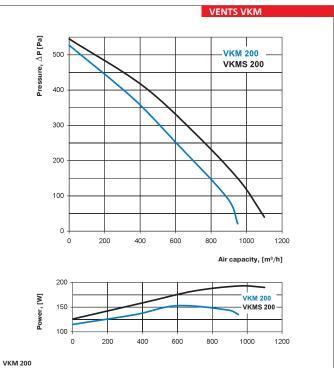

|                                      | VKM<br>100 E | VKM<br>100 Q | VKM<br>100 | VKM<br>125 E | VKM<br>125 Q | VKM<br>125 | VKM<br>150 Q | VKM<br>150 | VKMS<br>150 | VKM<br>160 Q |
|--------------------------------------|--------------|--------------|------------|--------------|--------------|------------|--------------|------------|-------------|--------------|
| Voltage [V / 50 Hz]                  | 230          | 230          | 230        | 230          | 230          | 230        | 230          | 230        | 230         | 230          |
| Power [W]                            | 27           | 60           | 73         | 27           | 60           | 75         | 75           | 98         | 116         | 73           |
| Current [A]                          | 0,13         | 0,37         | 0,32       | 0,13         | 0,37         | 0,33       | 0,33         | 0,43       | 0,52        | 0,33         |
| Maximum air flow [m <sup>3</sup> /h] | 180          | 210          | 270        | 240          | 255          | 355        | 470          | 555        | 645         | 470          |
| RPM [min <sup>-1</sup> ]             | 2745         | 2620         | 2830       | 2780         | 2535         | 2800       | 2515         | 2705       | 2625        | 2500         |
| Noise level at 3 m [dBA]             | 32           | 36           | 47         | 32           | 36           | 47         | 46           | 47         | 50          | 46           |
| Maximum operating temperature [°C]   | -25 +50      | -25 +55      | -25 +55    | -25 +50      | -25 +55      | -25 +55    | -25 +55      | -25 +55    | -25 +55     | -25 +55      |
| Protection rating                    | IP X4        | IP X4        | IP X4      | IP X4        | IP X4        | IP X4      | IP X4        | IP X4      | IP X4       | IP X4        |

Technical data:

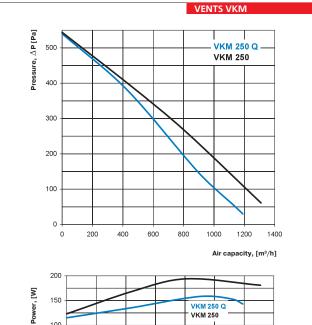
|                                      | VKM<br>160 | VKMS<br>160 | VKM<br>200 | VKMS<br>200 | VKM<br>250 Q | VKM<br>250 | VKM<br>315 | VKMS<br>315 | VKM<br>355 Q | VKM<br>400 | VKM<br>450 |
|--------------------------------------|------------|-------------|------------|-------------|--------------|------------|------------|-------------|--------------|------------|------------|
| Voltage [V / 50 Hz]                  | 230        | 230         | 230        | 230         | 230          | 230        | 230        | 230         | 230          | 230        | 230        |
| Power [W]                            | 98         | 115         | 154        | 193         | 158          | 194        | 171        | 296         | 233          | 460        | 665        |
| Current [A]                          | 0,43       | 0,52        | 0,67       | 0,84        | 0,69         | 0,85       | 0,77       | 1,34        | 1,06         | 2,23       | 2,89       |
| Maximum air flow [m <sup>3</sup> /h] | 555        | 645         | 950        | 1100        | 1190         | 1310       | 1400       | 1880        | 2210         | 3050       | 5260       |
| RPM [min <sup>-1</sup> ]             | 2660       | 2650        | 2375       | 2780        | 2315         | 2790       | 2600       | 2720        | 1375         | 1370       | 1265       |
| Noise level at 3 m [dBA]             | 47         | 50          | 48         | 51          | 52           | 52         | 52         | 54          | 58           | 61         | 65         |
| Maximum operating temperature [°C]   | -25 +55    | -25 +55     | -25 +50    | -25 +45     | -25 +50      | -25 +50    | -25 +50    | -25 +45     | -25 +45      | -40 +80    | -40 +70    |
| Protection rating                    | IP X4      | IP X4       | IP X4      | IP X4       | IP X4        | IP X4      | IP X4      | IP X4       | IP X4        | IP X4      | IP X4      |




|                                | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
|--------------------------------|-----|-----|----|-----|-----|-----|------|------|------|------|
| L <sub>wA</sub> to inlet       | dBA | 50  | 40 | 44  | 44  | 46  | 40   | 39   | 34   | 24   |
| L <sub>wA</sub> to outlet      | dBA | 50  | 41 | 48  | 44  | 44  | 42   | 39   | 33   | 27   |
| L <sub>wA</sub> to environment | dBA | 44  | 19 | 11  | 19  | 32  | 35   | 35   | 26   | 13   |
| VKM 100 Q                      | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 64  | 48 | 57  | 57  | 59  | 51   | 47   | 40   | 28   |
| L <sub>wA</sub> to outlet      | dBA | 64  | 52 | 62  | 56  | 57  | 50   | 46   | 39   | 32   |
| $L_{\text{wA}}$ to environment | dBA | 57  | 23 | 13  | 23  | 38  | 42   | 42   | 31   | 15   |
| VKM 100                        | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 73  | 47 | 63  | 67  | 68  | 60   | 55   | 54   | 38   |
| L <sub>wA</sub> to outlet      | dBA | 77  | 54 | 66  | 73  | 66  | 66   | 60   | 55   | 46   |
| L <sub>wA</sub> to environment | dBA | 63  | 45 | 60  | 55  | 41  | 25   | 7    | 18   | 22   |

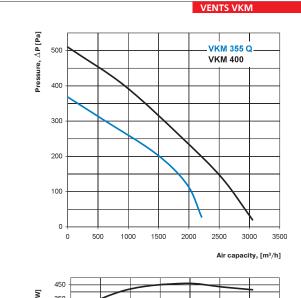


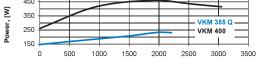

#### VKM 150 Q / VKM 160 Q


| VKM 150 Q / VKM                | 160 Q |     |    |     |           |         |         |      |      |      |
|--------------------------------|-------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |       |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz    | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA   | 63  | 41 | 57  | 55        | 59      | 52      | 52   | 45   | 35   |
| L <sub>wA</sub> to outlet      | dBA   | 65  | 38 | 61  | 55        | 62      | 55      | 52   | 46   | 34   |
| $L_{\text{wA}}$ to environment | dBA   | 55  | 37 | 52  | 48        | 35      | 17      | 15   | 25   | 20   |
| VKM 150                        | Hz    | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA   | 72  | 45 | 65  | 62        | 67      | 59      | 59   | 49   | 38   |
| L <sub>wA</sub> to outlet      | dBA   | 74  | 42 | 69  | 63        | 71      | 63      | 59   | 50   | 37   |
| $L_{\text{wA}}$ to environment | dBA   | 62  | 41 | 59  | 55        | 39      | 19      | 17   | 28   | 22   |
| VKM 160                        | Hz    | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA   | 68  | 41 | 65  | 64        | 63      | 61      | 57   | 47   | 35   |
| L <sub>wA</sub> to outlet      | dBA   | 70  | 47 | 67  | 68        | 66      | 64      | 60   | 51   | 41   |
| $L_{\text{wA}}$ to environment | dBA   | 60  | 40 | 61  | 55        | 39      | 18      | 16   | 28   | 22   |
| VKMS 150 / VKMS 16             | 50 Hz | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA   | 74  | 47 | 67  | 64        | 69      | 66      | 58   | 57   | 50   |
| L <sub>wA</sub> to outlet      | dBA   | 74  | 49 | 70  | 68        | 71      | 62      | 62   | 59   | 52   |
| $L_{\text{wA}}$ to environment | dBA   | 63  | 46 | 60  | 56        | 48      | 32      | 27   | 48   | 42   |

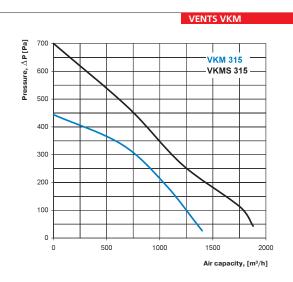


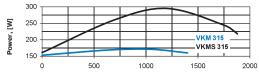
| Council a superior lawal       |     | 1   |    | 0   |           |          | le e ce el El I | -1   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|----------|-----------------|------|------|------|
| Sound-power level              |     |     |    |     | ctave-fre | <u> </u> | <u> </u>        | -    |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500      | 1000            | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 43  | 27 | 37  | 38        | 40       | 36              | 34   | 27   | 23   |
| L <sub>wA</sub> to outlet      | dBA | 45  | 26 | 37  | 42        | 42       | 37              | 39   | 32   | 25   |
| L <sub>wA</sub> to environment | dBA | 47  | 35 | 44  | 42        | 34       | 24              | 13   | 24   | 22   |
| VKM 125 Q                      | Hz  | Gen | 63 | 125 | 250       | 500      | 1000            | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 60  | 34 | 51  | 53        | 56       | 46              | 43   | 34   | 29   |
| L <sub>wA</sub> to outlet      | dBA | 62  | 33 | 52  | 59        | 58       | 51              | 49   | 41   | 32   |
| L <sub>wA</sub> to environment | dBA | 65  | 44 | 61  | 59        | 43       | 30              | 17   | 30   | 28   |
| VKM 125                        | Hz  | Gen | 63 | 125 | 250       | 500      | 1000            | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 73  | 54 | 67  | 68        | 67       | 64              | 61   | 51   | 41   |
| L <sub>wA</sub> to outlet      | dBA | 76  | 57 | 69  | 68        | 72       | 71              | 65   | 57   | 45   |
| L <sub>wA</sub> to environment | dBA | 62  | 51 | 61  | 60        | 46       | 36              | 22   | 31   | 27   |





| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75                         | 47 | 68  | 65  | 72  | 65   | 61   | 59   | 49   |
| L <sub>wA</sub> to outlet      | dBA | 75                         | 51 | 72  | 68  | 75  | 67   | 65   | 59   | 50   |
| L <sub>wA</sub> to environment | dBA | 65                         | 46 | 61  | 59  | 47  | 31   | 28   | 46   | 42   |
| VKMS 200                       | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75                         | 48 | 66  | 72  | 73  | 66   | 63   | 58   | 49   |
| L <sub>wA</sub> to outlet      | dBA | 78                         | 51 | 70  | 74  | 71  | 64   | 64   | 60   | 53   |
| L <sub>wA</sub> to environment | dBA | 66                         | 49 | 64  | 60  | 45  | 35   | 28   | 46   | 41   |

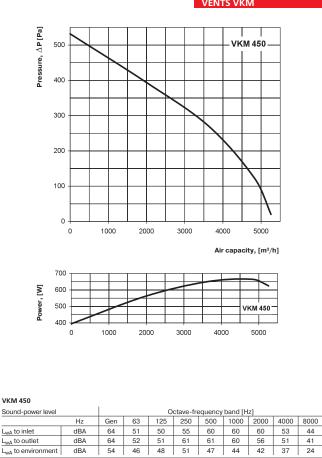



VKM 250 Q


| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 68  | 46 | 57  | 60        | 65      | 62      | 58   | 60   | 54   |
| L <sub>wA</sub> to outlet      | dBA | 75  | 44 | 59  | 64        | 65      | 67      | 65   | 68   | 59   |
| L <sub>wA</sub> to environment | dBA | 60  | 44 | 57  | 52        | 47      | 36      | 39   | 51   | 45   |
| VKM 250                        | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75  | 60 | 68  | 65        | 67      | 66      | 60   | 53   | 48   |
| L <sub>wA</sub> to outlet      | dBA | 77  | 62 | 71  | 74        | 70      | 71      | 69   | 59   | 50   |
| L <sub>wA</sub> to environment | dBA | 65  | 57 | 62  | 60        | 50      | 43      | 37   | 45   | 38   |






| VKM 355 Q                      |     |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 66  | 54 | 49  | 56        | 63      | 61      | 58   | 56   | 46   |
| L <sub>wA</sub> to outlet      | dBA | 63  | 53 | 53  | 62        | 61      | 58      | 52   | 51   | 43   |
| L <sub>wA</sub> to environment | dBA | 53  | 50 | 48  | 49        | 49      | 45      | 39   | 36   | 24   |
| VKM 400                        | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 68  | 53 | 48  | 56        | 59      | 58      | 60   | 55   | 48   |
| L <sub>wA</sub> to outlet      | dBA | 65  | 52 | 55  | 62        | 62      | 58      | 56   | 51   | 41   |
| L <sub>wA</sub> to environment | dBA | 56  | 47 | 47  | 49        | 47      | 43      | 42   | 37   | 25   |





#### VKM 315

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 71  | 35 | 51  | 61        | 69      | 66      | 62   | 59   | 56   |
| L <sub>wA</sub> to outlet      | dBA | 75  | 42 | 58  | 62        | 71      | 69      | 67   | 59   | 57   |
| L <sub>wA</sub> to environment | dBA | 60  | 34 | 49  | 56        | 50      | 44      | 49   | 53   | 50   |
| VKMS 315                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 77  | 54 | 67  | 72        | 70      | 67      | 67   | 64   | 56   |
| L <sub>wA</sub> to outlet      | dBA | 81  | 54 | 71  | 72        | 71      | 69      | 72   | 64   | 60   |
| L <sub>wA</sub> to environment | dBA | 68  | 56 | 66  | 62        | 57      | 47      | 54   | 55   | 51   |



dBA

# VENTS VKM

FAN SERIES VENTS VKM

# Series VENTS VKMz



In-line centrifugal fans in galvanized casing with the air capacity up to **1540 m<sup>3</sup>/h** 

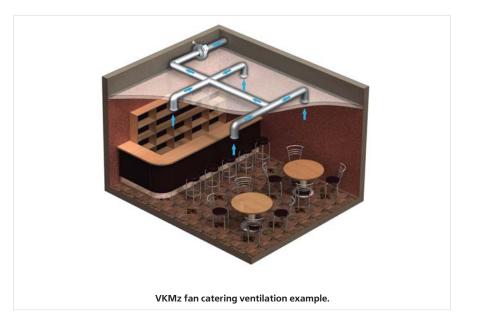
#### Applications

Supply and exhaust ventilation systems for various premises suitable for external surface mounting. For premises with high requirements to noise level we offer units in low-noise modification (VKMz...Q).

#### Design

The fan casing is made of galvanized steel. For easy connection and operation the fan can be equipped with the power cord with a plug (VKMz...R).

#### Motor


The impeller with backward blades is powered by the single-phase motor with external rotor and overheating protection with automatic restart. The motor is equipped with ball bearings for long service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each impeller is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

Both smooth and step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

#### Mounting

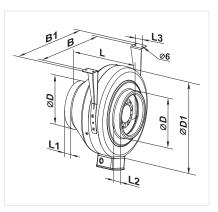
Mounting at any angle to wall or ceiling is performed with fastening brackets supplied with the unit. The fan is powered by means of the external terminal box. Electric connection and mounting shall be performed in compliance with the manual and wiring diagram on the terminal box.



Designation key:



#### **Technical data:**


|                                    | VKMz<br>100 Q | VKMz<br>100 | VKMz<br>125 Q | VKMz<br>125 | VKMz<br>150 | VKMz<br>160 |
|------------------------------------|---------------|-------------|---------------|-------------|-------------|-------------|
| Voltage [V / 50 Hz]                | 230           | 230         | 230           | 230         | 230         | 230         |
| Power [W]                          | 60            | 72          | 60            | 78          | 75          | 78          |
| Current [A]                        | 0,37          | 0,32        | 0,37          | 0,34        | 0,33        | 0,34        |
| Maximum air flow [m³/h]            | 195           | 250         | 230           | 330         | 455         | 455         |
| RPM [min <sup>-1</sup> ]           | 2670          | 2820        | 2605          | 2820        | 2770        | 2760        |
| Noise level at 3 m [dBA]           | 35            | 46          | 35            | 46          | 46          | 46          |
| Maximum operating temperature [°C] | -25 +55       | -25 +55     | -25 +55       | -25 +55     | -25 +55     | -25 +55     |
| Protection rating                  | IP X4         | IP X4       | IP X4         | IP X4       | IP X4       | IP X4       |

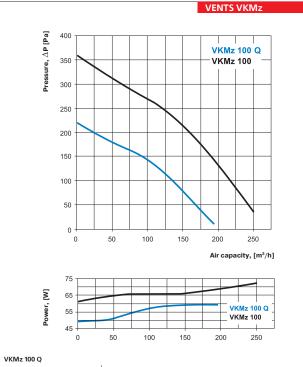
#### Technical data:

|                                    | VKMz<br>200 Q | VKMz<br>200 | VKMz<br>250 Q | VKMz<br>250 | VKMz<br>315 Q | VKMz<br>315 |
|------------------------------------|---------------|-------------|---------------|-------------|---------------|-------------|
| Voltage [V / 50 Hz]                | 230           | 230         | 230           | 230         | 230           | 230         |
| Power [W]                          | 139           | 157         | 134           | 152         | 151           | 185         |
| Current [A]                        | 0,61          | 0,69        | 0,59          | 0,66        | 0,66          | 0,81        |
| Maximum air flow [m³/h]            | 840           | 1000        | 980           | 1070        | 1330          | 1540        |
| RPM [min <sup>-1</sup> ]           | 2790          | 2740        | 2785          | 2765        | 2680          | 2730        |
| Noise level at 3 m [dBA]           | 48            | 50          | 51            | 52          | 52            | 53          |
| Maximum operating temperature [°C] | -25 +50       | -25 +45     | -25 +50       | -25 +50     | -25 +50       | -25 +45     |
| Protection rating                  | IP X4         | IP X4       | IP X4         | IP X4       | IP X4         | IP X4       |

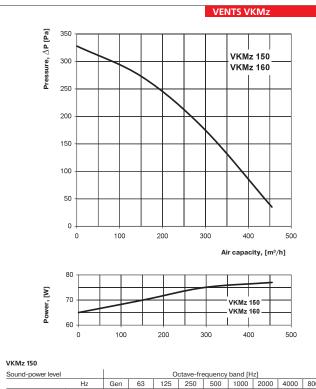
#### Fan overall dimensions:

| Turpo      |     |     | Di  | mensio | ns [mm] |    |    |    | Mass |
|------------|-----|-----|-----|--------|---------|----|----|----|------|
| Туре       | ØD  | ØD1 | В   | B1     | L       | L1 | L2 | L3 | [kg] |
| VKMz 100 Q | 98  | 237 | 253 | 293    | 202     | 23 | 22 | 30 | 3,1  |
| VKMz 100   | 98  | 237 | 253 | 293    | 202     | 23 | 22 | 30 | 3,2  |
| VKMz 125 Q | 123 | 237 | 253 | 293    | 202     | 23 | 22 | 30 | 3,1  |
| VKMz 125   | 123 | 237 | 253 | 293    | 202     | 23 | 22 | 30 | 3,15 |
| VKMz 150   | 148 | 278 | 294 | 334    | 200     | 25 | 23 | 30 | 3,8  |
| VKMz 160   | 158 | 278 | 294 | 334    | 200     | 25 | 23 | 30 | 3,8  |
| VKMz 200 Q | 198 | 332 | 340 | 380    | 245     | 25 | 29 | 40 | 4,2  |
| VKMz 200   | 198 | 332 | 340 | 380    | 245     | 25 | 29 | 40 | 4,4  |
| VKMz 250 Q | 249 | 332 | 340 | 380    | 213     | 25 | 29 | 40 | 4,1  |
| VKMz 250   | 249 | 332 | 340 | 380    | 213     | 25 | 29 | 40 | 4,3  |
| VKMz 315 Q | 313 | 402 | 410 | 450    | 308     | 33 | 55 | 40 | 5,5  |
| VKMz 315   | 313 | 402 | 410 | 450    | 308     | 33 | 55 | 40 | 5,7  |

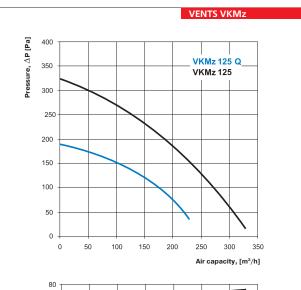


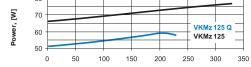



External terminal box for power supply



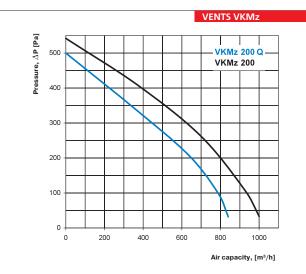

Fastening bracket for easy mounting supplied with the fan

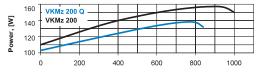

VENTS VKMZ...R is equipped with the power cord



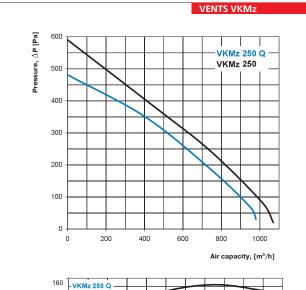

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | lz]  |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 63  | 51 | 57  | 56        | 57      | 51      | 46   | 40   | 29   |
| L <sub>wA</sub> to outlet      | dBA | 65  | 54 | 62  | 58        | 61      | 57      | 50   | 45   | 33   |
| L <sub>wA</sub> to environment | dBA | 55  | 19 | 14  | 21        | 34      | 42      | 41   | 29   | 17   |
| VKMz 100                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72  | 47 | 67  | 68        | 67      | 60      | 54   | 53   | 42   |
| L <sub>wA</sub> to outlet      | dBA | 73  | 56 | 67  | 72        | 66      | 63      | 58   | 57   | 42   |
| L <sub>wA</sub> to environment | dBA | 64  | 43 | 60  | 57        | 41      | 24      | 6    | 17   | 24   |

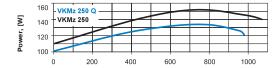



| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72  | 42 | 65  | 64        | 64      | 61      | 60   | 48   | 38   |
| L <sub>wA</sub> to outlet      | dBA | 73  | 47 | 68  | 66        | 69      | 64      | 59   | 47   | 41   |
| L <sub>wA</sub> to environment | dBA | 63  | 41 | 59  | 54        | 37      | 18      | 17   | 29   | 22   |
| VKMz 160                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 69  | 42 | 67  | 66        | 63      | 61      | 58   | 48   | 35   |
| L <sub>wA</sub> to outlet      | dBA | 72  | 46 | 69  | 65        | 68      | 64      | 63   | 50   | 40   |
| $L_{wA}$ to environment        | dBA | 60  | 41 | 60  | 53        | 36      | 20      | 18   | 30   | 24   |

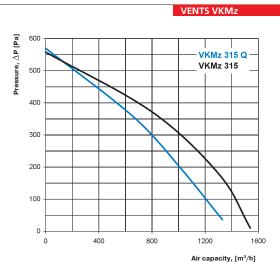


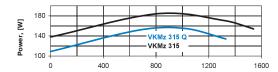




| VKI | VIz 125 | Q |  |
|-----|---------|---|--|
| ~   |         |   |  |


| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 59  | 31 | 52  | 54        | 53      | 49      | 46   | 35   | 30   |
| L <sub>wA</sub> to outlet      | dBA | 61  | 35 | 53  | 56        | 60      | 51      | 49   | 35   | 34   |
| L <sub>wA</sub> to environment | dBA | 64  | 46 | 60  | 59        | 43      | 33      | 15   | 30   | 28   |
| VKMz 125                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75  | 56 | 63  | 68        | 69      | 64      | 61   | 52   | 41   |
| L <sub>wA</sub> to outlet      | dBA | 75  | 58 | 71  | 74        | 72      | 65      | 65   | 56   | 47   |
| L <sub>wA</sub> to environment | dBA | 64  | 52 | 64  | 59        | 48      | 36      | 23   | 30   | 27   |







| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 76  | 47 | 68  | 65        | 70      | 67      | 59   | 58   | 50   |
| L <sub>wA</sub> to outlet      | dBA | 76  | 49 | 71  | 69        | 72      | 63      | 63   | 60   | 53   |
| L <sub>wA</sub> to environment | dBA | 64  | 46 | 61  | 57        | 48      | 32      | 27   | 48   | 42   |
| VKMz 200                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 73  | 51 | 66  | 68        | 71      | 67      | 64   | 58   | 52   |
| L <sub>wA</sub> to outlet      | dBA | 79  | 51 | 73  | 69        | 74      | 67      | 65   | 60   | 50   |
| L <sub>wA</sub> to environment | dBA | 68  | 47 | 64  | 64        | 46      | 32      | 30   | 44   | 42   |





| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |     |  |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|-----|--|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 800 |  |
| L <sub>wA</sub> to inlet       | dBA | 69                         | 46 | 59  | 61  | 65  | 62   | 58   | 60   | 54  |  |
| L <sub>wA</sub> to outlet      | dBA | 74                         | 49 | 59  | 63  | 66  | 67   | 62   | 64   | 56  |  |
| L <sub>wA</sub> to environment | dBA | 60                         | 42 | 54  | 54  | 44  | 37   | 37   | 52   | 45  |  |
| VKMz 250                       | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 800 |  |
| L <sub>wA</sub> to inlet       | dBA | 75                         | 60 | 66  | 67  | 67  | 67   | 63   | 56   | 45  |  |
| L <sub>wA</sub> to outlet      | dBA | 76                         | 60 | 73  | 71  | 69  | 65   | 66   | 59   | 46  |  |
| L <sub>wA</sub> to environment | dBA | 65                         | 58 | 62  | 60  | 47  | 43   | 40   | 47   | 36  |  |





# VKMz 315 Q

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 70  | 35 | 53  | 61        | 65      | 67      | 61   | 58   | 56   |
| L <sub>wA</sub> to outlet      | dBA | 74  | 41 | 54  | 64        | 73      | 70      | 65   | 62   | 60   |
| L <sub>wA</sub> to environment | dBA | 59  | 35 | 49  | 53        | 50      | 46      | 51   | 50   | 50   |
| VKMz 315                       | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 77  | 53 | 66  | 71        | 69      | 68      | 66   | 63   | 60   |
| L <sub>wA</sub> to outlet      | dBA | 78  | 58 | 71  | 74        | 72      | 71      | 71   | 63   | 63   |
| $L_{\text{wA}}$ to environment | dBA | 70  | 55 | 66  | 61        | 57      | 48      | 54   | 56   | 51   |

Air capacity, [m<sup>3</sup>/h]

# Series VENTS VC



In-line centrifugal duct fans with the air capacity up to **1880 m<sup>3</sup>/h**.

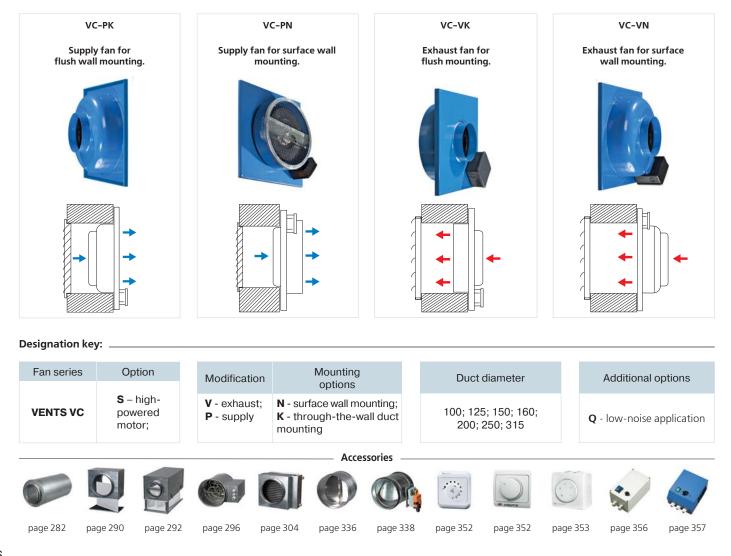
Applications

Supply and exhaust ventilation systems for various premises suitable for external surface mounting. For premises with high requirements to noise level, we offer units in low-noise modification (VC...Q).

#### Design

Fan casing is made of steel with polymeric coating. Various fan modifications for surface or flush mounting are available.

#### Motor


The plastic impeller with backward curved blades is powered by means of the single-phase motor with external rotor and overheating protection with automatic restart. For some dimension types high-powered motors are available (VC...S). Motor is equipped with ball bearings for longer service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

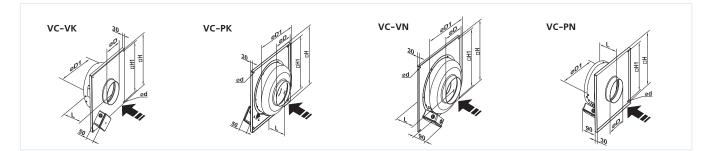
Smooth or step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the controller rated values.

#### Mounting

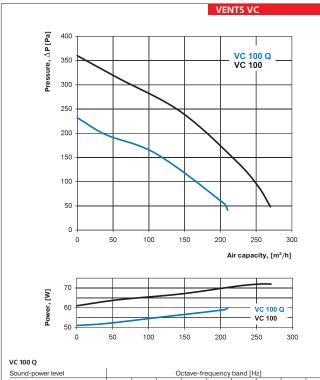
Fan is designed for surface wall mounting (VC... PN and VC...VN models) or through-the-wall mounting (VC...PK and VC...VK) depending on design modification (see below). The fan is mounted to the wall with the mounting plate. The fan is powered through the external terminal box. Electric connection and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.



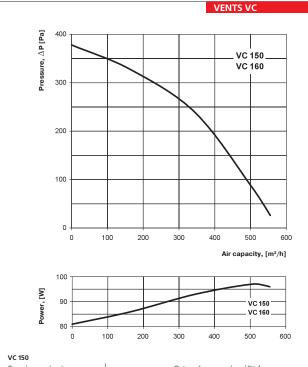
#### Technical data:


|                                    | VC<br>100 Q | VC<br>100 | VC<br>125 Q | VC<br>125 | VC<br>150 | VC<br>160 |
|------------------------------------|-------------|-----------|-------------|-----------|-----------|-----------|
| Voltage [V / 50 Hz]                | 230         | 230       | 230         | 230       | 230       | 230       |
| Power [W]                          | 60          | 73        | 60          | 75        | 98        | 98        |
| Current [A]                        | 0,37        | 0,32      | 0,37        | 0,33      | 0,43      | 0,43      |
| Maximum air flow [m³/h]            | 210         | 270       | 255         | 355       | 555       | 555       |
| RPM [min <sup>-1</sup> ]           | 2620        | 2830      | 2535        | 2800      | 2705      | 2660      |
| Noise level at 3 m [dBA]           | 36          | 47        | 36          | 47        | 47        | 47        |
| Maximum operating temperature [°C] | -25 +55     | -25 +55   | -25 +55     | -25 +55   | -25 +55   | -25 +55   |
| Protection rating                  | IP X4       | IP X4     | IP X4       | IP X4     | IP X4     | IP X4     |

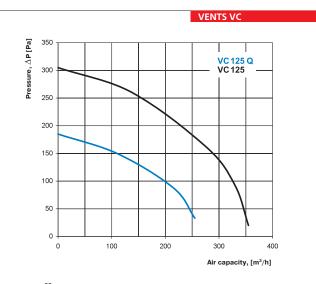
#### Technical data:

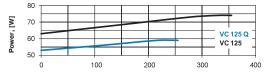

|                                    | VC<br>200 | VCS<br>200 | VC<br>250 Q | VC<br>250 | VC<br>315 | VCS<br>315 |
|------------------------------------|-----------|------------|-------------|-----------|-----------|------------|
| Voltage [V / 50 Hz]                | 230       | 230        | 230         | 230       | 230       | 230        |
| Power [W]                          | 154       | 193        | 158         | 194       | 171       | 296        |
| Current [A]                        | 0,67      | 0,84       | 0,69        | 0,85      | 0,77      | 1,34       |
| Maximum air flow [m³/h]            | 950       | 1100       | 1190        | 1310      | 1400      | 1880       |
| RPM [min <sup>-1</sup> ]           | 2375      | 2780       | 2315        | 2790      | 2600      | 2720       |
| Noise level at 3 m [dBA]           | 48        | 51         | 52          | 52        | 52        | 54         |
| Maximum operating temperature [°C] | -25 +50   | -25 +45    | -25 +50     | -25 +50   | -25 +50   | -25 +45    |
| Protection rating                  | IP X4     | IP X4      | IP X4       | IP X4     | IP X4     | IP X4      |

### Fan overall dimensions:


| Turpo    |     |     |     |     |     |     |           |
|----------|-----|-----|-----|-----|-----|-----|-----------|
| Туре     | ØD  | ØD1 | Ød  | Н   | H1  | L   | Mass [kg] |
| VC 100 Q | 98  | 249 | 6,1 | 310 | 295 | 115 | 3,1       |
| VC 100   | 98  | 249 | 6,1 | 310 | 295 | 115 | 3,2       |
| VC 125 Q | 123 | 249 | 6,1 | 310 | 295 | 115 | 3,1       |
| VC 125   | 123 | 249 | 6,1 | 310 | 295 | 115 | 3,2       |
| VC 150   | 149 | 300 | 6,1 | 400 | 385 | 115 | 4,8       |
| VC 160   | 159 | 300 | 6,1 | 400 | 385 | 115 | 4,9       |
| VC 200   | 198 | 339 | 6,1 | 400 | 385 | 138 | 6,1       |
| VCS 200  | 198 | 339 | 6,1 | 400 | 385 | 138 | 6,1       |
| VC 250 Q | 248 | 339 | 6,1 | 400 | 385 | 138 | 7,1       |
| VC 250   | 248 | 339 | 6,1 | 400 | 385 | 138 | 7,2       |
| VC 315   | 315 | 399 | 6,1 | 460 | 445 | 146 | 7,8       |
| VCS 315  | 315 | 399 | 6,1 | 460 | 445 | 180 | 7,8       |

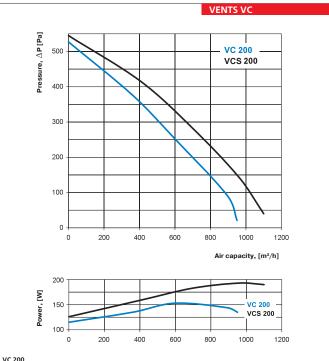



FAN SERIES VENTS VC

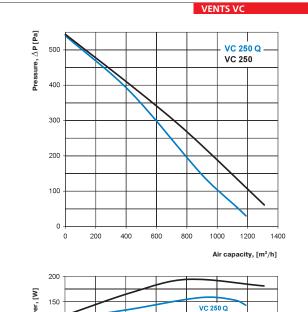


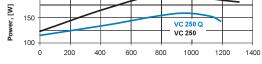

| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 62  | 52                         | 60  | 56  | 60  | 48   | 48   | 41   | 28   |
| L <sub>wA</sub> to outlet      | dBA | 67  | 49                         | 57  | 58  | 60  | 54   | 52   | 45   | 30   |
| L <sub>wA</sub> to environment | dBA | 55  | 19                         | 16  | 23  | 36  | 39   | 42   | 30   | 19   |
| VC 100                         | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 74  | 49                         | 66  | 70  | 67  | 62   | 53   | 52   | 40   |
| L <sub>wA</sub> to outlet      | dBA | 77  | 48                         | 69  | 73  | 68  | 61   | 57   | 53   | 47   |
| L <sub>wA</sub> to environment | dBA | 63  | 43                         | 63  | 57  | 40  | 27   | 6    | 20   | 25   |



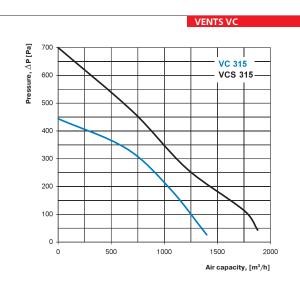

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 70                         | 45 | 66  | 64  | 67  | 61   | 59   | 50   | 38   |
| L <sub>wA</sub> to outlet      | dBA | 71                         | 48 | 69  | 67  | 65  | 67   | 62   | 53   | 42   |
| L <sub>wA</sub> to environment | dBA | 62                         | 39 | 62  | 54  | 39  | 19   | 17   | 28   | 20   |
| VC 160                         |     |                            |    |     |     |     |      |      |      |      |
| VC 100                         | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72                         | 44 | 64  | 64  | 63  | 61   | 59   | 48   | 35   |
| L <sub>wA</sub> to outlet      | dBA | 72                         | 43 | 66  | 68  | 66  | 65   | 63   | 50   | 42   |
| L <sub>wA</sub> to environment | dBA | 64                         | 42 | 59  | 55  | 36  | 18   | 15   | 30   | 22   |







## VC 125 Q

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 61                         | 32 | 53  | 55  | 55  | 49   | 45   | 36   | 30   |
| L <sub>wA</sub> to outlet      | dBA | 58                         | 37 | 54  | 57  | 54  | 52   | 50   | 36   | 34   |
| L <sub>wA</sub> to environment | dBA | 64                         | 44 | 64  | 59  | 41  | 32   | 15   | 32   | 26   |
| VC 125                         | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75                         | 57 | 65  | 67  | 70  | 66   | 61   | 53   | 42   |
| L <sub>wA</sub> to outlet      | dBA | 76                         | 63 | 69  | 66  | 68  | 70   | 65   | 52   | 42   |
| L <sub>wA</sub> to environment | dBA | 65                         | 54 | 60  | 59  | 46  | 36   | 21   | 29   | 25   |





| VC 200                         |     |                            |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 77                         | 47 | 68  | 67  | 72  | 67   | 59   | 59   | 50   |
| L <sub>wA</sub> to outlet      | dBA | 76                         | 53 | 69  | 71  | 73  | 69   | 67   | 62   | 52   |
| L <sub>wA</sub> to environment | dBA | 64                         | 46 | 61  | 57  | 50  | 33   | 26   | 44   | 39   |
| VCS 200                        |     |                            |    |     |     |     |      |      |      |      |
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 73                         | 47 | 70  | 72  | 71  | 64   | 63   | 58   | 51   |
| L <sub>wA</sub> to outlet      | dBA | 80                         | 52 | 70  | 75  | 72  | 64   | 64   | 62   | 54   |
| L <sub>wA</sub> to environment | dBA | 64                         | 49 | 66  | 61  | 47  | 33   | 29   | 45   | 42   |





| VC 250 Q                       |     |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 69  | 45 | 58  | 61        | 64      | 63      | 59   | 60   | 55   |
| L <sub>wA</sub> to outlet      | dBA | 74  | 47 | 64  | 62        | 63      | 66      | 60   | 67   | 59   |
| L <sub>wA</sub> to environment | dBA | 61  | 43 | 57  | 55        | 45      | 37      | 37   | 51   | 44   |
| VC 250                         | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 74  | 57 | 64  | 67        | 70      | 67      | 62   | 54   | 44   |
| L <sub>wA</sub> to outlet      | dBA | 73  | 62 | 67  | 67        | 68      | 71      | 61   | 54   | 48   |
| L <sub>wA</sub> to environment | dBA | 67  | 56 | 63  | 59        | 50      | 42      | 39   | 45   | 38   |





| VC 315                         |     |     |                                        |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----------------------------------------|-----|-----|-----|------|------|------|------|
| Sound-power level              |     |     | Octave-frequency band [Hz]             |     |     |     |      |      |      |      |
|                                | Hz  | Gen | Gen 63 125 250 500 1000 2000 4000 8000 |     |     |     |      |      |      |      |
| L <sub>wA</sub> to inlet       | dBA | 69  | 35                                     | 51  | 62  | 69  | 64   | 61   | 60   | 54   |
| L <sub>wA</sub> to outlet      | dBA | 73  | 38                                     | 55  | 62  | 70  | 68   | 65   | 58   | 60   |
| L <sub>wA</sub> to environment | dBA | 58  | 36                                     | 49  | 52  | 51  | 43   | 50   | 53   | 47   |
| VCS 315                        | Hz  | Gen | 63                                     | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 74  | 53                                     | 68  | 71  | 70  | 68   | 64   | 62   | 59   |
| L <sub>wA</sub> to outlet      | dBA | 78  | 55                                     | 71  | 73  | 73  | 73   | 65   | 62   | 59   |
| L <sub>wA</sub> to environment | dBA | 68  | 54                                     | 65  | 63  | 53  | 46   | 54   | 58   | 53   |

# Series VENTS VCN



casing with the air capacity up to **710 m<sup>3</sup>/h** for outdoor surface mounting.

#### Applications

Exhaust ventilation system for various premises designed for air exhaust with the temperature up to 55°C. Direct air exhaust is provided.

#### Design

Steel casing with polymeric coating ensures motor protection against direct humidity exposure in case of the unit outdoor mounting. The fan bottom has a bird and rodent proof guard. Air is exhausted vertically down.

#### Motor

The centrifugal impeller with backward curved blades is powered by the single-phase motor with external rotor and overheating protection with automatic restart. The motor is equipped with ball bearings for long service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

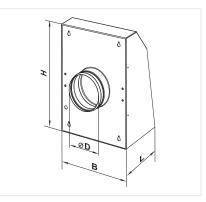
#### Speed control

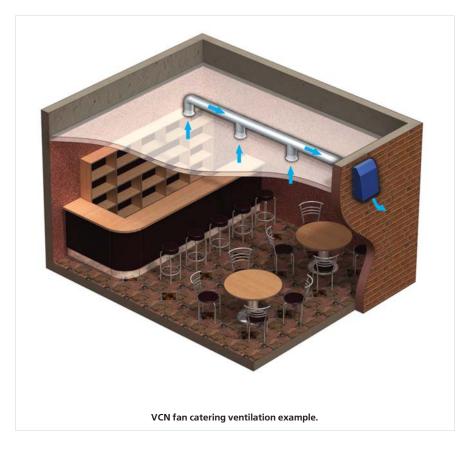
Smooth or step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case their total power and operating current do not exceed the rated controller values.

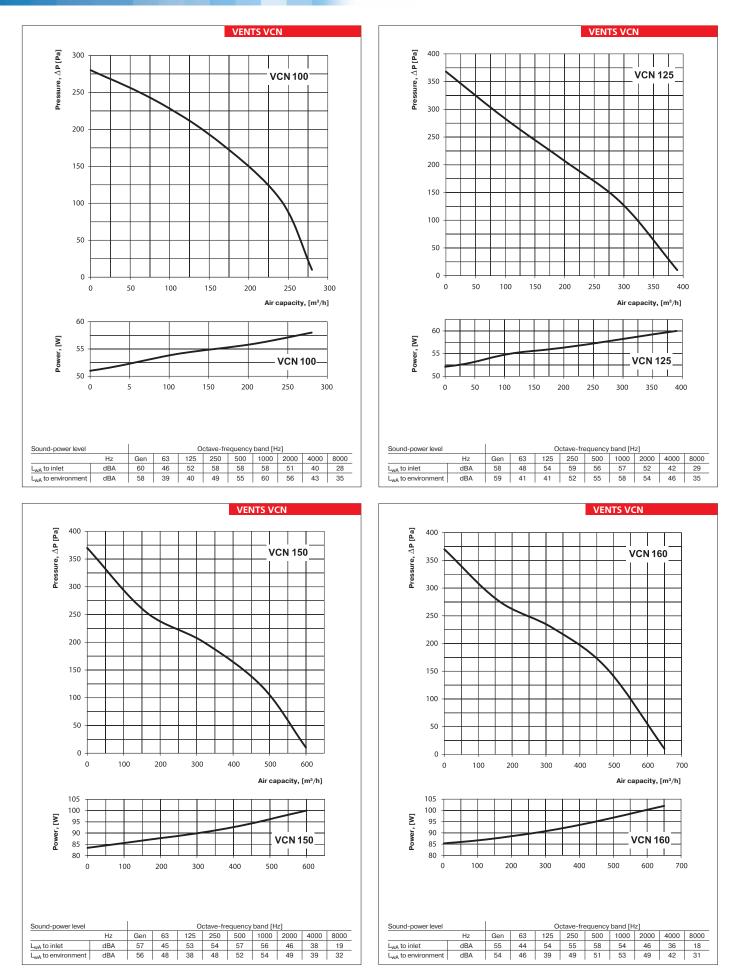
#### Mounting

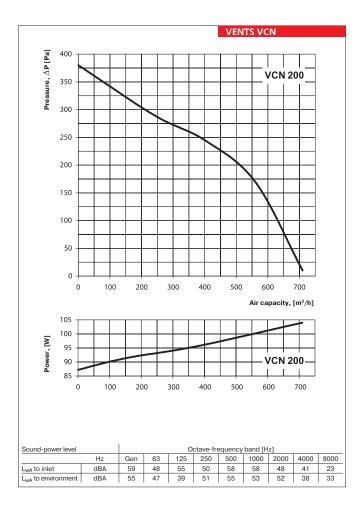
The fan is designed for outdoor surface wall mounting and connection to round duct of the respective diameter. The fan is powered through the external terminals. Electric connection and mounting shall be performed in compliance with the manual and wiring diagram provided in unit operation manual.







#### Technical data:


|                                    | VCN 100 | VCN 125 | VCN 150 | VCN 160 | VCN 200 |
|------------------------------------|---------|---------|---------|---------|---------|
| Voltage [V / 50 Hz]                | 230     | 230     | 230     | 230     | 230     |
| Power [W]                          | 58      | 60      | 100     | 102     | 104     |
| Current [A]                        | 0,26    | 0,27    | 0,43    | 0,44    | 0,45    |
| Maximum air flow [m³/h]            | 280     | 390     | 600     | 650     | 710     |
| RPM [min <sup>-1</sup> ]           | 2500    | 2500    | 2600    | 2600    | 2600    |
| Noise level at 3 m [dBA]           | 54      | 54      | 58      | 60      | 62      |
| Maximum operating temperature [°C] | 55      | 55      | 55      | 55      | 55      |
| Protection rating                  | IP X4   |


#### Fan overall dimensions:

| Turpo   |     | Mass |     |       |      |
|---------|-----|------|-----|-------|------|
| Туре    | ØD  | В    | Н   | L     | [kg] |
| VCN 100 | 99  | 260  | 355 | 138   | 4,1  |
| VCN 125 | 124 | 260  | 355 | 138   | 4,1  |
| VCN 150 | 149 | 300  | 400 | 138,2 | 4,5  |
| VCN 160 | 159 | 300  | 400 | 138,2 | 4,5  |
| VCN 200 | 199 | 300  | 400 | 138,2 | 4,5  |









# Series VENTS VKP



Centrifugal fans in the steel casing with the air capacity up to **553 m<sup>3</sup>/h** for round ducts

#### Applications

Supply and exhaust ventilation systems for various premises with the limited mounting space. Suitable for connection with Ø 100 and up to 160 mm round ducts.

#### Design

The fan casing is made of steel with polymeric coating. The removable cover provides easy access to the motor, thus ensuring easy mounting as well as the fan and the air ducts maintenance without dismounting.

#### Motor

The centrifugal impeller with backward curved blades is powered by means of the single-phase motor with external rotor and overheating protection with automatic restart. The motor is equipped with ball bearings for long service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

Smooth or step speed control is performed with the thyristor or autotransformer controller.

Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

#### Mounting

Mounting at any angle to wall is performed with fastening bracket supplied with the unit. The fan is powered through the external terminal box. Electric supply and mounting shall be performed in compliance with the manual and wiring diagram on the terminal box.

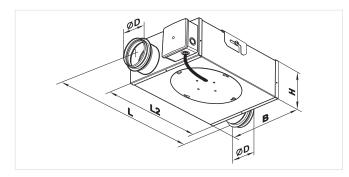


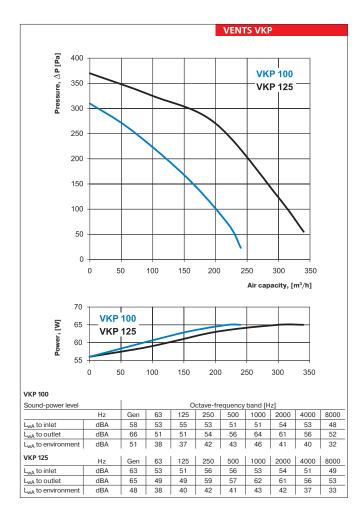
External terminal box for power supply



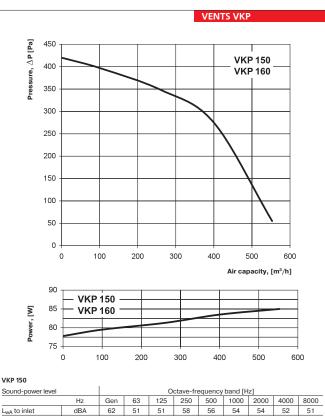
Easy access to motor without fan dismounting.

#### **Technical data:**


|                                      | VKP 100 | VKP 125 | VKP 150 | VKP 160 |
|--------------------------------------|---------|---------|---------|---------|
| Voltage [V / 50 Hz]                  | 230     | 230     | 230     | 230     |
| Power [W]                            | 58      | 58      | 85      | 85      |
| Current [A]                          | 0,26    | 0,26    | 0,38    | 0,38    |
| Maximum air flow [m <sup>3</sup> /h] | 240     | 340     | 553     | 553     |
| RPM [min <sup>-1</sup> ]             | 2500    | 2500    | 2600    | 2600    |
| Noise level at 3 m [dBA]             | 47      | 48      | 50      | 50      |
| Maximum operating temperature [°C]   | -25 +50 | -25 +50 | -25 +40 | -25 +40 |
| Protection rating                    | IP X4   | IP X4   | IP X4   | IP X4   |


**Designation key:** 




#### Fan overall dimensions:

| Turne   |     | Mass |     |     |     |      |
|---------|-----|------|-----|-----|-----|------|
| Туре    | ØD  | В    | Н   | L   | L2  | [kg] |
| VKP 100 | 99  | 260  | 110 | 352 | 253 | 3,2  |
| VKP 125 | 124 | 255  | 145 | 420 | 322 | 4,5  |
| VKP 150 | 149 | 305  | 175 | 480 | 382 | 5,4  |
| VKP 160 | 159 | 305  | 175 | 480 | 382 | 5,5  |









| Sound-power lever              |     | Octave-frequency band [riz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|-----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                         | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 62                          | 51 | 51  | 58  | 56  | 54   | 54   | 52   | 51   |
| L <sub>wA</sub> to outlet      | dBA | 66                          | 45 | 46  | 60  | 56  | 61   | 61   | 55   | 54   |
| L <sub>wA</sub> to environment | dBA | 49                          | 36 | 38  | 44  | 44  | 42   | 41   | 38   | 35   |
| VKP 160                        | Hz  | Gen                         | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 64                          | 52 | 51  | 59  | 57  | 54   | 55   | 54   | 50   |
| L <sub>wA</sub> to outlet      | dBA | 69                          | 47 | 46  | 58  | 59  | 65   | 61   | 57   | 55   |
| L <sub>wA</sub> to environment | dBA | 52                          | 40 | 37  | 42  | 43  | 44   | 43   | 36   | 33   |

### **CENTRIFUGAL FANS**

# Series VENTS VP



Centrifugal ceiling fans with air capacity up to **310 m<sup>3</sup>/h** in steel casing with a plastic front plate.

#### Application:

Used for exhaust ventilation systems in various premises with limited mounting space behind false ceiling. Designed for connection to  $\emptyset$  100 and 125 mm round air ducts.

#### Design:

The fan casing is made of galvanized steel and the decorative front plate is made of ABS plastic and fitted with a filter. The front plate structure ensures easy access to the filter without any tools. The fan is equipped with a backdraft damper to prevent back air flow. The damper blades are opened by air pressure generated by the fan and are closed with a spring.

#### Motor:

Single-phase external rotor motor with a centrifugal impeller and backward curved blades.

The motor is equipped with built-in overheating protection with automatic restart. The motor ball bearings ensure 40 000 hours service life. For precise features, safe operation and low noise, each impeller is dynamically balanced while assembly. Motor ingress protection rating IP 44.

#### Speed control

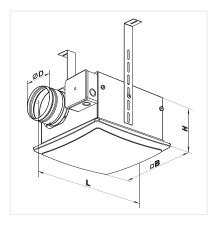
Speed control is performed in smooth or step mode with a thyristor or autotransformer. Several fans may be connected to one speed controller if the total fan power and current do not exceed the rated speed controller parameters.

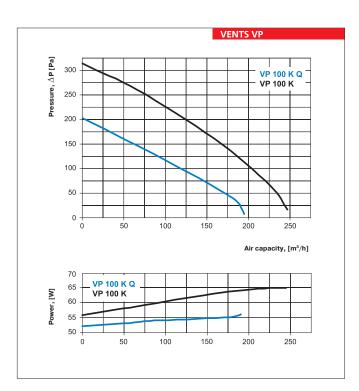
#### Mounting:

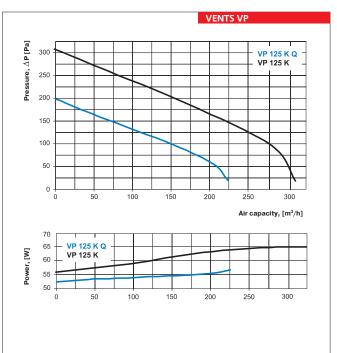
The fan is mounted between the floor framing and false ceiling with brackets. The distance from the floor framing to the false ceiling may range from 165 mm to 390 mm. The fan is connected to power mains through the external terminal block. Electric connections and installation operations must be in compliance with installation guidelines and wiring diagram.



#### Designation key:


| Se       | eries    |          | Flange diameter, mm |          |        | Modifications                                   |
|----------|----------|----------|---------------------|----------|--------|-------------------------------------------------|
| VEN      | ITS VP   |          | 100; 12             | !5       |        | - backdraft damper;<br>• low-noise application. |
| page 282 | page 352 | page 352 | page 353            | page 356 | page 3 | Accessories                                     |


#### Technical data:


|                                          | VP 100 K Q | VP 100 K | VP 125 K Q | VP 125 K |
|------------------------------------------|------------|----------|------------|----------|
| Voltage [V / 50/60 Hz]                   | 1~ 230     | 1~ 230   | 1~ 230     | 1~ 230   |
| Power [W]                                | 56         | 61       | 56         | 61       |
| Current [A]                              | 0,34       | 0,26     | 0,34       | 0,26     |
| Maximum air flow [m³/h]                  | 190        | 240      | 225        | 310      |
| Rotation per minute [min <sup>-1</sup> ] | 2300       | 2500     | 2300       | 2500     |
| Noise level at 3 m [dBA]                 | 42         | 47       | 43         | 48       |
| Maximum operating temperature [°C]       | -25 +45    | -25 +50  | -25 +45    | -25 +50  |
| Ingress Protection Rating                | IP X4      | IP X4    | IP X4      | IP X4    |

#### Fan overall dimensions:

| Turpo      |     | Dimensio | ons [mm] |     | Mass |
|------------|-----|----------|----------|-----|------|
| Туре       | ØD  | В        | Н        | L   | [kg] |
| VP 100 K Q | 100 | 240      | 160      | 305 | 2,9  |
| VP 100 K   | 100 | 240      | 160      | 305 | 3,2  |
| VP 125 K Q | 125 | 240      | 160      | 305 | 2,9  |
| VP 125 K   | 125 | 240      | 160      | 305 | 3,2  |







# Series VENTS VKP mini



Compact centrifugal fans in steel casing with the air capacity up to **176 m<sup>3</sup>/h** with permanent airflow maintenaning at alternating pressure in the system.

#### Applications

Supply and exhaust ventilation systems for various small premises with a limited mounting space. For connection with  $\emptyset$  80 and 100 mm round ducts. Various casing modifications with the number of inlets from 1 to 6 enable using one fan for air exhaust from several premises simultaneously. This makes ventilation system mounting much easier.

#### Design

The fan casing is made of steel with polymeric coating. The casing height is only 94 mm for VKP...80 model and 112 mm for VKP...100 model that enables fan mounting in a limited space. The removable cover provides free access to the motor, ensures easy mounting and enables the fan and air ducts maintenance without dismounting.

#### Motor

The centrifugal impeller with backward curved blades for high pressure is powered by means of the singlephase three-speed motor with external rotor. The custom designed «SMART» turbine construction (motor and impeller) provides constant airflow support in the premise and simultaneous motor speed control as a function of air resistance in the duct. Motor is equipped with incorporated overheating protection with automatic restart and ball bearings for long service life designed for at least 40 000 hours. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

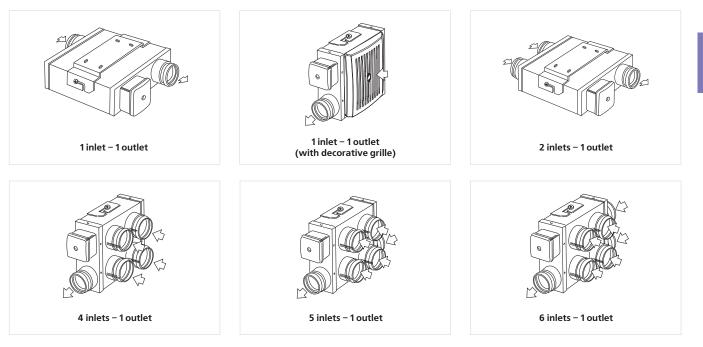
The motor speed changes automatically as a function of ventilation system resistance thus ensuring the constant air flow. For smooth or step speed control a thyristor or autotransformer controller can be applied. Motor speed changes automatically as a function of the ventilation system resistance. This ensures constant airflow. If a three-position switch is additionally installed, three speeds of motor can be controlled manually.

Several fans can be connected to one controller in case the total power and operating current do not exceed the controller rated values.

#### Mounting

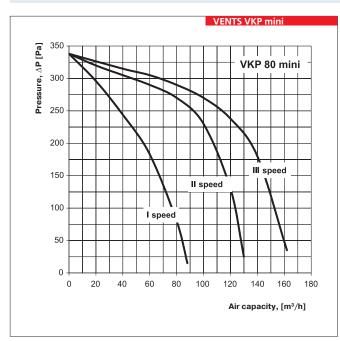
Mounting at any angle to the wall is performed with the fastening bracket supplied with the unit. The fan is powered through the external terminal box. Electric connection and mounting shall be performed in compliance with the manual and wiring diagram on the terminal box.

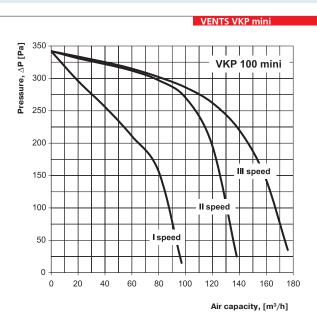





External terminal box for power supply

Designation key:


| Designation key:         |               |               |      |
|--------------------------|---------------|---------------|------|
| Series                   | Duct diameter | Flange number | Туре |
| VENTS VKP                | 80; 100       | / 1/2/4/5/6   | mini |
|                          | Acce          | essories      |      |
| page 336 page 338 page 3 |               |               |      |


#### VKP mini fan modifications



#### **Technical data:**

|                                    |       | VKP 80 mini |       |       | VKP 100 mini |       |
|------------------------------------|-------|-------------|-------|-------|--------------|-------|
| Speed                              | 1     | 2           | 3     | 1     | 2            | 3     |
| Voltage [V / 50 Hz]                | 230   | 230         | 230   | 230   | 230          | 230   |
| Power [W]                          | 20    | 26          | 45    | 20    | 26           | 45    |
| Current [A]                        | 0,32  | 0,34        | 0,4   | 0,32  | 0,34         | 0,4   |
| Maximum air flow [m³/h]            | 88    | 130         | 162   | 97    | 138          | 176   |
| RPM [min <sup>-1</sup> ]           | 1400  | 1800        | 2600  | 1400  | 1800         | 2600  |
| Noise level at 3 m [dBA]           | 32    | 35          | 43    | 33    | 36           | 44    |
| Maximum operating temperature [°C] | 50    | 50          | 50    | 50    | 50           | 50    |
| Protection rating                  | IP X4 | IP X4       | IP X4 | IP X4 | IP X4        | IP X4 |





VENTS VKP mini

FAN SERIES

#### Fan overall dimensions:

| Turaa              |    |     |     | Dimensio | ons [mm] |     |     |     | Mass | Figure |
|--------------------|----|-----|-----|----------|----------|-----|-----|-----|------|--------|
| Туре               | ØD | ØD1 | В   | Н        | H1       | L   | L1  | L2  | [kg] | no.    |
| VKP 80 mini        | 79 | 79  | 260 | 90       | -        | 352 | -   | 253 | 3,2  | 3      |
| VKP 100 mini       | 99 | 99  | 260 | 110      | -        | 352 | -   | 253 | 3,2  | 3      |
| VKP 80 R mini      | 79 | -   | 260 | 90       | 126      | -   | 302 | 253 | 3,1  | 1      |
| VKP 100 R mini     | 99 | -   | 260 | 110      | 146      | -   | 302 | 253 | 3,1  | 1      |
| VKP 80/80*2 mini   | 79 | 79  | 260 | 90       | -        | 352 | -   | 253 | 3,1  | 5      |
| VKP 100/100*2 mini | 99 | 99  | 260 | 110      | -        | 352 | -   | 253 | 3,1  | 5      |
| VKP 80/80*4 mini   | 79 | 79  | 260 | 90       | 150      | -   | 302 | 253 | 3,4  | 2      |
| VKP 100/100*4 mini | 99 | 99  | 260 | 110      | 170      | -   | 302 | 253 | 3,4  | 2      |
| VKP 100/80*2 mini  | 99 | 79  | 260 | 110      | -        | 352 | -   | 253 | 3,1  | 5      |
| VKP 100/80*4 mini  | 99 | 79  | 260 | 110      | 170      | -   | 302 | 253 | 3,1  | 2      |
| VKP 80/80*5 mini   | 79 | 79  | 260 | 90       | 150      | 352 | -   | 253 | 3,5  | 4      |
| VKP 80/80*6 mini   | 79 | 79  | 260 | 90       | 150      | 352 | -   | 253 | 3,6  | 6      |
| VKP 100/80*6 mini  | 99 | 79  | 260 | 110      | 150      | 352 | -   | 253 | 3,6  | 6      |
| VKP 100/80*5 mini  | 99 | 79  | 260 | 110      | 170      | 352 | -   | 253 | 3,7  | 4      |
| VKP 100/100*5 mini | 99 | 99  | 260 | 110      | 170      | 352 | -   | 253 | 3,5  | 4      |
| VKP 100/100*6 mini | 99 | 99  | 260 | 110      | 170      | 352 | -   | 253 | 3,5  | 6      |




Fig. 1

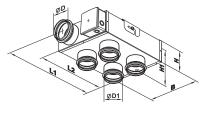



Fig. 2

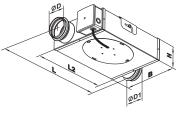
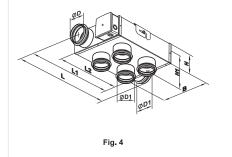




Fig. 3



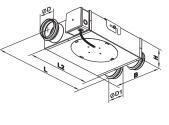
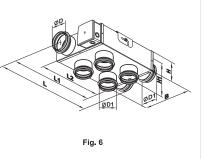




Fig. 5



VKP mini ventilation examples

► 1 inlet – 1 outlet





2 inlets – 1 outlet



▶ 4 inlets – 1 outlet

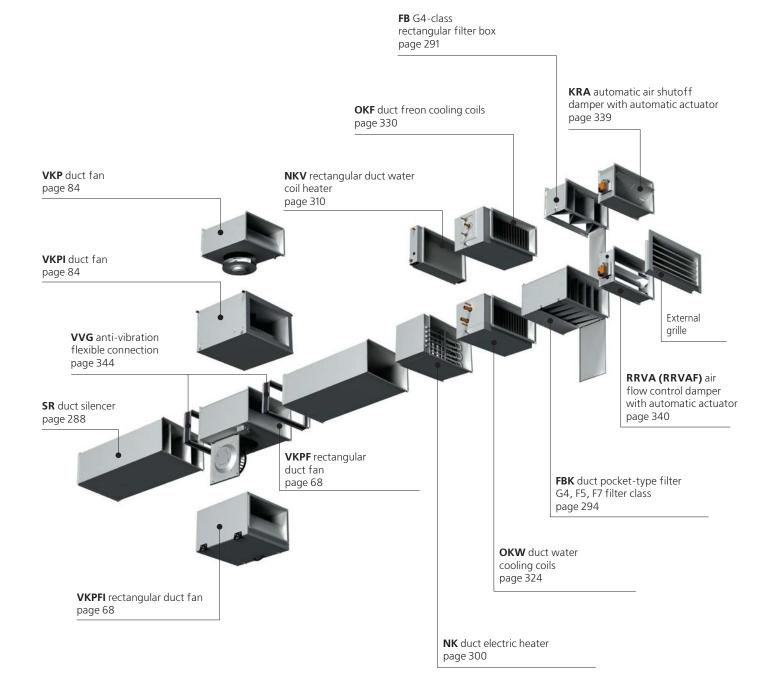
VENTS VKP mini

FAN SERIES

# ELECTRICAL ACCESSORIES COMPATIBILITY

|           |                             |        |        |           | (L)    | D      |        |        |        |          |        |          |        | a la       | 2      | 4      | 1       |          |        |        |         |           |         |           |         |         |         |         |          |           | )       |         |          |           |         |         |
|-----------|-----------------------------|--------|--------|-----------|--------|--------|--------|--------|--------|----------|--------|----------|--------|------------|--------|--------|---------|----------|--------|--------|---------|-----------|---------|-----------|---------|---------|---------|---------|----------|-----------|---------|---------|----------|-----------|---------|---------|
|           |                             | TT 100 | TT 125 | TT 1125 S | TT 150 | TT 160 | TT 200 | TT 250 | TT 315 | VK 100 Q | VK 100 | VK 125 Q | VK 125 | VK VMS 125 | VK 150 | VK 200 | VKS 200 | VK 250 Q | VK 250 | VK 315 | VKS 315 | VKM 100 Q | VKM 100 | VKM 125 Q | VKM 125 | VKM 150 | VKM 160 | VKM 200 | VKMS 200 | VKM 250 Q | VKM 250 | VKM 315 | VKMS 315 | VKM 355 Q | VKM 400 | VKM 450 |
| Thyristor | speed controllers           | 5      |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 1         | RS-1-300                    |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
| C         | RS-1-400                    |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
|           | RS-1 N (V)                  |        |        |           |        |        |        |        |        | ٠        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      |         | ٠         | ٠       | ٠         | ٠       | ٠       | ٠       | ٠       | ٠        | ٠         | ٠       | ٠       |          |           |         |         |
| 2 -       | RS-1,5 N (V)                |        |        |           |        |        |        |        |        | •        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      | ٠       | •         | ٠       | ٠         | ٠       | ٠       | ٠       | ٠       | ٠        | ٠         | ٠       | ٠       | ٠        | •         |         |         |
| 1         | RS-2 N (V)                  |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | _       |         |
|           | RS-2,5 N (V)<br>RS-0,5-PS   |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | •       |         |
| and a     | RS-1,5-PS                   |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
| 0         | RS-2,5-PS                   |        |        |           |        |        |        |        |        | ٠        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      | ٠       | ٠         | ٠       | ٠         | ٠       | ٠       | •       | ٠       | ٠        | ٠         | ٠       | ٠       | ٠        | ٠         | ٠       |         |
|           | RS-4,0-PS                   |        |        |           |        |        |        |        |        |          |        |          |        |            |        | ٠      | ٠       | ٠        | •      | ٠      | ٠       |           |         |           |         | •       | •       | ٠       | ٠        | •         | •       | ٠       | •        | •         | •       | •       |
|           | RS-1,5-T                    |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
| i         | RS-3,0-T<br>RS-5,0-T        |        |        |           |        |        |        |        |        | -        |        | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | -         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | •       | •       |
| 40        | RS-10,0-T                   |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        | •       |           |         |           |         |         |         |         |          |           |         |         | •        | •         | •       | •       |
|           | RS-1,5-TA                   |        |        |           |        |        |        |        |        | ٠        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      | ٠       | •         | ٠       | ٠         | ٠       | ٠       | ٠       | ٠       | ٠        | ٠         | ٠       | ٠       | ٠        | •         |         |         |
|           | RS-3,0-TA                   |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | ٠       | •       |
| Din.      | RS-5,0-TA<br>RS-10,0-TA     |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        | •       |          | •      | •      | •       |           |         |           |         |         |         | •       | •        | •         | •       | •       | •        | •         | •       | •       |
| Transform | mer speed contro            | llers  |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Si.       | RSA5E-2-P                   |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
|           | RSA5E-2-M                   |        |        |           |        |        |        |        |        | ٠        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      | ٠       | ٠         | ٠       | ٠         | ٠       | ٠       | ٠       | ٠       | ٠        | ٠         | ٠       | ٠       | ٠        | ٠         |         |         |
|           | RSA5E-3-M                   | _      |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | •       | •       |
| Tran .    | RSA5E-4-M<br>RSA5E-12-M     | -      |        |           |        |        |        |        |        | •        |        |          | •      | •          | •      | •      |         |          | •      | •      | •       |           | -       | •         | •       | •       | •       | •       | •        | •         | •       | •       |          |           | •       | •       |
|           | RSA5E-1,5-T                 |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
| 100       | RSA5E-3,5-T                 |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | ٠       | ٠        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | •       | •       |
| Se.       | RSA5E-5,0-T                 |        |        |           |        |        |        |        |        | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         | •       | •       |
|           | RSA5E-8,0-T<br>RSA5E-10,0-T |        |        |           |        |        |        |        |        |          | -      | -        | -      | -          | -      | -      | -       | -        | -      | -      | -       | -         | -       | -         | •       | •       | •       | -       | -        | -         | -       | -       |          | -         | -       | -       |
| 100       | RSA5D-1,5-T                 |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Not.      | RSA5D-3,5-T                 |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | RSA5D-5-M                   |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 1.        | RSA5D-8-M                   |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | RSA5D-10-M                  |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Frequenc  | RSA5D-12-M                  | rs     |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | VFED-200-TA                 |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 1.1       | VFED-400-TA                 |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Card      | VFED-750-TA<br>VFED-1100-TA | _      |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | VFED-1500-TA                | -      |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         | _       |
| Tempera   | ture regulators             |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| M.        | RTS-1-400                   | •      | ٠      | ٠         | ٠      | ٠      | ٠      | ٠      | ٠      |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | RTSD-1-400                  | •      | •      | •         | •      | •      | ٠      | •      | ٠      |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 0         | RT-10                       | •      | •      | •         | •      | •      | •      | •      | •      | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
| Multi-spe | P2-5,0                      | •      | •      | •         | •      | •      | •      | •      | •      |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 10        | P3-5,0                      |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Gen       | P5-5,0                      |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 4         | P2-1-300                    | •      | ٠      | ٠         | ٠      | ٠      | ٠      | ٠      | ٠      |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | P3-1-300<br>rs controllers  | 1      |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
|           | R-1/010                     |        |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| Sensors   |                             | 1      |        |           |        |        |        |        |        |          |        |          |        |            |        |        |         |          |        |        |         |           |         |           |         |         |         |         |          |           |         |         |          |           |         |         |
| 20110013  | T-1,5 N                     | •      | •      | •         | •      | •      | •      | •      | ٠      | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | •       | •       | •        | •         | •       | •       | •        | •         |         |         |
|           | TH-1,5 N                    | ٠      | ٠      | ٠         | ٠      | ٠      | ٠      | ٠      | ٠      | ٠        | ٠      | ٠        | ٠      | ٠          | ٠      | ٠      | ٠       | ٠        | ٠      | ٠      | ٠       | ٠         | ٠       | ٠         | ٠       | ٠       | ٠       | ٠       | ٠        | ٠         | ٠       | ٠       | ٠        | ٠         |         |         |
| 0 E       | TF-1,5 N                    | •      | •      | •         | ٠      | ٠      | ٠      | ٠      | ٠      | •        | •      | •        | ٠      | •          | ٠      | •      | ٠       | •        | ٠      | ٠      | ٠       | ٠         | ٠       | •         | •       | •       | •       | •       | ٠        | •         | •       | ٠       | ٠        | ٠         |         |         |
|           | TP-1,5 N                    | •      | •      | •         | •      | •      | •      | •      | •      | •        | •      | •        | •      | •          | •      | •      | •       | •        | •      | •      | •       | •         | •       | •         | •       | •       | ٠       | •       | •        | •         | •       | •       | •        | •         |         |         |

• recommended


suitable

|           |                                  |            |          |            |          |          | 6        |            |          |            |          |            |          |          |        |          |        |        |        | )      |         |          |        |        |         |         | 6       | 1       |         |         |               |               |               | •             |            | k        | d.         |          | 4                 |                    |
|-----------|----------------------------------|------------|----------|------------|----------|----------|----------|------------|----------|------------|----------|------------|----------|----------|--------|----------|--------|--------|--------|--------|---------|----------|--------|--------|---------|---------|---------|---------|---------|---------|---------------|---------------|---------------|---------------|------------|----------|------------|----------|-------------------|--------------------|
|           |                                  |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          | ~          |          | Ē                 | ici                |
|           |                                  | VKMz 100 Q | VKMz 100 | VKMz 125 Q | VKMz 125 | VKMz 150 | VKMz 160 | VKMz 200 Q | VKMz 200 | VKMz 250 Q | VKMz 250 | VKMz 315 Q | VKMz 315 | VC 100 Q | VC 100 | VC 125 Q | VC 125 | VC 150 | VC 160 | VC 200 | VCS 200 | VC 250 Q | VC 250 | VC 315 | VCS 315 | VCN 100 | VCN 125 | VCN 150 | VCN 160 | VCN 200 | VENTS VKP 100 | VENTS VKP 125 | VENTS VKP 150 | VENTS VKP 160 | VP 100 K Q | VP 100 K | VP 125 K Q | VP 125 K | VENTS VKP 80 mini | VENTS VKP 100 mini |
| Thyristor | speed controllers                |            | -        | -          | -        | -        | -        | -          | -        | -          | -        | -          | -        | -        | -      | -        | -      | -      | -      | -      | -       | -        | -      | -      | -       | -       | -       | -       | -       | -       | -             | -             | -             | -             | -          | -        | -          | -        | -                 |                    |
| 3         | RS-1-300                         | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| O         | RS-1-400                         | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| -         | RS-1 N (V)<br>RS-1,5 N (V)       | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 2 -       | RS-2 N (V)<br>RS-2,5 N (V)       | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 101       | RS-0,5-PS<br>RS-1,5-PS           | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 0         | RS-2,5-PS<br>RS-4,0-PS           | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       |         |         | •       | •       | •       |               |               | •             | •             | •          |          | •          |          |                   |                    |
| 0         | RS-1,5-T<br>RS-3,0-T             | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 1 de      | RS-5,0-T<br>RS-10,0-T            |            |          |            |          |          |          | •          | •        | •          | •        | •          | •        |          |        |          |        |        |        | •      | •       | •        | •      | •      | •       |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
|           | RS-1,5-TA<br>RS-3,0-TA           | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 00        | RS-5,0-TA<br>RS-10,0-TA          |            |          |            |          |          |          | •          | •        | •          | •        | •          | •        |          |        |          |        |        |        | •      | •       | •        | •      | •      | •       |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| and the   | mer speed control                | lers       | 5        |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| No.       | RSA5E-2-P<br>RSA5E-2-M           | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| -         | RSA5E-3-M<br>RSA5E-4-M           | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
|           | RSA5E-12-M<br>RSA5E-1,5-T        | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 0         | RSA5E-3,5-T<br>RSA5E-3,0-T       | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   | _                  |
| 105       | RSA5E-8,0-T<br>RSA5E-10,0-T      | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        |                   |                    |
| 2         | RSA5D-1,5-T<br>RSA5D-3,5-T       |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
|           | RSA5D-5-M                        |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| -         | RSA5D-8-M<br>RSA5D-10-M          |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| Frequence | RSA5D-12-M<br>cy speed controlle | rs         |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
|           | VFED-200-TA<br>VFED-400-TA       | -          |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| and a     | VFED-750-TA<br>VFED-1100-TA      |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| Tempera   | VFED-1500-TA<br>ture regulators  |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
|           | RTS-1-400<br>RTSD-1-400          |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          | •                 | •                  |
| 10        | RT-10                            | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        | •                 | •                  |
| Multi-spe | ed fan switches<br>P2-5,0        |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| 0         | P2-5,0<br>P3-5,0<br>P5-5,0       |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          | •                 | •                  |
| #         | P2-1-300<br>P3-1-300             | F          |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          | •                 | •                  |
| EC-moto   | rs controllers<br>R-1/010        |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| Sensors   | n-1/010                          |            |          |            |          |          |          |            |          |            |          |            |          |          |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         |               |               |               |               |            |          |            |          |                   |                    |
| Sensors   | T-1,5 N<br>TH-1,5 N              | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        | •                 | •                  |
| 2         | TF-1,5 N<br>TF-1,5 N<br>TP-1,5 N | •          | •        | •          | •        | •        | •        | •          | •        | •          | •        | •          | •        | •        | •      | •        | •      | •      | •      | •      | •       | •        | •      | •      | •       | •       | •       | •       | •       | •       | •             | •             | •             | •             | •          | •        | •          | •        | •                 | ٠                  |
|           |                                  |            | 1.5      |            |          | 1.7      |          |            |          |            |          | -          |          | -        |        |          |        |        |        |        |         |          |        |        |         |         |         |         |         |         | -             |               |               |               | -          | -        |            |          |                   |                    |

• recommended

suitable

## **RECTANGULAR VENTILATION SYSTEM**



# SELECTION TABLE FOR RECTANGULAR ITEMS

|                                                                                                            | 400x200                                                                                                                                           | 500x250                                                                                                              | 500x300                                                                                                                      | 600x300                                                                                                              | 600x350                                                                                                                              | 700x400                                                                                             | 800x500                                                                                                                 | 900x500                                                                  | 1000x500                                                                                    |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Fans                                                                                                       | VKPF 4E 400x200                                                                                                                                   | VKPF 4E 500x250                                                                                                      | VKPF 4E 500x300                                                                                                              | VKPF 4E 600x300                                                                                                      | VKPF 4E 600x350                                                                                                                      | VKPF 4D 700x400                                                                                     | VKPF 6D 800x500                                                                                                         | VKPF 6D 900x500                                                          | VKPF 6D 1000x50                                                                             |
|                                                                                                            | VKPF 4D 400x200                                                                                                                                   | VKPF 4D 500x250                                                                                                      | VKPF 4D 500x300                                                                                                              | VKPF 4D 600x300                                                                                                      | VKPF 4D 600x350                                                                                                                      |                                                                                                     | VKPF 4D 800x500                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | VKPFI 4E 400x200                                                                                                                                  | VKPFI 4E 500x250                                                                                                     | VKPFI 4E 500x300                                                                                                             | VKPFI 4E 600x300                                                                                                     | VKPFI 4E 600x350                                                                                                                     | VKPFI 4D 700x400                                                                                    | VKPFI 6D 800x500                                                                                                        | VKPFI 6D 900x500                                                         | VKPFI6D1000x500                                                                             |
|                                                                                                            | VKPFI 4D 400x200                                                                                                                                  | VKPFI 4D 500x250                                                                                                     | VKPFI 4D 500x300                                                                                                             | VKPFI 4D 600x300                                                                                                     | VKPFI 4D 600x350                                                                                                                     |                                                                                                     | VKPFI 4D 800x500                                                                                                        |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              | VKP 600x300 EC                                                                                                       | VKP 600x350 EC                                                                                                                       | VKP 700x400 EC                                                                                      | VKP 800x500 EC                                                                                                          |                                                                          | VKP 1000x500 E0                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | VKP 2E 400x200                                                                                                                                    | VKP 2E 500x250                                                                                                       | VKP 4E 500x300                                                                                                               | VKP 4E 600x300                                                                                                       | VKP 4E 600x350                                                                                                                       |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      | VKP 4D 500x300                                                                                                               | VKP 4D 600x300                                                                                                       | VKP 4D 600x350                                                                                                                       |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | VKPI 2E 400x200                                                                                                                                   | VKPI 2E 500x250                                                                                                      | VKPI 4E 500x300                                                                                                              | VKPI 4E 600x300                                                                                                      | VKPI 4E 600x350                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | VICF12L 400A200                                                                                                                                   | VICTIZE JUUXZJU                                                                                                      | VKPI 4D 500x300                                                                                                              | VKPI 4D 600x300                                                                                                      | VKPI 4D 600x350                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      | 142 000,000                                                                                                                  | 111142 000,000                                                                                                       | 111142 000,000                                                                                                                       |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Filters                                                                                                    | FB 400x200                                                                                                                                        | FB 500x250                                                                                                           | FB 500x300                                                                                                                   | FB 600x300                                                                                                           | FB 600x350                                                                                                                           | FB 700x400                                                                                          | FB 800x500                                                                                                              | FB 900x500                                                               | FB 1000x500                                                                                 |
|                                                                                                            | FBK 400x200-4                                                                                                                                     | FBK 500x250-4                                                                                                        | FBK 500x300-4                                                                                                                | FBK 600x300-4                                                                                                        | FBK 600x350-4                                                                                                                        | FBK 700x400-4                                                                                       | FBK 800x500-4                                                                                                           | FBK 900x500-4                                                            | FBK 1000x500-4                                                                              |
|                                                                                                            | FBK 400x200-5                                                                                                                                     | FBK 500x250-5                                                                                                        | FBK 500x300-5                                                                                                                | FBK 600x300-5                                                                                                        | FBK 600x350-5                                                                                                                        | FBK 700x400-5                                                                                       | FBK 800x500-5                                                                                                           | FBK 900x500-5                                                            | FBK 1000x500-5                                                                              |
|                                                                                                            | FBK 400x200-7                                                                                                                                     | FBK 500x250-7                                                                                                        | FBK 500x300-7                                                                                                                | FBK 600x300-7                                                                                                        | FBK 600x350-7                                                                                                                        | FBK 700x400-7                                                                                       | FBK 800x500-7                                                                                                           | FBK 900x500-7                                                            | FBK 1000x500-7                                                                              |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Heaters                                                                                                    |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| electrical heaters                                                                                         | NK 400x200-4,5-3                                                                                                                                  | NK 500x250-6,0-3                                                                                                     | NK 500x300-6,0-3                                                                                                             | NK 600x300-9,0-3                                                                                                     | NK 600x350-9,0-3                                                                                                                     | NK 700x400-18-3                                                                                     | NK 800x500-27-3                                                                                                         | NK 900x500-45-3                                                          | NK 1000x500-45-                                                                             |
|                                                                                                            | NK 400x200-6,0-3                                                                                                                                  | NK 500x250-7,5-3                                                                                                     | NK 500x300-7,5-3                                                                                                             | NK 600x300-12,0-3                                                                                                    | NK 600x350-12,0-3                                                                                                                    | NK 700x400-27-3                                                                                     | NK 800x500-36-3                                                                                                         | NK 900x500-54-3                                                          | NK 1000x500-54-                                                                             |
|                                                                                                            | NK 400x200-7,5-3                                                                                                                                  | NK 500x250-9,0-3                                                                                                     | NK 500x300-9,0-3                                                                                                             | NK 600x300-15,0-3                                                                                                    | NK 600x350-15,0-3                                                                                                                    | NK 700x400-36-3                                                                                     | NK 800x500-54-3                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | NK 400x200-9,0-3                                                                                                                                  | NK 500x250-10,5-3                                                                                                    | NK 500x300-10,5-3                                                                                                            | NK 600x300-18,0-3                                                                                                    | NK 600x350-18,0-3                                                                                                                    |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | NK 400x200-10,5-3                                                                                                                                 | NK 500x250-12,0-3                                                                                                    | NK 500x300-12,0-3                                                                                                            | NK 600x300-21,0-3                                                                                                    | NK 600x350-21,0-3                                                                                                                    |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      | NK 600x350-24,0-3                                                                                                                    |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   | NK 500x250-18,0-3                                                                                                    |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            |                                                                                                                                                   | NK 500x250-21,0-3                                                                                                    | NK 500x300-21,0-3                                                                                                            |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| votor opilo                                                                                                | NKV 400x200-2                                                                                                                                     | NKV 500x250-2                                                                                                        | NKV 500x300-2                                                                                                                | NKV 600x300-2                                                                                                        | NKV 600x350-2                                                                                                                        | NKV 700x400-2                                                                                       | NKV 800x500-2                                                                                                           | NKV 900x500-2                                                            | NKV 1000x500-2                                                                              |
| water coils                                                                                                | NKV 400x200-2<br>NKV 400x200-4                                                                                                                    | NKV 500x250-2                                                                                                        | NKV 500x300-2                                                                                                                | NKV 600x300-2                                                                                                        | NKV 600x350-2                                                                                                                        | NKV 700x400-2                                                                                       | NKV 800x500-2<br>NKV 800x500-3                                                                                          | NKV 900x500-2                                                            | NKV 1000x500-2                                                                              |
|                                                                                                            | 11111 400/200-4                                                                                                                                   | NICV 500X250-4                                                                                                       | 14100 300000-4                                                                                                               | 11110 0000000-4                                                                                                      | 11110 0000000-4                                                                                                                      | 11107-00-5                                                                                          | 11110 000000-0                                                                                                          | 14100 3000300-0                                                          | 14100 1000000-0                                                                             |
| Cooling coils                                                                                              |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| water cooling                                                                                              | OKW 400C200-3                                                                                                                                     | OKW 500C250-3                                                                                                        | OKW 500C300-3                                                                                                                | OKW 600C300-3                                                                                                        | OKW 600C350-3                                                                                                                        | OKW 700x400-3                                                                                       | OKW 800x500-3                                                                                                           | OKW 900x500-3                                                            | OKW 1000x500-3                                                                              |
| coils                                                                                                      |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| freon cooling                                                                                              |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
|                                                                                                            | OKF 400C200-3                                                                                                                                     | OKF 500C250-3                                                                                                        | OKF 500C300-3                                                                                                                | OKF 600C300-3                                                                                                        | OKF 600C350-3                                                                                                                        | OKF 700x400-3                                                                                       | OKF 800x500-3                                                                                                           | OKF 900x500-3                                                            | OKF 1000x500-3                                                                              |
| COIIS                                                                                                      | OKF 400C200-3                                                                                                                                     | OKF 500C250-3                                                                                                        | OKF 500C300-3                                                                                                                | OKF 600C300-3                                                                                                        | OKF 600C350-3                                                                                                                        | OKF 700x400-3                                                                                       | OKF 800x500-3                                                                                                           | OKF 900x500-3                                                            | OKF 1000x500-3                                                                              |
|                                                                                                            | OKF 400C200-3<br>SR 400x200                                                                                                                       | OKF 500C250-3<br>SR 500x250                                                                                          | OKF 500C300-3<br>SR 500x300                                                                                                  | OKF 600C300-3<br>SR 600x300                                                                                          | OKF 600C350-3<br>SR 600x350                                                                                                          | OKF 700x400-3<br>SR 700x400                                                                         | OKF 800x500-3<br>SR 800x500                                                                                             | OKF 900x500-3<br>SR 900x500                                              | OKF 1000x500-3<br>SR 1000x500                                                               |
|                                                                                                            |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Silencers                                                                                                  |                                                                                                                                                   |                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                      |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Silencers                                                                                                  | SR 400x200                                                                                                                                        | SR 500x250                                                                                                           | SR 500x300                                                                                                                   | SR 600x300                                                                                                           | SR 600x350                                                                                                                           |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Silencers                                                                                                  | SR 400x200<br>KR 400x200                                                                                                                          | SR 500x250<br>KR 500x250                                                                                             | SR 500x300<br>KR 500x300                                                                                                     | SR 600x300<br>KR 600x300                                                                                             | SR 600x350<br>KR 600x350                                                                                                             |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Silencers                                                                                                  | SR 400x200<br>KR 400x200<br>KRA 400x200                                                                                                           | SR 500x250<br>KR 500x250<br>KRA 500x250                                                                              | SR 500x300<br>KR 500x300<br>KRA 500x300                                                                                      | SR 600x300<br>KR 600x300<br>KRA 600x300                                                                              | SR 600x350<br>KR 600x350<br>KRA 600x350                                                                                              |                                                                                                     |                                                                                                                         |                                                                          |                                                                                             |
| Silencers                                                                                                  | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KOM1 400x200                                                                                           | SR 500x250<br>KR 500x250<br>KRA 500x250<br>KOM1 500x250                                                              | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300                                                                      | SR 600x300<br>KR 600x300<br>KRA 600x300<br>KOM1 600x300                                                              | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350                                                                              | SR 700x400                                                                                          | SR 800x500                                                                                                              | SR 900x500                                                               | SR 1000x500<br>RRV 1000x500                                                                 |
| Silencers                                                                                                  | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KOM1 400x200<br>RRV 400x200                                                                            | SR 500x250<br>KR 500x250<br>KRA 500x250<br>KOM1 500x250<br>RRV 500x250                                               | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300                                                       | SR 600x300<br>KR 600x300<br>KRA 600x300<br>KOM1 600x300<br>RRV 600x300                                               | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRV 600x350                                                               | SR 700x400<br>RRV 700x400                                                                           | SR 800x500<br>RRV 800x500                                                                                               | SR 900x500<br>RRV 900x500                                                | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500                                                |
| Silencers                                                                                                  | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KOM1 400x200<br>RRV 400x200<br>RRVA 400x200                                                            | SR 500x250<br>KR 500x250<br>KRA 500x250<br>KOM1 500x250<br>RRV 500x250<br>RRVA 500x250                               | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300                                       | SR 600x300<br>KR 600x300<br>KRA 600x300<br>KOM1 600x300<br>RRV 600x300<br>RRVA 600x300                               | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM 1 600x350<br>RRV 600x350<br>RRVA 600x350                                              | SR 700x400<br>RRV 700x400<br>RRVA 700x400                                                           | SR 800x500<br>RRV 800x500<br>RRVA 800x500                                                                               | SR 900x500<br>RRV 900x500<br>RRVA 900x500                                | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500                                                |
| Silencers<br>Dampers and<br>shutters                                                                       | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KRV 400x200<br>RRV 400x200<br>RRVA 400x200<br>RRVA 400x200                                             | SR 500x250<br>KR 500x250<br>KRA 500x250<br>KOM1 500x250<br>RRV 500x250<br>RRVA 500x250                               | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300                                       | SR 600×300<br>KR 600×300<br>KRA 600×300<br>KOM1 600×300<br>RRV 600×300<br>RRVA 600×300<br>RRVAF 600×300              | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350                              | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>RRVAF 700x400                                          | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500                                                              | SR 900x500<br>RRV 900x500<br>RRVA 900x500<br>RRVA 900x500                | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500                              |
| Silencers<br>Dampers and<br>shutters                                                                       | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KRV 400x200<br>RRV 400x200<br>RRVA 400x200<br>RRVA 400x200                                             | SR 500x250<br>KR 500x250<br>KRA 500x250<br>KOM1 500x250<br>RRV 500x250<br>RRVA 500x250                               | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300                                       | SR 600×300<br>KR 600×300<br>KRA 600×300<br>KOM1 600×300<br>RRV 600×300<br>RRVA 600×300<br>RRVAF 600×300              | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350                              | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>RRVAF 700x400                                          | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500                                                              | SR 900x500<br>RRV 900x500<br>RRVA 900x500<br>RRVA 900x500                | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500                              |
| Silencers<br>Dampers and<br>shutters                                                                       | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRV 400x200<br>RRVA 400x200<br>KG 400x200<br>VVG 400x200                                | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250                | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300<br>KG 500x300<br>VVG 500x300          | SR 600x300<br>KR 600x300<br>KOM1 600x300<br>RRV 600x300<br>RRVA 600x300<br>RRVAF 600x300<br>KG 600x300               | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>KG 600x350<br>VVG 600x350                | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>RRVAF 700x400<br>KG 700x400                            | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>KG 800x500<br>VVG 800x500                                 | SR 900x500<br>RRV4 900x500<br>RRVA 900x500<br>KG 900x500<br>WG 900x500   | RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500<br>VVG 1000x500              |
| coils<br>Silencers<br>Dampers and<br>shutters<br>Flexible<br>connectors<br>Plate heat<br>exchangers        | SR 400x200<br>KR 400x200<br>KRA 400x200<br>KOM1 400x200<br>RRV 400x200<br>RRVA 400x200<br>KG 400x200                                              | SR 500x250<br>KR 500x250<br>KOM1 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250               | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300<br>KG 500x300                         | SR 600x300<br>KR 600x300<br>KRA 600x300<br>KOM1 600x300<br>RRV 600x300<br>RRVA 600x300<br>KG 600x300                 | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRV 600x350<br>RRVA 600x350<br>KG 600x350                                 | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>RRVAF 700x400<br>KG 700x400                            | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVA 800x500<br>KG 800x500                                                 | SR 900×500<br>RRV 900×500<br>RRVA 900×500<br>RRVAF 900×500<br>KG 900×500 | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500               |
| Silencers Dampers and shutters Flexible connectors Plate heat exchangers                                   | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRVA 400x200<br>KG 400x200<br>VVG 400x200<br>PR 400x200                                 | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250<br>VVG 500x250 | SR 500x300<br>KR 500x300<br>KRA 500x300<br>RRV 500x300<br>RRVA 500x300<br>RRVA 500x300<br>KG 500x300<br>VVG 500x300          | SR 600x300<br>KR 600x300<br>KRA 600x300<br>RRV 600x300<br>RRVA 600x300<br>RRVAF 600x300<br>KG 600x300<br>VVG 600x300 | SR 600x350<br>KR 600x350<br>KRA 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>KG 600x350<br>VVG 600x350                 | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>KG 700x400<br>VVG 700x400<br>PR 700x400                | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>KG 800x500<br>VVG 800x500<br>PR 800x500                   | SR 900x500<br>RRV4 900x500<br>RRVA 900x500<br>KG 900x500<br>WG 900x500   | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500               |
| Silencers Dampers and shutters Flexible connectors Plate heat exchangers                                   | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRV 400x200<br>RRVA 400x200<br>KG 400x200<br>VVG 400x200                                | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250                | SR 500x300<br>KR 500x300<br>KRA 500x300<br>KOM1 500x300<br>RRV 500x300<br>RRVA 500x300<br>KG 500x300<br>VVG 500x300          | SR 600x300<br>KR 600x300<br>KOM1 600x300<br>RRV 600x300<br>RRVA 600x300<br>RRVAF 600x300<br>KG 600x300               | SR 600x350<br>KR 600x350<br>KRA 600x350<br>KOM1 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>KG 600x350<br>VVG 600x350                | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>RRVAF 700x400<br>KG 700x400                            | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>KG 800x500<br>VVG 800x500                                 | SR 900x500<br>RRV4 900x500<br>RRVA 900x500<br>KG 900x500<br>WG 900x500   | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500               |
| Silencers Dampers and shutters Flexible connectors Plate heat exchangers Mixing chambers Speed             | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRVA 400x200<br>KG 400x200<br>VVG 400x200<br>PR 400x200                                 | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250<br>VVG 500x250 | SR 500x300<br>KR 500x300<br>KRA 500x300<br>RRV 500x300<br>RRVA 500x300<br>RRVA 500x300<br>KG 500x300<br>VVG 500x300          | SR 600x300<br>KR 600x300<br>KRA 600x300<br>RRV 600x300<br>RRVA 600x300<br>RRVAF 600x300<br>KG 600x300<br>VVG 600x300 | SR 600x350<br>KR 600x350<br>KRA 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>KG 600x350<br>VVG 600x350                 | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>KG 700x400<br>VVG 700x400<br>PR 700x400                | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>KG 800x500<br>VVG 800x500<br>PR 800x500                   | SR 900x500<br>RRV4 900x500<br>RRVA 900x500<br>KG 900x500<br>WG 900x500   | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500               |
| Silencers Dampers and shutters Flexible connectors Plate heat exchangers Mixing chambers Speed controllers | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRVA 400x200<br>RRVA 400x200<br>KG 400x200<br>VVG 400x200<br>PR 400x200<br>SKRA 400x200 | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>KG 500x250<br>VVG 500x250<br>PR 500x250    | SR 500x300 KR 500x300 KRA 500x300 RRV 500x300 RRVA 500x300 RRVA 500x300 RRVA 500x300 RRVAF 500x300 RRVAF 500x300 SKR 500x300 | SR 600x300<br>KR 600x300<br>KOM 1 600x300<br>RRV 600x300<br>RRVA 600x300<br>KG 600x300<br>VVG 600x300<br>PR 600x300  | SR 600x350<br>KR 600x350<br>KRA 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>VVG 600x350<br>PR 600x350<br>SKRA 600x350 | SR 700x400<br>RRV4700x400<br>RRV4700x400<br>KG 700x400<br>VVG 700x400<br>PR 700x400<br>SKRA 700x400 | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>VVG 800x500<br>PR 800x500<br>SKRA 800x500<br>SKRA 800x500 | SR 900x500<br>RRVA 900x500<br>RRVA 900x500<br>KG 900x500<br>VVG 900x500  | SR 1000x500<br>RRVA 1000x500<br>RRVA 1000x500<br>KG 1000x500<br>VVG 1000x500<br>PR 1000x500 |
| Silencers<br>Dampers and<br>shutters                                                                       | SR 400x200<br>KR 400x200<br>KRA 400x200<br>RRV 400x200<br>RRVA 400x200<br>RRVA 400x200<br>VVG 400x200<br>PR 400x200                               | SR 500x250<br>KR 500x250<br>KRA 500x250<br>RRV 500x250<br>RRVA 500x250<br>RRVAF 500x250<br>KG 500x250<br>VVG 500x250 | SR 500x300<br>KR 500x300<br>KRA 500x300<br>RRV 500x300<br>RRVA 500x300<br>RRVA 500x300<br>KG 500x300<br>VVG 500x300          | SR 600x300<br>KR 600x300<br>KRA 600x300<br>RRV 600x300<br>RRVA 600x300<br>RRVAF 600x300<br>KG 600x300<br>VVG 600x300 | SR 600x350<br>KR 600x350<br>KRA 600x350<br>RRV 600x350<br>RRVA 600x350<br>RRVAF 600x350<br>KG 600x350<br>VVG 600x350                 | SR 700x400<br>RRV 700x400<br>RRVA 700x400<br>KG 700x400<br>VVG 700x400<br>PR 700x400                | SR 800x500<br>RRV 800x500<br>RRVA 800x500<br>RRVAF 800x500<br>KG 800x500<br>VVG 800x500<br>PR 800x500                   | SR 900x500<br>RRV4 900x500<br>RRVA 900x500<br>KG 900x500<br>WG 900x500   | SR 1000x500<br>RRV 1000x500<br>RRVA 1000x500<br>RRVAF 1000x500<br>KG 1000x500               |

# **RECTANGUAR DUCT FANS**

#### VENTS VKPF and VKPFI Series



▶ In-line centrifugal fans with with forward-curved blades and the air capacity up to 9540 m<sup>3</sup>/h designed for supply and exhaust ventilation systems. VKPFI models are sound- and heat-insulated. Compatible with 400x200, 500x250, 500x300, 600x300, 600x350, 700x400, 800x500, 900x500, 1000x500 mm rectangular air ducts.



▶ In-line centrifugal duct fans equipped with EC-motors and forward-curved blades with the air capacity up to 10850 m<sup>3</sup>/h. Designed for supply and exhaust ventilation and conditioning systems for various premises requiring cost-effective solution and controllable ventilation system. Compatible with 600x300, 600x350, 700x400, 800x500, 1000x500 mm rectangular air ducts.

#### VENTS VKP and VKPI Series



▶ In-line centrifugal duct fans with forward-curved blades and the air capacity up to 15000 m<sup>3</sup>/h. Designed for supply and exhaust ventilation systems. VKPI models are sound- and heat-insulated. Compatible with 400x200, 500x250, 500x300, 600x300, 600x350, 1000x500 mm rectangular air ducts.

WWW.VENTILATION-SYSTEM.COM



|                    | VENTS VKPF<br>in-line centrifugal fan                                                      | page |
|--------------------|--------------------------------------------------------------------------------------------|------|
|                    | Air capacity – up to 9540 m³/h                                                             | 68   |
| 0                  | VENTS VKPFI                                                                                | page |
|                    | <b>in-line sound- and heat-insulated centrifugal fan</b><br>Air capacity – up to 9540 m³/h | 68   |
|                    | VENTS VKP EC<br>in-line centrifugal fan with EC-motor                                      | page |
| Euseren<br>R-motor | Air capacity – up to 10850 m³/h                                                            | 76   |
| 10                 | VENTS VKPI EC<br>in-line centrifugal fan with EC-motor                                     | page |
| Example 1          | Air capacity — up to 10850 m³/h                                                            | 80   |
|                    | VENTS VKP<br>in-line centrifugal fan                                                       | page |
|                    | Air capacity – up to 15000 m³/h                                                            | 84   |
|                    | VENTS VKPI<br>in-line sound- and heat-insulated centrifugal fan                            | page |
| R.                 | Air capacity – up to 2970 m³/h                                                             | 84   |

## **RECTANGUAR DUCT FANS**

# Series VENTS VKPF

In-line centrifugal fans with the air capacity up to **9540 m<sup>3</sup>/h** for

rectangular ducts



Series

VENTS VKPFI

In-line sound- and heat-insulated centrifugal fans with the air capacity up to **9540 m<sup>3</sup>/h** for rectangular ducts

#### Applications

Supply and exhaust ventilation systems for various premises with a limited mounting space. Designed for connection with 400x200, 500x250, 500x300, 600x300, 600x350, 700x400, 800x500, 900x500, 1000x500 mm rectangular air ducts.

#### Design

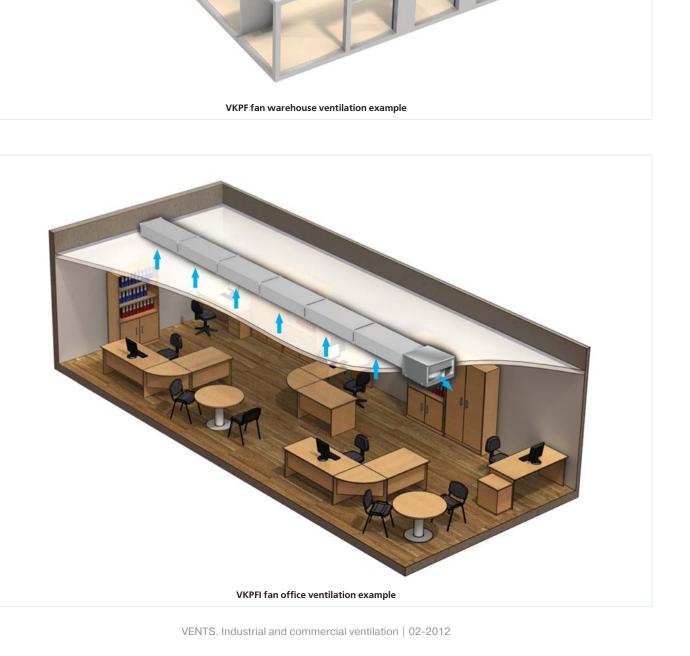
The fan casing is made of galvanized steel. VKPFI models are heat- and sound-insulated with 50 mm layer of mineral wool.

#### Motor

The impeller made of galvanized steel with forward curved blades is powered by means of 4- or

6-pole external rotor asynchronous motor. Such modification ensures high airflow capacity and relatively significant differential pressure. For thermal overheating protection the thermal contacts with leaded outside terminals are incorporated in the motor winding for connection with the external protection devices. The motor is equipped with the ball bearings for long service life. For precise features, safe operation and low noise, each impeller is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control


Both smooth or step speed control is performed with thyristor or autotransformer controller. Several fans can be connected to one controller in case their total power and operating current do not exceed the controller rated values.

#### Mounting

The fans are designed for in-line rectangular air duct mounting and require no special fixing in case of direct connection. In case of connection through the flexible connectors the fan is fixed to a building by means of supports, suspension brackets or fixation brackets. The fans can be mounted in any position with respect to the pointer direction on the casing. Access for the fan maintenance shall be provided. The fan is powered through the external terminals. The casing is provided with the removable access door for maintenance.

#### Designation key: \_

|            | Fan series                                |                    | Motor mo | odification                    |         |   | Flange diame                                                                     | eter [WxH] |  |  |
|------------|-------------------------------------------|--------------------|----------|--------------------------------|---------|---|----------------------------------------------------------------------------------|------------|--|--|
| VENTS VKPF | I – modification wi<br>sound-insulated ca | Number o<br>4<br>6 |          | Pha<br>E – single<br>D – three | e phase | 6 | 400x200, 500x250, 500x30<br>600x300, 600x350, 700x40<br>800x500, 900x500, 1000x5 |            |  |  |
|            |                                           |                    |          |                                |         |   |                                                                                  |            |  |  |
|            |                                           |                    | Acces    | sories                         |         |   |                                                                                  |            |  |  |
|            |                                           |                    | Acces    | sories                         |         | Q |                                                                                  | **         |  |  |



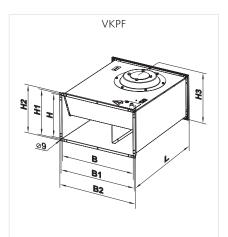
WWW.VENTILATION-SYSTEM.COM

# RECTANGUAR DUCT FANS

#### Technical data:

|                                      | VKPF /<br>VKPFI<br>4E 400x200 | VKPF /<br>VKPFI<br>4D 400x200 | VKPF /<br>VKPFI<br>4E 500x250 | VKPF /<br>VKPFI<br>4D 500x250 |
|--------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Voltage [V / 50 Hz]                  | 230                           | 400                           | 230                           | 400                           |
| Power [W]                            | 295                           | 282                           | 535                           | 570                           |
| Current [A]                          | 1,32                          | 0,60                          | 2,49                          | 0,94                          |
| Maximum air flow [m <sup>3</sup> /h] | 1440                          | 1470                          | 1750                          | 1850                          |
| RPM [min <sup>-1</sup> ]             | 1350                          | 1300                          | 1250                          | 1270                          |
| Noise level at 3 m [dBA]             | 50 / 42*                      | 52 / 43*                      | 53 / 44*                      | 54 / 44*                      |
| Maximum operating temperature [°C]   | -25 +40                       | -25 +45                       | -20 +40                       | -20 +40                       |
| Protection rating                    | IP X4                         | IP X4                         | IP X4                         | IP X4                         |

\* parameter for VKPFI model


#### Technical data:

|                                      | VKPF /<br>VKPFI<br>4E 500x300 | VKPF /<br>VKPFI<br>4D 500x300 | VKPF /<br>VKPFI<br>4E 600x300 | VKPF /<br>VKPFI<br>4D 600x300 |
|--------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Voltage [V / 50 Hz]                  | 230                           | 400                           | 230                           | 400                           |
| Power [W]                            | 710                           | 855                           | 1240                          | 1560                          |
| Current [A]                          | 3,10                          | 1,70                          | 6,45                          | 2,73                          |
| Maximum air flow [m <sup>3</sup> /h] | 2350                          | 2350                          | 2950                          | 3740                          |
| RPM [min <sup>-1</sup> ]             | 1230                          | 1300                          | 1210                          | 1310                          |
| Noise level at 3 m [dBA]             | 57 / 47*                      | 56 / 47*                      | 59 / 51*                      | 57 / 50*                      |
| Maximum operating temperature [°C]   | -25 +70                       | -20 +50                       | -25 +50                       | -25 +65                       |
| Protection rating                    | IP X4                         | IP X4                         | IP X4                         | IP X4                         |

\* parameter for VKPFI model

#### Fan overall dimensions:

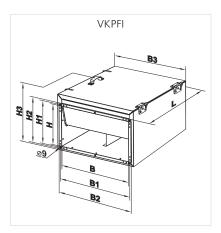
| Turne            | Dimensions [mm] |      |      |     |     |     |     |     | Mass |
|------------------|-----------------|------|------|-----|-----|-----|-----|-----|------|
| Туре             | В               | B1   | B2   | Н   | H1  | H2  | H3  | L   | [kg] |
| VKPF 4E 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 255 | 500 | 17,5 |
| VKPF 4D 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 255 | 500 | 17,5 |
| VKPF 4E 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 335 | 640 | 24,0 |
| VKPF 4D 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 335 | 640 | 24,0 |
| VKPF 4E 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 365 | 680 | 33,0 |
| VKPF 4D 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 365 | 680 | 33,0 |
| VKPF 4E 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 375 | 680 | 35,0 |
| VKPF 4D 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 375 | 680 | 35,0 |
| VKPF 4E 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 425 | 735 | 49,5 |
| VKPF 4D 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 425 | 735 | 49,5 |
| VKPF 4D 700x400  | 700             | 720  | 740  | 400 | 420 | 440 | 480 | 780 | 60,0 |
| VKPF 6D 800x500  | 800             | 820  | 840  | 500 | 520 | 540 | 580 | 820 | 70,0 |
| VKPF 4D 800x500  | 800             | 820  | 840  | 500 | 520 | 540 | 580 | 820 | 74,0 |
| VKPF 6D 900x500  | 900             | 920  | 940  | 500 | 520 | 540 | 580 | 954 | 90,0 |
| VKPF 6D 1000x500 | 1000            | 1020 | 1040 | 500 | 520 | 540 | 580 | 954 | 95,0 |

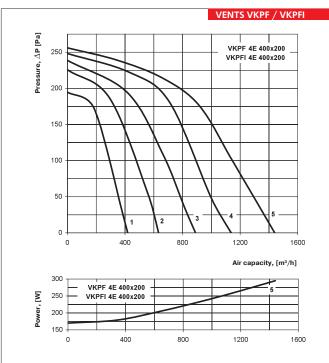


#### Technical data:

|                                    | VKPF /<br>VKPFI<br>4E 600x350 | VKPF /<br>VKPFI<br>4D 600x350 | VKPF /<br>VKPFI<br>4D 700x400 | VKPF /<br>VKPFI<br>6D 800x500 |
|------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Voltage [V / 50 Hz]                | 230                           | 400                           | 400                           | 400                           |
| Power [W]                          | 2840                          | 2460                          | 3630                          | 2790                          |
| Current [A]                        | 13,90                         | 3,93                          | 6,00                          | 5,18                          |
| Maximum air flow [m³/h]            | 4260                          | 5020                          | 6450                          | 7610                          |
| RPM [min <sup>-1</sup> ]           | 1260                          | 1300                          | 1320                          | 830                           |
| Noise level at 3 m [dBA]           | 59 / 51*                      | 60 / 52*                      | 65 / 56*                      | 59 / 53*                      |
| Maximum operating temperature [°C] | -20 +40                       | -20 +40                       | -25 +40                       | -20 +50                       |
| Protection rating                  | IP X4                         | IP X4                         | IP X4                         | IP X4                         |

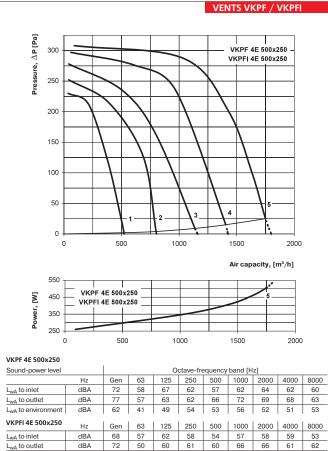
\* parameter for VKPFI model


#### Technical data:


|                                    | VKPF /<br>VKPFI<br>4D 800x500 | VKPF /<br>VKPFI<br>6D 900x500 | VKPF /<br>VKPFI<br>6D 1000x500 |
|------------------------------------|-------------------------------|-------------------------------|--------------------------------|
| Voltage [V / 50 Hz]                | 400                           | 400                           | 400                            |
| Power [W]                          | 5850                          | 3870                          | 3870                           |
| Current [A]                        | 9,35                          | 7,0                           | 7,0                            |
| Maximum air flow [m³/h]            | 8120                          | 9540                          | 9540                           |
| RPM [min <sup>-1</sup> ]           | 1140                          | 930                           | 930                            |
| Noise level at 3 m [dBA]           | 67 / 61*                      | 61 / 55*                      | 61 / 55*                       |
| Maximum operating temperature [°C] | -25 +40                       | -20 +55                       | -20 +55                        |
| Protection rating                  | IP X4                         | IP X4                         | IP X4                          |

\* parameter for VKPFI model

#### Fan overall dimensions:


| Туре              | Dimensions [mm] |      |      |      |     |     |     | Mass |      |       |
|-------------------|-----------------|------|------|------|-----|-----|-----|------|------|-------|
| туре              | В               | B1   | B2   | B3   | Н   | H1  | H2  | H3   | L    | [kg]  |
| VKPFI 4E 400x200  | 400             | 420  | 440  | 470  | 200 | 220 | 240 | 360  | 500  | 29,0  |
| VKPFI 4D 400x200  | 400             | 420  | 440  | 470  | 200 | 220 | 240 | 360  | 500  | 29,0  |
| VKPFI 4E 500x250  | 500             | 520  | 540  | 570  | 250 | 270 | 290 | 410  | 640  | 40,5  |
| VKPFI 4D 500x250  | 500             | 520  | 540  | 570  | 250 | 270 | 290 | 410  | 640  | 40,5  |
| VKPFI 4E 500x300  | 500             | 520  | 540  | 570  | 300 | 320 | 340 | 460  | 680  | 52,5  |
| VKPFI 4D 500x300  | 500             | 520  | 540  | 570  | 300 | 320 | 340 | 460  | 680  | 52,5  |
| VKPFI 4E 600x300  | 600             | 620  | 640  | 670  | 300 | 320 | 340 | 480  | 680  | 56,0  |
| VKPFI 4D 600x300  | 600             | 620  | 640  | 670  | 300 | 320 | 340 | 480  | 680  | 56,0  |
| VKPFI 4E 600x350  | 600             | 620  | 640  | 670  | 350 | 370 | 390 | 530  | 735  | 72,0  |
| VKPFI 4D 600x350  | 600             | 620  | 640  | 670  | 350 | 370 | 390 | 530  | 735  | 72,0  |
| VKPFI 4D 700x400  | 700             | 720  | 740  | 800  | 400 | 420 | 440 | 620  | 880  | 103,0 |
| VKPFI 6D 800x500  | 800             | 820  | 840  | 900  | 500 | 520 | 540 | 720  | 935  | 120,0 |
| VKPFI 4D 800x500  | 800             | 820  | 840  | 900  | 500 | 520 | 540 | 720  | 935  | 127,0 |
| VKPFI 6D 900x500  | 900             | 920  | 940  | 1000 | 500 | 520 | 540 | 720  | 1000 | 142,0 |
| VKPFI 6D 1000x500 | 1000            | 1020 | 1040 | 1100 | 500 | 520 | 540 | 720  | 1000 | 150,0 |





# VKPF 4E 400x200

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 69  | 58 | 68  | 63        | 59      | 56      | 53   | 53   | 45   |
| L <sub>wA</sub> to outlet      | dBA | 70  | 53 | 63  | 67        | 62      | 65      | 63   | 58   | 55   |
| L <sub>wA</sub> to environment | dBA | 59  | 34 | 46  | 57        | 52      | 49      | 43   | 40   | 36   |
| VKPFI 4E 400x200               | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 66  | 50 | 60  | 58        | 54      | 50      | 49   | 46   | 39   |
| L <sub>wA</sub> to outlet      | dBA | 67  | 48 | 60  | 62        | 58      | 60      | 57   | 54   | 49   |
| $L_{\text{wA}}$ to environment | dBA | 43  | 24 | 35  | 45        | 41      | 36      | 34   | 29   | 22   |



51 29 36 39 43 44 38 37 43

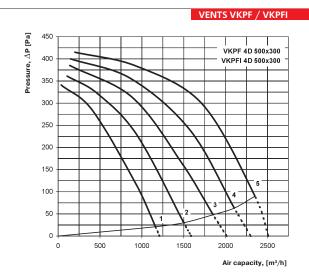
# **VENTS VKPF / VKPFI** Pressure, ∆P [Pa] VKPF 4D 400x200 VKPFI 4D 400x200 250 200 150 100 50 2 1 0 -0 400 800 1200 1600 Air capacity, [m3/h]

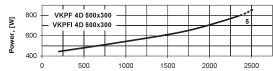
| [w]   | 300 -<br>250 - |   | PF 4D 400<br>FI 4D 400 |    |   |    |    | _   | 5 |      |
|-------|----------------|---|------------------------|----|---|----|----|-----|---|------|
| ower, | 200 -<br>150 - |   |                        |    |   |    |    |     |   |      |
| ۵.    | 100 -          | ) | 40                     | 00 | 8 | 00 | 12 | :00 | 1 | 1600 |

#### VKPF 4D 400x200

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |  |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|--|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dBA | 72                         | 56 | 69  | 65  | 57  | 58   | 57   | 53   | 48   |  |
| L <sub>wA</sub> to outlet      | dBA | 74                         | 54 | 65  | 66  | 61  | 63   | 60   | 61   | 55   |  |
| L <sub>wA</sub> to environment | dBA | 61                         | 34 | 44  | 56  | 52  | 50   | 44   | 40   | 33   |  |
| VKPFI 4D 400x200               | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dBA | 65                         | 53 | 62  | 60  | 54  | 52   | 50   | 46   | 41   |  |
| L <sub>wA</sub> to outlet      | dBA | 66                         | 48 | 59  | 62  | 58  | 58   | 58   | 53   | 47   |  |
| L <sub>wA</sub> to environment | dBA | 47                         | 24 | 36  | 45  | 38  | 36   | 30   | 29   | 22   |  |

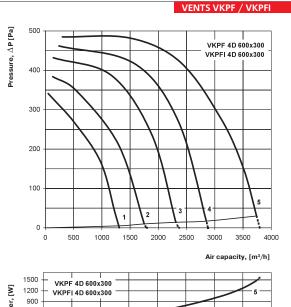


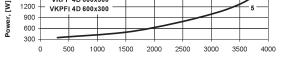

| Power, [W] | 550 -<br>450 -<br>350 - |   | 4D 500x<br>4D 500x |    |    |    |    |    | _5 | -         |
|------------|-------------------------|---|--------------------|----|----|----|----|----|----|-----------|
|            | 250 -<br>(              | ) | 50                 | 00 | 10 | 00 | 15 | 00 | 20 | -1<br>000 |


# VKPF 4D 500x250

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |  |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|--|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dBA | 74                         | 60 | 67  | 64  | 61  | 64   | 62   | 60   | 58   |  |
| L <sub>wA</sub> to outlet      | dBA | 76                         | 57 | 65  | 65  | 67  | 69   | 69   | 68   | 63   |  |
| L <sub>wA</sub> to environment | dBA | 61                         | 41 | 48  | 53  | 53  | 56   | 52   | 50   | 53   |  |
| VKPFI 4D 500x250               | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dBA | 67                         | 55 | 61  | 57  | 52  | 61   | 58   | 57   | 54   |  |
| L <sub>wA</sub> to outlet      | dBA | 71                         | 49 | 58  | 60  | 62  | 67   | 66   | 61   | 60   |  |
| L <sub>wA</sub> to environment | dBA | 50                         | 27 | 38  | 41  | 44  | 45   | 42   | 40   | 43   |  |

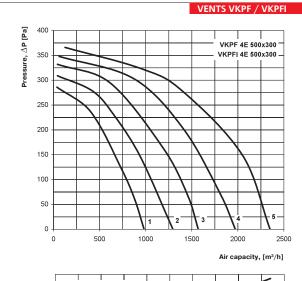
L<sub>wA</sub> to outlet L<sub>wA</sub> to environment


dBA dBA





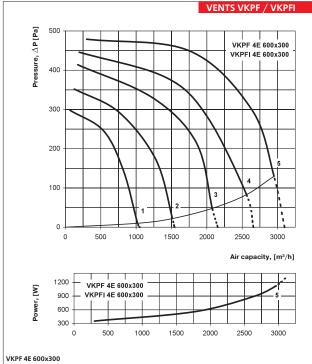

# VKPF 4D 500x300


| Sound-power level Octave-frequency band [Hz] |                                       |                                                                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hz                                           | Gen                                   | 63                                                                                                                                          | 125                                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dBA                                          | 77                                    | 67                                                                                                                                          | 69                                                                                                                                                                                                            | 62                                                                                                                                                                                                                                                                                                                               | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dBA                                          | 79                                    | 61                                                                                                                                          | 68                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                               | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dBA                                          | 65                                    | 46                                                                                                                                          | 55                                                                                                                                                                                                            | 58                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                              |                                       |                                                                                                                                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hz                                           | Gen                                   | 63                                                                                                                                          | 125                                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dBA                                          | 71                                    | 62                                                                                                                                          | 64                                                                                                                                                                                                            | 59                                                                                                                                                                                                                                                                                                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dBA                                          | 72                                    | 58                                                                                                                                          | 62                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                               | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dBA                                          | 52                                    | 33                                                                                                                                          | 42                                                                                                                                                                                                            | 48                                                                                                                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                              | dBA<br>dBA<br>dBA<br>Hz<br>dBA<br>dBA | dBA         77           dBA         79           dBA         65           Hz         Gen           dBA         71           dBA         72 | dBA         77         67           dBA         79         61           dBA         65         46           Hz         Gen         63           dBA         71         62           dBA         72         58 | Hz         Gen         63         125           dBA         77         67         69           dBA         79         61         68           dBA         65         46         55           Hz         Gen         63         125           dBA         71         62         64           dBA         72         58         62 | Hz         Gen         63         125         250           dBA         77         67         69         62           dBA         79         61         68         69           dBA         65         46         55         58           Hz         Gen         63         125         250           dBA         71         62         64         59           dBA         71         62         64         59           dBA         72         58         62         63 | Hz         Gen         63         125         250         500           dBA         77         67         69         62         63           dBA         79         61         68         69         71           dBA         65         46         55         58         56           Hz         Gen         63         125         250         500           dBA         71         62         64         59         60           dBA         71         62         64         59         60           dBA         72         58         62         63         65 | Hz         Gen         63         125         250         500         1000           dBA         77         67         69         62         63         68           dBA         79         61         68         69         71         75           dBA         65         46         55         58         56         60           Hz         Gen         63         125         250         500         1000           dBA         71         62         64         59         60         62           dBA         71         62         64         59         60         62           dBA         72         58         62         63         65         71 | Hz         Gen         63         125         250         500         1000         2000           dBA         77         67         69         62         63         68         68           dBA         79         61         68         69         71         75         74           dBA         65         46         55         58         56         60         54           Hz         Gen         63         125         250         500         1000         2000           dBA         71         62         64         59         60         62         63           dBA         71         62         64         59         60         62         63           dBA         71         62         64         59         60         62         63           dBA         72         58         62         63         65         71         66 | Hz         Gen         63         125         250         500         1000         2000         4000           dBA         77         67         69         62         63         68         68         68           dBA         79         61         68         69         71         75         74         73           dBA         65         46         55         58         56         60         54         48           Hz         Gen         63         125         250         500         1000         2000         4000           dBA         71         62         64         59         60         54         48           Hz         Gen         63         125         250         500         1000         2000         4000           dBA         71         62         64         59         60         62         63         3           dBA         72         58         62         63         65         71         66         67 |

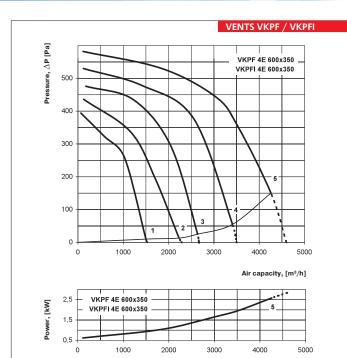




## VKPF 4D 600x300

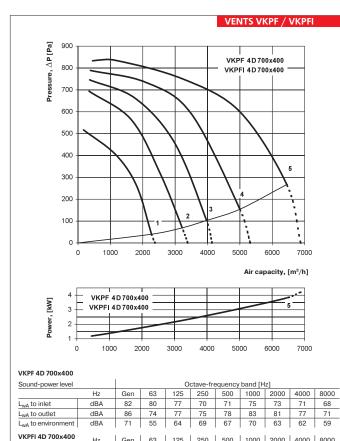

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 82  | 66 | 77  | 67        | 67      | 70      | 72   | 68   | 69   |
| L <sub>wA</sub> to outlet      | dBA | 82  | 62 | 77  | 71        | 76      | 79      | 75   | 76   | 67   |
| L <sub>wA</sub> to environment | dBA | 71  | 43 | 63  | 62        | 64      | 62      | 55   | 49   | 51   |
| VKPFI 4D 600x300               | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75  | 65 | 72  | 62        | 62      | 67      | 66   | 62   | 64   |
| L <sub>wA</sub> to outlet      | dBA | 79  | 57 | 72  | 66        | 70      | 72      | 70   | 67   | 65   |
| L <sub>wA</sub> to environment | dBA | 56  | 30 | 52  | 52        | 49      | 51      | 42   | 37   | 35   |




650 VKPF 4E 500x300 450 250 0 500 1000 1500 2000 2500

#### VKPF 4E 500x300

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 74  | 64 | 69  | 65        | 63      | 66      | 67   | 65   | 60   |
| L <sub>wA</sub> to outlet      | dBA | 79  | 62 | 69  | 66        | 72      | 73      | 72   | 71   | 64   |
| L <sub>wA</sub> to environment | dBA | 64  | 46 | 53  | 59        | 54      | 58      | 56   | 49   | 50   |
| VKPFI 4E 500x300               | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 69  | 59 | 65  | 59        | 58      | 64      | 63   | 60   | 56   |
| L <sub>wA</sub> to outlet      | dBA | 74  | 57 | 62  | 63        | 65      | 69      | 68   | 65   | 61   |
| $L_{\text{wA}}$ to environment | dBA | 53  | 34 | 43  | 48        | 43      | 46      | 42   | 37   | 38   |




| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 83  | 66 | 77  | 69        | 66      | 71      | 70   | 71   | 67   |
| L <sub>wA</sub> to outlet      | dBA | 85  | 62 | 77  | 71        | 74      | 79      | 76   | 73   | 67   |
| L <sub>wA</sub> to environment | dBA | 69  | 42 | 65  | 66        | 61      | 61      | 56   | 53   | 47   |
| VKPFI 4E 600x300               | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 78  | 61 | 72  | 63        | 62      | 68      | 68   | 65   | 66   |
| L <sub>wA</sub> to outlet      | dBA | 80  | 55 | 74  | 65        | 72      | 74      | 70   | 68   | 66   |
| L <sub>wA</sub> to environment | dBA | 58  | 30 | 53  | 54        | 49      | 48      | 43   | 39   | 37   |



#### VKPF 4E 600x350

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |  |  |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|--|--|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet       | dBA | 78                         | 71 | 74  | 65  | 66  | 75   | 72   | 70   | 64   |  |  |
| L <sub>wA</sub> to outlet      | dBA | 86                         | 69 | 73  | 74  | 74  | 78   | 76   | 77   | 68   |  |  |
| L <sub>wA</sub> to environment | dBA | 67                         | 54 | 60  | 63  | 58  | 62   | 55   | 51   | 48   |  |  |
| VKPFI 4E 600x350               | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet       | dBA | 75                         | 69 | 69  | 62  | 63  | 70   | 65   | 64   | 62   |  |  |
| L <sub>wA</sub> to outlet      | dBA | 78                         | 62 | 68  | 67  | 71  | 76   | 73   | 69   | 66   |  |  |
| L <sub>wA</sub> to environment | dBA | 54                         | 40 | 51  | 51  | 48  | 48   | 43   | 40   | 35   |  |  |



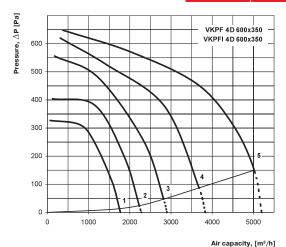
63 75 Gen

70

70

77

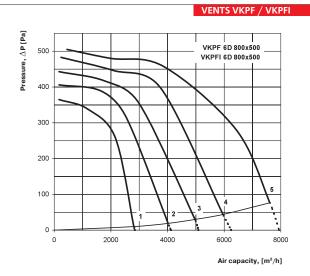
79 68


Hz

dBA

dBA

dBA


#### **VENTS VKPF / VKPFI**



2,5 VKPF 4D 600x350 Power, [kW] VKPFI 4D 600x350 1.5 0,5 0 1000 2000 3000 4000 5000

#### VKPF 4D 600x350

| Sound-power level              |     |     |    |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 80  | 72 | 75  | 69  | 67  | 73   | 71   | 69   | 67   |
| L <sub>wA</sub> to outlet      | dBA | 84  | 66 | 74  | 70  | 76  | 79   | 76   | 74   | 68   |
| L <sub>wA</sub> to environment | dBA | 68  | 52 | 62  | 65  | 61  | 58   | 56   | 52   | 48   |
| VKPFI 4D 600x350               | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 73  | 66 | 72  | 64  | 63  | 69   | 67   | 63   | 59   |
| L <sub>wA</sub> to outlet      | dBA | 80  | 64 | 67  | 67  | 69  | 76   | 71   | 69   | 65   |
| L <sub>wA</sub> to environment | dBA | 56  | 40 | 48  | 49  | 49  | 48   | 43   | 41   | 38   |

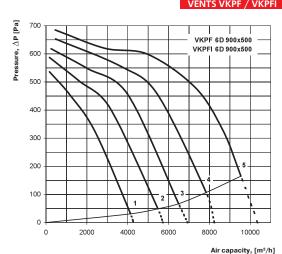


2,5 VKPF 6D 800x500 Power, [kW] VKPFI 6D 800x500 1,5 0,5 0 2000 4000 6000 8000

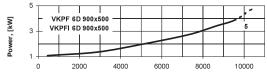
## VKPF 6D 800x500

| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 77                         | 64 | 66  | 66  | 70  | 71   | 70   | 66   | 62   |
| L <sub>wA</sub> to outlet      | dBA | 82                         | 64 | 66  | 69  | 76  | 74   | 73   | 73   | 64   |
| L <sub>wA</sub> to environment | dBA | 64                         | 51 | 59  | 58  | 61  | 60   | 55   | 50   | 49   |
| VKPFI 6D 800x500               | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 70                         | 61 | 60  | 60  | 64  | 67   | 66   | 63   | 58   |
| L <sub>wA</sub> to outlet      | dBA | 79                         | 58 | 63  | 64  | 72  | 73   | 70   | 69   | 62   |
| L <sub>wA</sub> to environment | dBA | 54                         | 37 | 45  | 45  | 50  | 48   | 41   | 37   | 39   |

125 250 500 1000 2000 4000 8000


 61
 41
 54
 57
 53
 56
 52
 53
 47

 64
 62
 73
 71
 66
 64

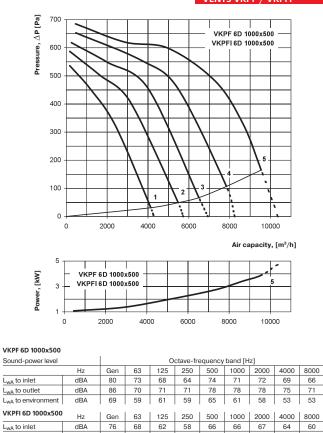

 70
 72
 76
 72
 74
 67

L<sub>wA</sub> to inlet

 $L_{wA}$  to outlet  $L_{wA}$  to environment



-




# VKPF 6D 900x500

|     |                                       |                                                                                                                                             | 0                                                                                                                                                                                                             | ctave-fre                                                                                                                                                                                                                                                                                                                                                                       | equency                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | band [H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hz  | Gen                                   | 63                                                                                                                                          | 125                                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dBA | 78                                    | 70                                                                                                                                          | 68                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dBA | 83                                    | 71                                                                                                                                          | 70                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dBA | 65                                    | 56                                                                                                                                          | 64                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                              | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hz  | Gen                                   | 63                                                                                                                                          | 125                                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dBA | 73                                    | 65                                                                                                                                          | 64                                                                                                                                                                                                            | 57                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dBA | 80                                    | 62                                                                                                                                          | 66                                                                                                                                                                                                            | 66                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dBA | 55                                    | 45                                                                                                                                          | 51                                                                                                                                                                                                            | 46                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | dBA<br>dBA<br>dBA<br>Hz<br>dBA<br>dBA | dBA         78           dBA         83           dBA         65           Hz         Gen           dBA         73           dBA         80 | dBA         78         70           dBA         83         71           dBA         65         56           Hz         Gen         63           dBA         73         65           dBA         80         62 | Hz         Gen         63         125           dBA         78         70         68           dBA         83         71         70           dBA         65         56         64           Hz         Gen         63         125           dBA         73         65         64           dBA         73         65         64           dBA         80         62         66 | Hz         Gen         63         125         250           dBA         78         70         68         63           dBA         83         71         70         70           dBA         65         56         64         60           Hz         Gen         63         125         250           dBA         80         65         56         64         57           dBA         73         65         64         57           dBA         80         62         66         66 | Hz         Gen         63         125         250         500           dBA         78         70         68         63         72           dBA         83         71         70         70         80           dBA         65         56         64         60         63           Hz         Gen         63         125         250         500           dBA         73         65         64         57         66           dBA         80         62         66         66         71 | Hz         Gen         63         125         250         500         1000           dBA         78         70         68         63         72         69           dBA         83         71         70         70         80         78           dBA         65         56         64         60         63         58           Hz         Gen         63         125         250         500         1000           dBA         73         65         64         57         66         68           dBA         80         62         66         66         71         74 | dBA         78         70         68         63         72         69         71           dBA         83         71         70         70         80         78         79           dBA         65         56         64         60         63         58         56           Hz         Gen         63         125         250         500         1000         2000           dBA         73         65         64         66         71         74         72 | Hz         Gen         63         125         250         500         1000         2000         4000           dBA         78         70         68         63         72         69         71         68           dBA         83         71         70         70         80         78         79         74           dBA         65         56         64         60         63         58         56         52           Hz         Gen         63         125         250         500         1000         2000         4000           dBA         73         65         64         57         66         68         68         62           dBA         80         62         66         66         71         74         72         69 |

8000 60 67

40



#### VENTS VKPF / VKPFI

Octave-frequency band [Hz]

8000

VENTS VKPF / VKPFI

VKPF 4D 800x500 VKPFI 4D 800x500

5

`.

8000

١

Air capacity, [m<sup>3</sup>/h]

10000

10000

4

|                                | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
|--------------------------------|-----|-----|----|-----|-----|-----|------|------|------|------|
| L <sub>wA</sub> to inlet       | dBA | 82  | 71 | 74  | 75  | 70  | 75   | 75   | 70   | 67   |
| L <sub>wA</sub> to outlet      | dBA | 90  | 72 | 77  | 76  | 82  | 86   | 85   | 80   | 78   |
| L <sub>wA</sub> to environment | dBA | 73  | 61 | 68  | 67  | 65  | 70   | 66   | 61   | 60   |
| VKPFI 4D 800x500               |     |     |    |     |     |     |      |      |      |      |
| VKPFI 4D 800X500               | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 79  | 68 | 68  | 70  | 65  | 71   | 71   | 66   | 62   |
| L <sub>wA</sub> to outlet      | dBA | 84  | 65 | 72  | 73  | 77  | 81   | 80   | 75   | 71   |
| L <sub>wA</sub> to environment | dBA | 64  | 49 | 56  | 55  | 53  | 59   | 50   | 48   | 48   |

2

N

4000

4000

١.

6000

6000

Pressure, ΔP [Pa]

1000

800

600

400

200

0 -

5

3 1

0

Power, [kW]

VKPF 4D 800x500

Sound-power level

0

2000

UKPF 4D 800x500 VKPFI 4D 800x500

2000

| <b>≏</b> 5                                                                                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                   |                                           |                                         |                                           |                                |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------|------------------|--|
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{N}$            | $ $ $\rangle$          |                                   | $\mathbf{N}$                              |                                         |                                           |                                |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                   |                                           |                                         |                                           |                                |                  |  |
| 4                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{\mathbf{N}}$ | $\mathbf{N}$           |                                   |                                           |                                         | $\mathbf{\Lambda}$                        |                                |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | $\left  \right\rangle$ | $\neg$                            |                                           |                                         |                                           |                                |                  |  |
| 3                                                                                                                                                                                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow$           |                        |                                   |                                           | $ \longrightarrow $                     |                                           |                                |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                   |                                           |                                         |                                           |                                |                  |  |
| -                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | X I                    | $\mathbf{N}$                      |                                           | N                                       |                                           | 1 5                            |                  |  |
| 2                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $\mathbf{N}$           |                                   |                                           |                                         |                                           | $\Box$                         |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                   |                                           |                                         | 17                                        |                                |                  |  |
| 1                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | $+ \cdot$              |                                   |                                           | 3                                       | ¥                                         |                                |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        | 1                                 | 7-1-                                      | <u> </u>                                | <u>.</u>                                  |                                | _                |  |
|                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                       |                        | -                                 | <u>i</u>                                  | 1                                       |                                           |                                | <u>`</u>         |  |
|                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000                    | 40                     | 00                                | 6000                                      | 8                                       | 000                                       | 1000                           | 00               |  |
| Air capacity, [m <sup>3</sup> /h]                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                   |                                           |                                         |                                           |                                |                  |  |
|                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                        |                                   |                                           |                                         |                                           | <b>,</b> ,                     | <b>L</b> , ,     |  |
|                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                        |                                   |                                           |                                         |                                           |                                | -                |  |
| Power, [KW]                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6D 1000                 |                        |                                   |                                           |                                         |                                           | <b>5</b>                       |                  |  |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6D 1000                 | x500 _                 |                                   |                                           |                                         | $\sim$                                    | Í                              |                  |  |
| owe                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                   |                                           | -                                       |                                           |                                |                  |  |
| ď.                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                        |                                   |                                           |                                         | -                                         | L                              |                  |  |
|                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000                    | 400                    | 00                                | 6000                                      | 8                                       | 000                                       | 1000                           | 00               |  |
|                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                        |                                   | 0000                                      | -                                       |                                           |                                |                  |  |
|                                                                                                                                                                                                        | , in the second se |                         |                        |                                   | 0000                                      |                                         |                                           |                                |                  |  |
| VKPF 6D 1000x5                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                        |                                   | 0000                                      | -                                       |                                           |                                |                  |  |
|                                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                       |                        |                                   |                                           |                                         |                                           | Iz]                            |                  |  |
|                                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gen                     | 63                     |                                   |                                           | equency<br>500                          |                                           | lz]<br>2000                    | 4000             |  |
| Sound-power lev                                                                                                                                                                                        | 5 <b>00</b><br>rel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gen<br>80               | 63<br>73               | 125<br>68                         | Octave-fr<br>250<br>64                    | equency                                 | band [H                                   |                                | 4000             |  |
| Sound-power lev<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet                                                                                                                               | el<br>Hz<br>dBA<br>dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80<br>86                | 73<br>70               | (<br>125<br>68<br>71              | Dctave-fr<br>250<br>64<br>71              | equency<br>500<br>74<br>78              | band [H<br>1000<br>71<br>78               | 2000<br>72<br>78               | 69<br>75         |  |
| Sound-power lev<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet                                                                                                                               | el<br>Hz<br>dBA<br>dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                      | 73                     | 125<br>68                         | Octave-fr<br>250<br>64                    | equency<br>500<br>74                    | band [H<br>1000<br>71                     | 2000<br>72                     | 69               |  |
| Sound-power lev<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet<br>L <sub>wA</sub> to environme                                                                                               | Hz<br>Hz<br>dBA<br>dBA<br>ent dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80<br>86                | 73<br>70               | (<br>125<br>68<br>71              | Dctave-fr<br>250<br>64<br>71              | equency<br>500<br>74<br>78              | band [H<br>1000<br>71<br>78               | 2000<br>72<br>78               | 69<br>75<br>53   |  |
| Sound-power lev<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet<br>L <sub>wA</sub> to environme<br>VKPFI 6D 1000x5                                                                            | Hz<br>dBA<br>dBA<br>ant dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80<br>86<br>69          | 73<br>70<br>59         | 125<br>68<br>71<br>61             | Dctave-fr<br>250<br>64<br>71<br>59        | equency<br>500<br>74<br>78<br>65        | band [H<br>1000<br>71<br>78<br>61         | 2000<br>72<br>78<br>58         | 69<br>75<br>53   |  |
| VKPF 6D 1000x5<br>Sound-power lev<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet<br>L <sub>wA</sub> to environme<br>VKPFI 6D 1000x5<br>L <sub>wA</sub> to inlet<br>L <sub>wA</sub> to outlet | 000<br>el<br>dBA<br>dBA<br>ent dBA<br>500 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80<br>86<br>69<br>Gen   | 73<br>70<br>59<br>63   | (<br>125<br>68<br>71<br>61<br>125 | Dctave-fr<br>250<br>64<br>71<br>59<br>250 | equency<br>500<br>74<br>78<br>65<br>500 | band [H<br>1000<br>71<br>78<br>61<br>1000 | 2000<br>72<br>78<br>58<br>2000 | 75<br>53<br>4000 |  |

# VENTS VKPF / VKPFI

# Series VENTS VKP EC



Centrifugal fans with the air capacity up to **10850 m<sup>3</sup>/h** for rectangular ducts

#### Applications

Supply and exhaust ventilation and air conditioning systems for various premises requiring cost-effective solution and controlled ventilation. EC motors in VKP fan reduce energy consumption by 1, 5-3 times and ensure high performance and low noise level. Such characteristics are of special importance for ventilation of banks, supermarkets, restaurants, hotels and other public facilities including swimming pool ventilation. The fans are compatible with 600x300, 600x350, 700x400, 800x500, 900x500, 1000x500 mm rectangular ducts.

#### Design

Fan casing is made of galvanized steel. All inner components are interconnected by means of rivets. The fan is equipped with 20 mm standard flanges.

#### Motor

The impellers with backward-curved blades are powered with high efficient electronically commutated (EC) direct current motors with external rotor. As of today, such motor type is the most advanced solution for energy saving. EC-motors are featured by high performance and the optimal control over the whole range of fan speeds. Premium efficiency reaching up to 90% is an absolute advantage of electronically commutated motors.

#### Build-in functions and control

The fan is controlled with the external control signal 0-10 V (air capacity as a function of temperature level, pressure and smoke conditions etc). Should the control value factor get changed the EC-motor changes its speed and the fan boosts as much air capacity to the ventilation system as required. Maximum speed of the fan does not depend on the current frequency and it can operate at 50 or 60 Hz mains supply. The fans can be integrated to the unified PC control system. The respective software allows controlling all the fan units with high accuracy and setting particular operation mode for each fan.

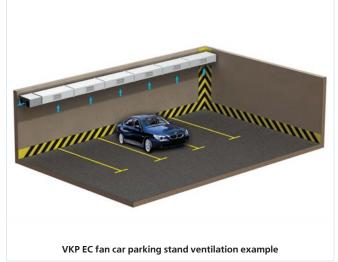
#### Mounting

The fans are mounted into the rectangular ducts and require no special fixing in case of direct connection. In case of connection through the flexible connectors the fan is fixed to a building by means of supports, suspension brackets or fixation brackets. The fans can be mounted in any position with respect to the airflow direction which is indicated with a pointer on the casing. Access for the fan maintenance shall be provided. The casing is provided with the removable access door for inspection and maintenance purposes.

#### **Technical data:**

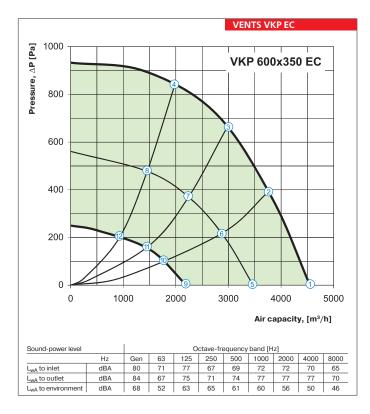
|                                    | VKP<br>600x300<br>EC | VKP<br>600x350<br>EC | VKP<br>700x400<br>EC | VKP<br>800x500<br>EC | VKP<br>900x500<br>EC | VKP<br>1000x500<br>EC |
|------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|
| Voltage [V / 50/60 Hz]             | 1~ 200-277           | 3~ 380-480           | 3~ 380-480           | 3~ 380-480           | 3~ 380-480           | 3~ 380-480            |
| Power [kW]                         | 0,48                 | 0,99                 | 1,70                 | 2,95                 | 2,98                 | 2,98                  |
| Current [A]                        | 3,10                 | 1,70                 | 2,60                 | 4,60                 | 4,60                 | 4,60                  |
| Maximum air flow [m³/h]            | 3350                 | 4550                 | 6300                 | 8900                 | 10850                | 10850                 |
| RPM [min <sup>-1</sup> ]           | 2300                 | 2580                 | 2600                 | 2500                 | 2040                 | 2040                  |
| Noise level at 3 m [dBA]           | 58                   | 60                   | 63                   | 65                   | 69                   | 69                    |
| Maximum operating temperature [°C] | -25 +60              | -25 +50              | -25 +40              | -25 +40              | -25 +40              | -25 +40               |
| Protection rating                  | IP X4                 |

**Designation key:** 

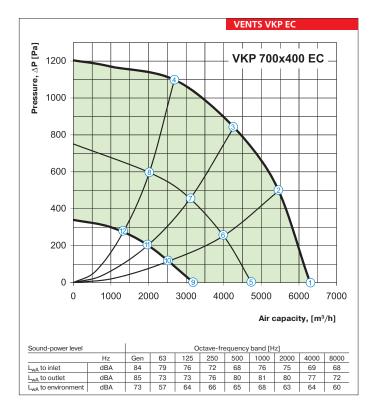



#### Fan overall dimensions:

| Туре            |      | Dimensions [mm] |      |     |     |     |     |     |      |  |
|-----------------|------|-----------------|------|-----|-----|-----|-----|-----|------|--|
| туре            | В    | B1              | B2   | Н   | H1  | H2  | H3  | L   | [kg] |  |
| VKP 600x300 EC  | 600  | 620             | 640  | 300 | 320 | 340 | 430 | 680 | 35,0 |  |
| VKP 600x350 EC  | 600  | 620             | 640  | 350 | 370 | 390 | 480 | 735 | 49,5 |  |
| VKP 700x400 EC  | 700  | 720             | 740  | 400 | 420 | 440 | 540 | 780 | 60,0 |  |
| VKP 800x500 EC  | 800  | 820             | 840  | 500 | 520 | 540 | 640 | 880 | 70,0 |  |
| VKP 900x500 EC  | 900  | 920             | 940  | 500 | 520 | 540 | 640 | 954 | 90,0 |  |
| VKP 1000x500 EC | 1000 | 1020            | 1040 | 500 | 520 | 540 | 640 | 954 | 95,0 |  |



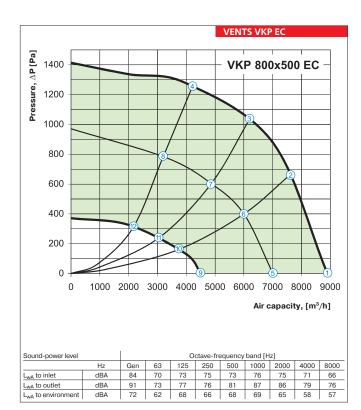


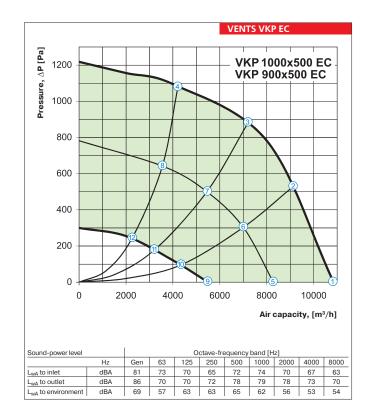




|                                                                                                                                     |          |     | VENTS VKP EC |               |           |                 |                    |              |                     |            |            |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|-----|--------------|---------------|-----------|-----------------|--------------------|--------------|---------------------|------------|------------|
| <u>ଳ</u> 900                                                                                                                        | )        |     |              |               |           |                 |                    |              |                     |            |            |
| - E                                                                                                                                 |          |     |              |               |           |                 | vк                 | P 60         | 0x30                | 0 EC       | :          |
| d<br>1008 <sup>1</sup> ⊂                                                                                                            |          |     |              |               | -         |                 | •••                |              |                     | 0 20       |            |
| <b>J</b><br><b>D</b><br><b>Less</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b> |          |     |              |               |           |                 |                    |              |                     |            | _          |
| <b>₽</b><br>600                                                                                                                     | )        |     |              | 4             | _         |                 |                    |              |                     |            | _          |
| 500                                                                                                                                 |          |     |              |               |           | 3               |                    | _            | _                   |            | _          |
| 400                                                                                                                                 | )        |     |              |               |           | A               |                    |              |                     |            | _          |
| 300                                                                                                                                 |          | _   | -12          |               | $-\gamma$ |                 |                    |              |                     |            | _          |
| 200                                                                                                                                 | ,        |     | $\square$    | $\rightarrow$ |           |                 | $\rightarrow$      | o/           | 2                   |            | _          |
| 100                                                                                                                                 | )        |     |              | 5             |           | Q               | $\leq$             | $\mathbb{A}$ |                     |            |            |
|                                                                                                                                     |          |     |              |               | 14        |                 |                    |              |                     |            |            |
| C                                                                                                                                   | 0        | 500 | 100          | 00            | 1500      | <u>13</u><br>20 | <u>(9</u><br>00 :: | 2500         | - <u>(5)</u><br>300 | (1<br>)0 : | )—<br>3500 |
|                                                                                                                                     |          |     |              |               |           |                 |                    |              |                     | y, [m³/    |            |
|                                                                                                                                     |          |     |              |               |           |                 |                    |              |                     |            |            |
| Sound-powe                                                                                                                          | er level |     |              |               |           |                 | equency            |              |                     |            |            |
|                                                                                                                                     |          | Hz  | Gen          | 63            | 125       | 250             | 500                | 1000         | 2000                | 4000       | 8000       |
| L <sub>wA</sub> to inlet                                                                                                            |          | dBA | 79           | 68            | 78        | 68              | 65                 | 71           | 74                  | 70         | 69         |
| L <sub>wA</sub> to outlet                                                                                                           |          | dBA | 84           | 62            | 77        | 73              | 77                 | 78           | 78                  | 74         | 70         |
| L <sub>wA</sub> to enviro                                                                                                           | nment    | dBA | 69           | 42            | 64        | 64              | 64                 | 60           | 57                  | 51         | 49         |

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 370    | 2.35   | 2300                    |
| 2     | 445    | 2.85   | 2215                    |
| 3     | 480    | 3.10   | 2170                    |
| 4     | 448    | 2.85   | 2220                    |
| 5     | 210    | 1.30   | 1900                    |
| 6     | 284    | 1.70   | 1900                    |
| 7     | 312    | 1.80   | 1900                    |
| 8     | 278    | 1.70   | 1900                    |
| 9     | 124    | 0.80   | 1560                    |
| 10    | 158    | 1.00   | 1560                    |
| 11    | 175    | 1.10   | 1560                    |
| 12    | 158    | 1.00   | 1560                    |
| 13    | 57     | 0.40   | 1200                    |
| 14    | 73     | 0.50   | 1200                    |
| 15    | 80     | 0.50   | 1200                    |
| 16    | 70     | 0.50   | 1200                    |




| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 669    | 1.17   | 2580                    |
| 2     | 862    | 1.46   | 2580                    |
| 3     | 990    | 1.70   | 2580                    |
| 4     | 907    | 1.53   | 2580                    |
| 5     | 288    | 0.57   | 1930                    |
| 6     | 348    | 0.69   | 1910                    |
| 7     | 396    | 0.77   | 1900                    |
| 8     | 360    | 0.72   | 1905                    |
| 9     | 123    | 0.28   | 1305                    |
| 10    | 144    | 0.33   | 1305                    |
| 11    | 151    | 0.34   | 1305                    |
| 12    | 151    | 0.34   | 1300                    |




| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1140   | 1.74   | 2600                    |
| 2     | 1510   | 2.30   | 2600                    |
| 3     | 1700   | 2.60   | 2600                    |
| 4     | 1594   | 2.42   | 2600                    |
| 5     | 436    | 0.73   | 1940                    |
| 6     | 541    | 0.88   | 1910                    |
| 7     | 533    | 0.95   | 1885                    |
| 8     | 558    | 0.91   | 1905                    |
| 9     | 194    | 0.40   | 1330                    |
| 10    | 226    | 0.45   | 1315                    |
| 11    | 239    | 0.47   | 1305                    |
| 12    | 236    | 0.46   | 1305                    |

WWW.VENTILATION-SYSTEM.COM

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 2009   | 3.07   | 2500                    |
| 2     | 2738   | 4.19   | 2500                    |
| 3     | 2950   | 4.60   | 2500                    |
| 4     | 2748   | 4.20   | 2500                    |
| 5     | 945    | 1.48   | 1945                    |
| 6     | 1170   | 1.80   | 1920                    |
| 7     | 1247   | 1.91   | 1915                    |
| 8     | 1193   | 1.84   | 1920                    |
| 9     | 308    | 0.59   | 1255                    |
| 10    | 416    | 0.76   | 1260                    |
| 11    | 417    | 0.77   | 1255                    |
| 12    | 410    | 0.75   | 1255                    |





| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1988   | 3.00   | 2040                    |
| 2     | 2596   | 3.94   | 2040                    |
| 3     | 2980   | 4.60   | 2040                    |
| 4     | 2638   | 3.99   | 2040                    |
| 5     | 818    | 1.28   | 1550                    |
| 6     | 1054   | 1.63   | 1545                    |
| 7     | 1195   | 1.83   | 1550                    |
| 8     | 1075   | 1.66   | 1570                    |
| 9     | 313    | 0.60   | 1045                    |
| 10    | 362    | 0.70   | 1025                    |
| 11    | 387    | 0.72   | 1010                    |
| 12    | 362    | 0.69   | 1005                    |



VENTS. Industrial and commercial ventilation | 02-2012



Centrifugal fans with the air capacity up to **10850 m<sup>3</sup>/h** for rectangular ducts

#### Applications

Supply and exhaust ventilation and air conditioning systems for various premises requiring cost-effective solution and controlled ventilation. EC motors in VKP fan reduce energy consumption by 1, 5-3 times and ensure high performance and low noise level. Such characteristics are of special importance for ventilation of banks, supermarkets, restaurants, hotels and other public facilities including swimming pool ventilation. The fans are compatible with 600x300, 600x350, 700x400, 800x500, 900x500, 1000x500 mm rectangular ducts.

#### Design

Fan casing is made of galvanized steel and is heatand sound-insulated with 50 mm mineral wool layer. All inner components are interconnected by means of rivets. The fan is equipped with 20 mm standard flanges.

#### Motor

The impellers with backward-curved blades are powered with high efficient electronically commutated (EC) direct current motors with external rotor. As of today, such motor type is the most advanced solution for energy saving. EC-motors are featured by high performance and the optimal control over the whole range of fan speeds. Premium efficiency reaching up to 90% is an absolute advantage of electronically commutated motors.

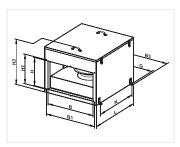
#### Build-in functions and control

The fan is controlled with the external control signal 0-10 V (air capacity as a function of temperature level, pressure and smoke conditions etc). Should the control value factor get changed the EC-motor changes its speed and the fan boosts as much air capacity to the ventilation system as required. Maximum speed of the fan does not depend on the current frequency and it can operate at 50 or 60 Hz mains supply. The fans can be integrated to the unified PC control system. The respective software allows controlling all the fan units with high accuracy and setting particular operation mode for each fan.

#### Mounting

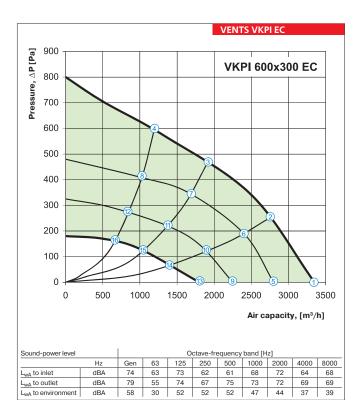
The fans are mounted into the rectangular ducts and require no special fixing in case of direct connection. In case of connection through the flexible connectors the fan is fixed to a building by means of supports, suspension brackets or fixation brackets. The fans can be mounted in any position with respect to the airflow direction which is indicated with a pointer on the casing. Access for the fan maintenance shall be provided. The casing is provided with the removable access door for inspection and maintenance purposes.

#### **Technical data:**


|                                    | VKPI<br>600x300<br>EC | VKPI<br>600x350<br>EC | VKPI<br>700x400<br>EC | VKPI<br>800x500<br>EC | VKPI<br>900x500<br>EC | VKPI<br>1000x500<br>EC |
|------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| Voltage [V / 50/60 Hz]             | 1~ 200-277            | 3~ 380-480            | 3~ 380-480            | 3~ 380-480            | 3~ 380-480            | 3~ 380-480             |
| Power [kW]                         | 0,48                  | 0,99                  | 1,70                  | 2,95                  | 2,98                  | 2,98                   |
| Current [A]                        | 3,10                  | 1,70                  | 2,60                  | 4,60                  | 4,60                  | 4,60                   |
| Maximum air flow [m³/h]            | 3350                  | 4550                  | 6300                  | 8900                  | 10850                 | 10850                  |
| RPM [min <sup>-1</sup> ]           | 2300                  | 2580                  | 2600                  | 2500                  | 2040                  | 2040                   |
| Noise level at 3 m [dBA]           | 58                    | 60                    | 63                    | 65                    | 69                    | 69                     |
| Maximum operating temperature [°C] | -25 +60               | -25 +50               | -25 +40               | -25 +40               | -25 +40               | -25 +40                |
| Protection rating                  | IP X4                  |

**Designation key:** 

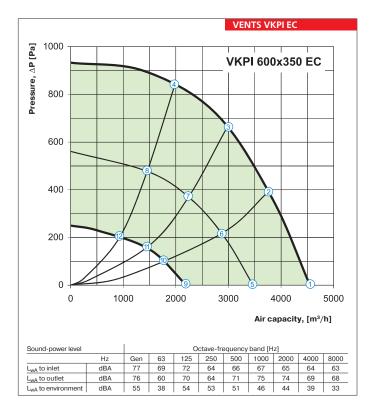



#### Fan overall dimensions:

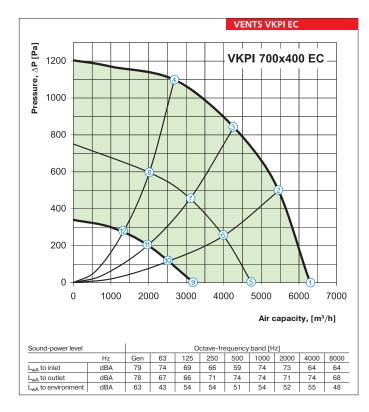
| Turco            | Dimensions [mm] |     |      |     |      |     |      | Mass |     |      |
|------------------|-----------------|-----|------|-----|------|-----|------|------|-----|------|
| Туре             | В               | Н   | B1   | H1  | B3   | H3  | L    | G    | К   | [kg] |
| VKPI 600x300 EC  | 600             | 300 | 620  | 320 | 775  | 530 | 752  | 745  | 500 | 55   |
| VKPI 600x350 EC  | 600             | 350 | 620  | 370 | 775  | 630 | 802  | 745  | 500 | 66   |
| VKPI 700x400 EC  | 700             | 400 | 720  | 420 | 875  | 690 | 880  | 845  | 742 | 90   |
| VKPI 800x500 EC  | 800             | 500 | 820  | 520 | 975  | 810 | 935  | 945  | 800 | 113  |
| VKPI 900x500 EC  | 900             | 500 | 920  | 520 | 1075 | 810 | 1000 | 1045 | 800 | 128  |
| VKPI 1000x500 EC | 1000            | 500 | 1020 | 520 | 1175 | 810 | 1000 | 1145 | 800 | 135  |






VKPI EC fan school class ventilation example

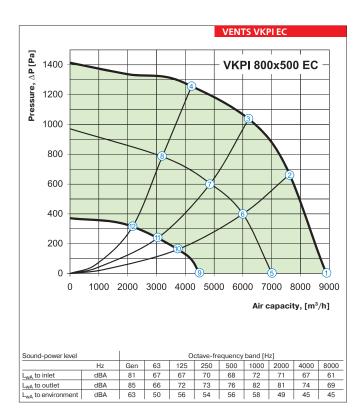





| VKPI EC fan car parking stand | l ventilation example |
|-------------------------------|-----------------------|
|-------------------------------|-----------------------|

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 370    | 2.35   | 2300                    |
| 2     | 445    | 2.85   | 2215                    |
| 3     | 480    | 3.10   | 2170                    |
| 4     | 448    | 2.85   | 2220                    |
| 5     | 210    | 1.30   | 1900                    |
| 6     | 284    | 1.70   | 1900                    |
| 7     | 312    | 1.80   | 1900                    |
| 8     | 278    | 1.70   | 1900                    |
| 9     | 124    | 0.80   | 1560                    |
| 10    | 158    | 1.00   | 1560                    |
| 11    | 175    | 1.10   | 1560                    |
| 12    | 158    | 1.00   | 1560                    |
| 13    | 57     | 0.40   | 1200                    |
| 14    | 73     | 0.50   | 1200                    |
| 15    | 80     | 0.50   | 1200                    |
| 16    | 70     | 0.50   | 1200                    |




| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 669    | 1.17   | 2580                    |
| 2     | 862    | 1.46   | 2580                    |
| 3     | 990    | 1.70   | 2580                    |
| 4     | 907    | 1.53   | 2580                    |
| 5     | 288    | 0.57   | 1930                    |
| 6     | 348    | 0.69   | 1910                    |
| 7     | 396    | 0.77   | 1900                    |
| 8     | 360    | 0.72   | 1905                    |
| 9     | 123    | 0.28   | 1305                    |
| 10    | 144    | 0.33   | 1305                    |
| 11    | 151    | 0.34   | 1305                    |
| 12    | 151    | 0.34   | 1300                    |



| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1140   | 1.74   | 2600                    |
| 2     | 1510   | 2.30   | 2600                    |
| 3     | 1700   | 2.60   | 2600                    |
| 4     | 1594   | 2.42   | 2600                    |
| 5     | 436    | 0.73   | 1940                    |
| 6     | 541    | 0.88   | 1910                    |
| 7     | 533    | 0.95   | 1885                    |
| 8     | 558    | 0.91   | 1905                    |
| 9     | 194    | 0.40   | 1330                    |
| 10    | 226    | 0.45   | 1315                    |
| 11    | 239    | 0.47   | 1305                    |
| 12    | 236    | 0.46   | 1305                    |

WWW.VENTILATION-SYSTEM.COM

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 2009   | 3.07   | 2500                    |
| 2     | 2738   | 4.19   | 2500                    |
| 3     | 2950   | 4.60   | 2500                    |
| 4     | 2748   | 4.20   | 2500                    |
| 5     | 945    | 1.48   | 1945                    |
| 6     | 1170   | 1.80   | 1920                    |
| 7     | 1247   | 1.91   | 1915                    |
| 8     | 1193   | 1.84   | 1920                    |
| 9     | 308    | 0.59   | 1255                    |
| 10    | 416    | 0.76   | 1260                    |
| 11    | 417    | 0.77   | 1255                    |
| 12    | 410    | 0.75   | 1255                    |



|                           |                              |     |    |     |              | VENT     | 'S VKF  | PI EC  |         |                  |
|---------------------------|------------------------------|-----|----|-----|--------------|----------|---------|--------|---------|------------------|
| Pressure, ∆P [Pa]         | VKPI 900x500<br>VKPI 1000x50 |     |    |     |              |          |         |        |         |                  |
| 1000 -                    |                              |     |    |     |              |          |         |        |         |                  |
| 800                       |                              |     |    |     |              |          |         |        |         |                  |
| 600 -                     |                              |     |    |     |              |          |         |        |         |                  |
| 400 -                     |                              |     |    |     |              |          |         |        |         |                  |
| 200                       |                              |     |    |     | /            |          |         |        |         |                  |
| 0                         | 20                           | 00  | 40 | 00  | <b>9</b> 600 | 00       | 8000    |        | 10000   |                  |
| VKPI 900x500 EC           |                              |     |    |     |              |          | Air     | capaci | ty, [mª | <sup>}</sup> /h] |
| Sound-power level         |                              |     |    | C   | )ctave-f     | requency | hand [H | 171    |         |                  |
| Sound power level         | Hz                           | Gen | 63 | 125 | 250          | 500      | 1000    | 2000   | 4000    | 800              |
| L <sub>wA</sub> to inlet  | dBA                          | 76  | 65 | 63  | 58           | 61       | 69      | 63     | 58      | 56               |
| L <sub>wA</sub> to outlet | dBA                          | 80  | 61 | 66  | 68           | 69       | 75      | 71     | 63      | 67               |

 59
 46
 50
 49
 54
 52
 47
 42
 46

Gen 63 125 250 500 1000 2000 4000 8000

 77
 68
 64
 65
 66
 69
 65
 62
 57

 80
 64
 63
 68
 74
 76
 73
 65
 66

 59
 44
 53
 54
 53
 49
 44
 42
 41

L<sub>wA</sub> to environment

VKPI 1000x500 EC

L<sub>wA</sub> to inlet L<sub>wA</sub> to outlet L<sub>wA</sub> to environment dBA

Hz

dBA dBA dBA

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1988   | 3.00   | 2040                    |
| 2     | 2596   | 3.94   | 2040                    |
| 3     | 2980   | 4.60   | 2040                    |
| 4     | 2638   | 3.99   | 2040                    |
| 5     | 818    | 1.28   | 1550                    |
| 6     | 1054   | 1.63   | 1545                    |
| 7     | 1195   | 1.83   | 1550                    |
| 8     | 1075   | 1.66   | 1570                    |
| 9     | 313    | 0.60   | 1045                    |
| 10    | 362    | 0.70   | 1025                    |
| 11    | 387    | 0.72   | 1010                    |
| 12    | 362    | 0.69   | 1005                    |



Series VENTS VKP



Series VENTS VKPI





Centrifugal fans with the air capacity up to **15000 m<sup>3</sup>/h** for rectangular ducts



Centrifugal sound- and heat-insulated fans with the air capacity up to **2970 m<sup>3</sup>/h** for rectangular ducts

#### Applications

Supply and exhaust ventilation systems for various premises with a limited mounting space. For connection with 400x200, 500x250, 500x300, 600x300, 600x350, 1000x500 mm the rectangular ducts.

Centrifugal fans with the air

capacity up to **2970 m<sup>3</sup>/h** for

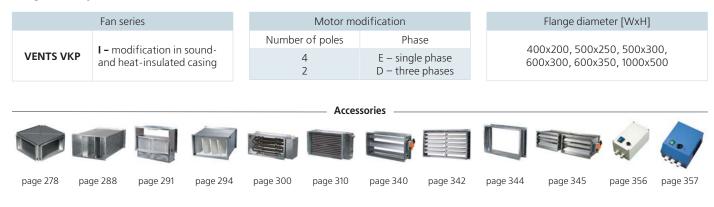
rectangular ducts

#### Design

Fan casing is made of galvanized steel. VKPI models are heat- and sound-insulated with 50 mm mineral wool layer.

#### Motor

Impellers with backward-curved impeller blades made of galvanized steel are powered by means of the 2or 4-pole asynchronous motors with external rotor. Motors are supplied with incorporated overheating protection with automatic restart or the thermal protection terminals leaded outside for connection to the external protection devices depending on the model, see the wiring diagram motor is equipped with ball bearings for long service life. For precise features, safe operation and low noise, each impeller is dynamically balanced while assembly. Motor protection rating IP 44.


#### Speed control

Both smooth or step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the controller rated values.

#### Mounting

The fans are mounted into the rectangular ducts and require no special fixing in case of direct connection. In case of connection through the flexible connectors the fan is fixed to a building by means of supports, suspension brackets or fixation brackets. Fans can be mounted in any position with respect to the airflow direction (indicated with an arrow on the casing). Access for the fan maintenance shall be provided. The fan is powered through the external terminals. The casing is equipped with the removable access cover for maintenance purposes.

#### Designation key:



Technical data:

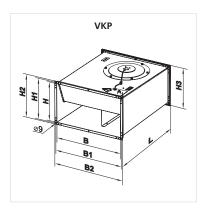
|                                    | VKP / VKPI<br>2E 400x200 | VKP / VKPI<br>2E 500x250 | VKP / VKPI<br>4E 500x300 |
|------------------------------------|--------------------------|--------------------------|--------------------------|
| Voltage [V / 50 Hz]                | 230                      | 230                      | 230                      |
| Power [W]                          | 138                      | 305                      | 140                      |
| Current [A]                        | 0,60                     | 1,32                     | 0,57                     |
| Maximum air flow [m³/h]            | 930                      | 1720                     | 1700                     |
| RPM [min <sup>-1</sup> ]           | 2600                     | 2550                     | 1390                     |
| Noise level at 3 m [dBA]           | 59 / 51*                 | 61 / 53*                 | 53 / 45*                 |
| Maximum operating temperature [°C] | -25 +45                  | -25 +45                  | -25 +45                  |
| Protection rating                  | IPX4                     | IPX4                     | IPX4                     |
|                                    |                          |                          |                          |

\* parameter for VKPI fan

#### Technical data:

|                                    | VKP / VKPI<br>4D 500x300 | VKP / VKPI<br>4E 600x300 | VKP / VKPI<br>4D 600x300 |
|------------------------------------|--------------------------|--------------------------|--------------------------|
| Voltage [V / 50 Hz]                | 400                      | 230                      | 400                      |
| Power [W]                          | 136                      | 220                      | 230                      |
| Current [A]                        | 0,34                     | 0,90                     | 0,52                     |
| Maximum air flow [m³/h]            | 1380                     | 2470                     | 2530                     |
| RPM [min <sup>-1</sup> ]           | 1360                     | 1400                     | 1360                     |
| Noise level at 3 m [dBA]           | 53 / 45*                 | 55 / 47*                 | 53 / 46*                 |
| Maximum operating temperature [°C] | -25 +65                  | -25 +45                  | -25 +70                  |
| Protection rating                  | IPX4                     | IPX4                     | IPX4                     |

\* parameter for VKPI fan


#### **Technical data:**

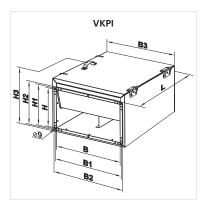
|                                    | VKP / VKPI<br>4E 600x350 |          |          | VKP<br>4D 1000x500 |
|------------------------------------|--------------------------|----------|----------|--------------------|
| Voltage [V / 50 Hz]                | 230                      | 400∆     | 400Y     | 3~ 400             |
| Power [W]                          | 470                      | 510      | 380      | 3800               |
| Current [A]                        | 2,37                     | 1,41     | 0,70     | 6,6                |
| Maximum air flow [m³/h]            | 2950                     | 2970     | 2660     | 15000              |
| RPM [min <sup>-1</sup> ]           | 1370                     | 1415     | 1235     | 1360               |
| Noise level at 3 m [dBA]           | 67 / 59*                 | 64 / 55* | 63 / 55* | 70                 |
| Maximum operating temperature [°C] | -40 +80                  | -40 +60  | -40 +80  | -20 +40            |
| Protection rating                  | IPX4                     | IP       | X4       | IP X4              |

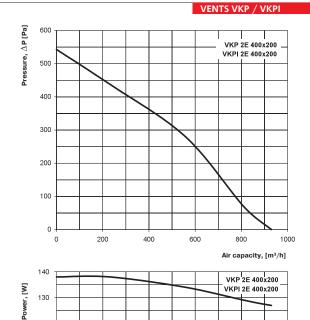
\* parameter for VKPI fan

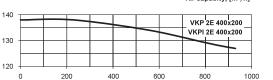
#### Fan overall dimensions:

| Turne          | Dimensions [mm] |     |     |     |     |     |     | Mass |      |
|----------------|-----------------|-----|-----|-----|-----|-----|-----|------|------|
| Туре           | В               | B1  | B2  | Н   | H1  | H2  | H3  | L    | [kg] |
| VKP 2E 400x200 | 400             | 420 | 440 | 200 | 220 | 240 | 240 | 500  | 13,6 |
| VKP 2E 500x250 | 500             | 520 | 540 | 250 | 270 | 290 | 290 | 640  | 17,7 |
| VKP 4E 500x300 | 500             | 520 | 540 | 300 | 320 | 340 | 340 | 680  | 25,5 |
| VKP 4D 500x300 | 500             | 520 | 540 | 300 | 320 | 340 | 340 | 680  | 25,5 |
| VKP 4E 600x300 | 600             | 620 | 640 | 300 | 320 | 340 | 342 | 680  | 31,5 |
| VKP 4D 600x300 | 600             | 620 | 640 | 300 | 320 | 340 | 342 | 680  | 32,5 |
| VKP 4E 600x350 | 600             | 620 | 640 | 350 | 370 | 390 | 390 | 735  | 41,5 |
| VKP 4D 600x350 | 600             | 620 | 640 | 350 | 370 | 390 | 390 | 735  | 41,5 |



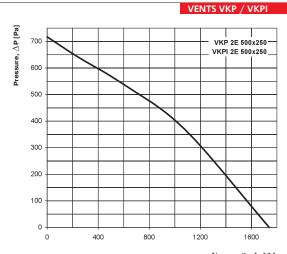

#### Fan overall dimensions:


| Тиро            |      |      | l    | Dimensio | ons [mm] | l   |     |      | Mass |
|-----------------|------|------|------|----------|----------|-----|-----|------|------|
| Туре            | В    | B1   | B2   | Н        | H1       | H2  | H3  | L    | [kg] |
| VKP 4D 1000x500 | 1000 | 1020 | 1040 | 500      | 520      | 540 | 720 | 1150 | 125  |

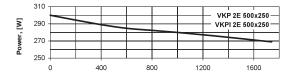



#### Fan overall dimensions:

| Turpo           |     |     |     | Dime | nsions | [mm] |     |     |     | Mass |
|-----------------|-----|-----|-----|------|--------|------|-----|-----|-----|------|
| Туре            | В   | B1  | B2  | B3   | Н      | H1   | H2  | H3  | L   | [kg] |
| VKPI 2E 400x200 | 400 | 420 | 440 | 500  | 200    | 220  | 240 | 360 | 500 | 24,4 |
| VKPI 2E 500x250 | 500 | 520 | 540 | 600  | 250    | 270  | 290 | 410 | 640 | 34,0 |
| VKPI 4E 500x300 | 500 | 520 | 540 | 600  | 300    | 320  | 340 | 460 | 680 | 45,0 |
| VKPI 4D 500x300 | 500 | 520 | 540 | 600  | 300    | 320  | 340 | 460 | 680 | 45,0 |
| VKPI 4E 600x300 | 600 | 620 | 640 | 700  | 300    | 320  | 340 | 460 | 680 | 52,5 |
| VKPI 4D 600x300 | 600 | 620 | 640 | 700  | 300    | 320  | 340 | 460 | 680 | 53,0 |
| VKPI 4E 600x350 | 600 | 620 | 640 | 700  | 350    | 370  | 390 | 530 | 735 | 64,0 |
| VKPI 4D 600x350 | 600 | 620 | 640 | 700  | 350    | 370  | 390 | 530 | 735 | 64,0 |





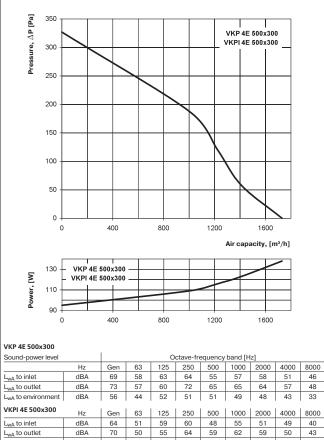




#### VKP 2E 400x200

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 71  | 54 | 63  | 68        | 64      | 64      | 58   | 54   | 45   |
| L <sub>wA</sub> to outlet      | dBA | 75  | 53 | 62  | 66        | 68      | 69      | 66   | 60   | 48   |
| L <sub>wA</sub> to environment | dBA | 58  | 36 | 48  | 56        | 54      | 50      | 46   | 41   | 32   |
| VKPI 2E 400x200                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 65  | 45 | 57  | 60        | 60      | 57      | 53   | 49   | 43   |
| L <sub>wA</sub> to outlet      | dBA | 70  | 47 | 59  | 61        | 66      | 64      | 60   | 55   | 43   |
| L <sub>wA</sub> to environment | dBA | 48  | 26 | 37  | 45        | 43      | 35      | 32   | 29   | 22   |



Air capacity, [m3/h]




# VKP 2E 500x250

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 69  | 60 | 68  | 60        | 56      | 56      | 49   | 46   | 46   |
| L <sub>wA</sub> to outlet      | dBA | 70  | 54 | 65  | 64        | 63      | 60      | 56   | 49   | 44   |
| L <sub>wA</sub> to environment | dBA | 53  | 41 | 48  | 47        | 44      | 40      | 38   | 33   | 35   |
| VKPI 2E 500x250                |     |     |    |     |           |         |         |      |      |      |
| VKFTZL JUUXZJU                 | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 62  | 52 | 60  | 56        | 51      | 50      | 43   | 42   | 40   |
| L <sub>wA</sub> to outlet      | dBA | 63  | 48 | 59  | 60        | 55      | 57      | 53   | 45   | 39   |
| L <sub>wA</sub> to environment | dBA | 41  | 27 | 35  | 37        | 31      | 29      | 27   | 25   | 27   |
|                                |     |     |    |     |           |         |         |      |      |      |

48

33



# VENTS VKP / VKPI

VENTS VKP / VKPI FAN SERIES

44 31 37 40 39 38 35 32 20

L<sub>wA</sub> to environment

dBA

L<sub>wA</sub> to outlet L<sub>wA</sub> to environment

VKPI 4D 500x300

L<sub>wA</sub> to environment

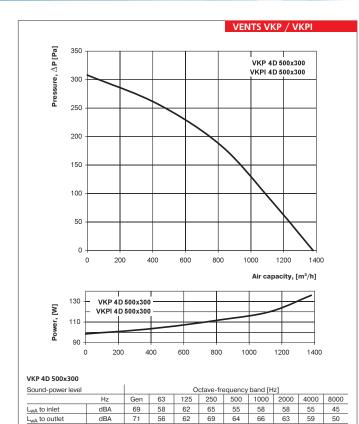
L<sub>wA</sub> to inlet

L<sub>wA</sub> to outlet

dBA

dBA

Hz


dBA

dBA

dBA

55 42 51 51 52 52 48 43 32

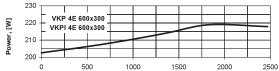
Gen



69

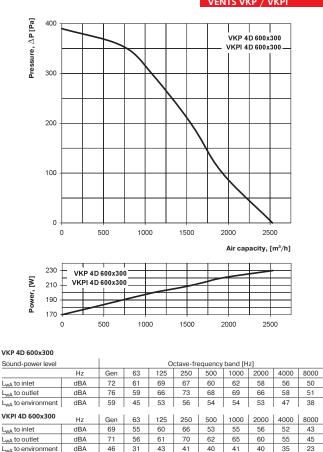
66 63

 
 63
 125
 250
 500
 1000
 2000
 4000
 8000


 G2
 51
 59
 63
 49
 55
 54
 49
 39

 66
 51
 57
 67
 59
 63
 60
 50
 42

 44
 31
 38
 38
 38
 36
 38
 31
 22


50



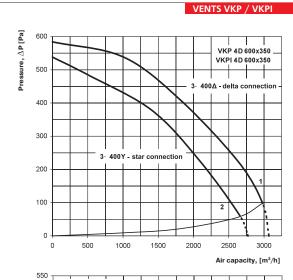


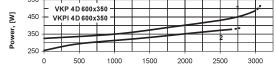
#### VKP 4E 600x300

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72  | 63 | 67  | 69        | 56      | 61      | 61   | 54   | 48   |
| L <sub>wA</sub> to outlet      | dBA | 78  | 57 | 65  | 73        | 68      | 69      | 69   | 61   | 54   |
| L <sub>wA</sub> to environment | dBA | 61  | 43 | 55  | 54        | 55      | 53      | 49   | 48   | 35   |
| VKPI 4E 600x300                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 68  | 58 | 62  | 64        | 55      | 55      | 53   | 51   | 42   |
| L <sub>wA</sub> to outlet      | dBA | 71  | 54 | 60  | 67        | 62      | 64      | 61   | 54   | 49   |
| $L_{\text{wA}}$ to environment | dBA | 48  | 34 | 42  | 43        | 41      | 40      | 37   | 36   | 23   |



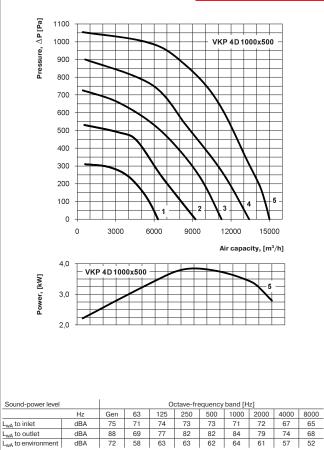
VENTS VKP / VKPI


40 41


40 35 23

dBA

dBA


L<sub>wA</sub> to outlet L<sub>wA</sub> to environment





#### VKP 4D 600x350

| Sound-power level                         |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|-------------------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                           | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet                  | dBA | 72  | 57 | 59  | 72        | 66      | 64      | 65   | 58   | 47   |
| L <sub>wA</sub> to outlet                 | dBA | 81  | 60 | 67  | 76        | 74      | 74      | 69   | 59   | 50   |
| L <sub>wA</sub> to environment            | dBA | 65  | 40 | 53  | 61        | 57      | 55      | 54   | 47   | 38   |
| VKPI 4D 600x350                           | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet                  | dBA | 70  | 54 | 56  | 65        | 62      | 60      | 58   | 49   | 40   |
| L <sub>wA</sub> to outlet                 | dBA | 74  | 57 | 63  | 73        | 70      | 68      | 65   | 57   | 47   |
| $\mathrm{L}_{\mathrm{wA}}$ to environment | dBA | 52  | 27 | 41  | 50        | 43      | 45      | 41   | 35   | 26   |



#### VENTS VKP

VENTS VKP / VKPI FAN SERIES

# VKP 4E 600x350

Σ

Power, 

Air capacity, [m<sup>3</sup>/h]

VKP 4E 600x350 VKPI 4E 600x350

Pressure, ∆P [Pa]

| Sound-power level              |     |     |    | 0   | ctave-fr | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250      | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 78  | 58 | 78  | 75       | 60      | 64      | 65   | 67   | 55   |
| L <sub>wA</sub> to outlet      | dBA | 79  | 58 | 69  | 75       | 67      | 70      | 69   | 69   | 56   |
| L <sub>wA</sub> to environment | dBA | 64  | 37 | 61  | 55       | 51      | 54      | 49   | 43   | 35   |
| VKPI 4E 600x350                | Hz  | Gen | 63 | 125 | 250      | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 75  | 53 | 72  | 71       | 54      | 58      | 63   | 60   | 52   |
| L <sub>wA</sub> to outlet      | dBA | 74  | 52 | 62  | 69       | 62      | 67      | 65   | 64   | 54   |
| L <sub>wA</sub> to environment | dBA | 51  | 25 | 51  | 44       | 40      | 42      | 38   | 34   | 23   |

VENTS VKP / VKPI

VKP 4E 600x350 VKPI 4E 600x350

63 63 62 64 61 57

dBA

# ELECTRICAL ACCESSORIES COMPATIBILITY

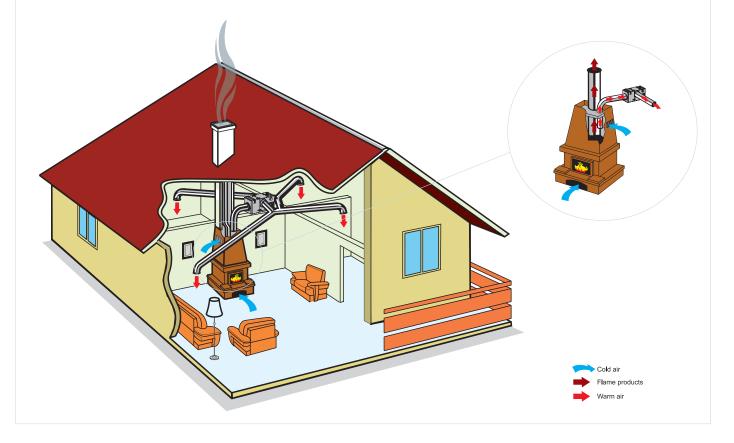
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | -                                   |                                     | -                                   |                                     | -                                   |                                     |                                     |                                     | -                                   | -                                   | -                                   | -                                   | -                                   | 0 9                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | VKPF 4E 400×200<br>VKPFI 4E 400×200 | VKPF 4D 400x200<br>VKPFI 4D 400x200 | VKPF 4E 500x250<br>VKPFI 4E 500x250 | VKPF 4D 500x250<br>VKPFI 4D 500x250 | VKPF 4E 500×300<br>VKPFI 4E 500×300 | VKPF 4D 500x300<br>VKPFI 4D 500x300 | VKPF 4E 600x300<br>VKPFI 4E 600x300 | VKPF 4D 600x300<br>VKPFI 4D 600x300 | VKPF 4E 600x350<br>VKPFI 4E 600x350 | VKPF 4D 600x350<br>VKPFI 4D 600x350 | VKPF 4D 700x400<br>VKPFI 4D 700x400 | VKPF 6D 800×500<br>VKPFI 6D 800×500 | VKPF 4D 800×500<br>VKPFI 4D 800×500 | VKPF 6D 900×500<br>VKPFI 6D 900×500 | VKPF 6D 1000×500<br>VKPFI 6D 1000×500 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | VKPF                                  |
| Thyristor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | speed controllers            |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-1-300                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-400                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1 N (V)                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-1,5 N (V)                 | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-2 N (V)<br>RS-2,5 N (V)   | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-0,5-PS                    |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-PS                    | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-2,5-PS                    | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-4,0-PS                    | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-T                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS-3,0-T<br>RS-5,0-T         | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| and the second s | RS-10,0-T                    | •                                   |                                     |                                     |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1,5-TA                    | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-3,0-TA                    | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-5,0-TA                    | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-10,0-TA                   | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ner speed control            | ers                                 |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Si.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-2-P                    | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-2-M                    | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-3-M                    | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| The state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RSA5E-4-M<br>RSA5E-12-M      | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-1,5-T                  | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-3,5-T                  | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-5,0-T                  | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-8,0-T                  | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-10,0-T                 | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-1,5-T                  |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-3,5-T                  |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5D-5-M<br>RSA5D-8-M       |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   | •                                   | •                                   |                                     |                                     |                                       |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-8-M<br>RSA5D-10-M      |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     | •                                   | •                                   | •                                   | •                                   | •                                     |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RSA5D-12-M                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   | •                                   | •                                   | •                                   | •                                   | •                                     |
| Frequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y speed controlle            | rs                                  |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-200-TA                  |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VFED-400-TA                  |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Card I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VFED-750-TA                  |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-1100-TA<br>VFED-1500-TA |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   |                                     | •                                   | •                                   | •                                   |                                     | •                                   | •                                     |
| Tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ture regulators              |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RTS-1-400                    |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| <b>M</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTSD-1-400                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT-10                        | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Multi-spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed fan switches              |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-5,0<br>P3-5,0             |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P3-5,0<br>P5-5,0             |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2-1-300                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P3-1-300                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| EC-moto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs controllers               |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R-1/010                      |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-1,5 N                      | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TH-1,5 N                     | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
| Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TF-1,5 N<br>TP-1,5 N         | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1P-15N                       | •                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                       |

• recommended

suitable

|             |                                                          |                |                | E G            |                |                |                 |                 |                 |                 | <u>*</u>        |                 |                  |                                   |                                   | l                                 | R                                 |                                   | 4. I                              | 4                                 |                |                |                  |
|-------------|----------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------|----------------|------------------|
|             |                                                          | VKP 600×300 EC | VKP 600x350 EC | VKP 700x400 EC | VKP 800×500 EC | VKP 900×500 EC | VKP 1000×500 EC | VKPI 600x300 EC | VKPI 600x350 EC | VKPI 700x400 EC | VKPI 800×500 EC | VKPI 900×500 EC | VKPI 1000x500 EC | VKP 2E 400x200<br>VKPI 2E 400x200 | VKP 2E 500x250<br>VKPI 2E 500x250 | VKP 4E 500x300<br>VKPI 4E 500x300 | VKP 4D 500x300<br>VKPI 4D 500x300 | VKP 4E 600×300<br>VKPI 4E 600×300 | VKP 4D 600x300<br>VKPI 4D 600x300 | VKP 4E 600x350<br>VKPI 4E 600x350 | VKP 4D 600x350 | (PI 4D 600x350 | VKP 4D 1000x 500 |
| Thyristor   | speed controllers                                        |                | ¥              | ¥              | ¥              | ¥              | ¥               | ¥               | ¥               | ¥               | ¥               | ¥               | ¥                | Χ¥                                | Χ¥                                | Χ¥                                | ¥¥                                | ξ¥                                | ξŞ                                | Χ¥                                | ¥              | ¥              | ¥                |
|             | RS-1-300                                                 |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |
|             |                                                          |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| C           | RS-1-400                                                 |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |
| 2 -         | RS-1 N (V)<br>RS-1,5 N (V)<br>RS-2 N (V)<br>RS-2,5 N (V) |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| 0           | RS-0,5-PS<br>RS-1,5-PS<br>RS-2,5-PS                      |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
|             | RS-4,0-PS<br>RS-1,5-T                                    |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| V.          | RS-3,0-T<br>RS-5,0-T<br>RS-10,0-T                        |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
|             | RS-1,5-TA                                                |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | ٠                                 |                                   | •                                 |                                   |                                   |                |                |                  |
| 100         | RS-3,0-TA<br>RS-5,0-TA                                   |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| Transform   | RS-10,0-TA<br>mer speed control                          | lers           |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   | •                                 |                                   |                                   |                                   |                                   | •                                 |                |                |                  |
| *           | RSA5E-2-P                                                |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |
|             | RSA5E-2-M<br>RSA5E-3-M                                   |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| 39 <b>6</b> | RSA5E-4-M<br>RSA5E-12-M<br>RSA5E-1,5-T                   |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| Vie         | RSA5E-3,5-T<br>RSA5E-5,0-T<br>RSA5E-8,0-T                |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   | •                                 |                |                |                  |
| -           | RSA5E-10,0-T<br>RSA5D-1,5-T                              |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 | •                                 | •                                 | •                                 | •                                 | •              | •              |                  |
| 1 de        | RSA5D-3,5-T<br>RSA5D-5-M                                 |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   | •                                 |                                   | •                                 |                                   | •              | •              |                  |
| 2 -         | RSA5D-8-M<br>RSA5D-10-M<br>RSA5D-12-M                    |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   | •                                 |                                   | •                                 |                                   | •              | •              | •                |
| Frequenc    | y speed controlle                                        | rs             |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| 200         | VFED-200-TA<br>VFED-400-TA                               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   | •                                 |                                   | •                                 |                                   | •              | •              |                  |
| -           | VFED-750-TA<br>VFED-1100-TA                              |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   | •                                 |                                   | •                                 |                                   | •              | •              |                  |
| Tempera     | VFED-1500-TA<br>ture regulators                          |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   | •                                 |                                   | •                                 |                                   | •              | •              | •                |
| M.          | RTS-1-400<br>RTSD-1-400                                  |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| 10          | RT-10                                                    |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |
| Multi-spe   | ed fan switches                                          |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| 1           | P2-5,0<br>P3-5,0<br>P5-5,0                               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| 4           | P2-1-300<br>P3-1-300                                     |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| EC-moto     | rs controllers                                           |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| C           | R-1/010                                                  | •              | •              | •              | •              | •              | •               | •               | •               | •               | •               | •               | •                |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
| Sensors     | TARN                                                     |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                |                |                  |
|             | T-1,5 N<br>TH-1,5 N                                      |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |
| li-         | TF-1,5 N<br>TP-1,5 N                                     |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                  | •                                 | •                                 | •                                 |                                   | •                                 |                                   |                                   |                |                |                  |

• recommended


suitable



# IT'S NOT ONLY FIREPLACE THAT MAKES YOU FEEL WARM

A fireplace in the country house brings comfort and romance; it is a unique energy of country life. The warmth of fireplace recovers serenity of mind, calms and harmonizes our thoughts in a philosophical manner. And, of course, it makes us feel warm.

Chimney fans designed for hot air distribution allow creating fully-featured air heating system based on a fireplace. Such system is the perfect solution for heating of seasonal houses that serve as a secondary residence during winter time and provide fast and efficient hot air distribution from chimney to other premises.



#### VENTS KAM Series



• Chimney fan is designed for house heating system management using heat of chimney or fireplace. It can be also used as a base for backup heating source. Air capacity of the fan is up to 540 m<sup>3</sup>/h. The fans are compatible with Ø 125, 140, 150 and 160 mm round ducts.

WWW.VENTILATION-SYSTEM.COM





| <b>Chimney centrifugal fan</b><br><b>VENTS KAM</b><br>Air capacity – up to 540 m³/h                  | page<br>94 |
|------------------------------------------------------------------------------------------------------|------------|
| <b>Chimney centrifugal fan</b><br><b>VENTS KAM Eco</b><br>Air capacity – up to 740 m <sup>3</sup> /h | page<br>94 |
| <b>Chimney centrifugal fan</b><br><b>VENTS KAM EcoDuo</b><br>Air capacity – up to 470 m³/h           | page<br>94 |

# **CHIMNEY CENTRIFUGAL FANS**

# Series



Chimney centrifugal fan for house heating system management using heat of chimney or fireplace. It can be also used as a base for backup heating source.

### Applications

Chimney fans for hot air distribution allow creating fully-featured air heating system based on a fireplace. Such system is the perfect solution for heating of seasonal houses that serve as a second residence during winter time and provides fast and efficient hot air distribution from chimney to other premises. Used for air distribution with the air tempreature range  $0^{\circ}$ C to +150°C.

#### Design

The fan casing is made of galvanized steel and equipped with heat- and sound insulation of fireresistant mineral wool. The casing is perforated for the internal air circulation and motor cooling. The temperature regulator is used for setting the temperature level for the fan switching on and off. Fan startup is effected within the range of 0 °C to  $+90^{\circ}$ C depending on the air temperature generated inside the fireplace heat-exchanger.

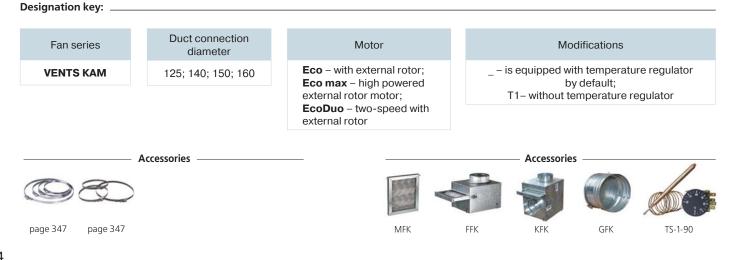
#### Motor

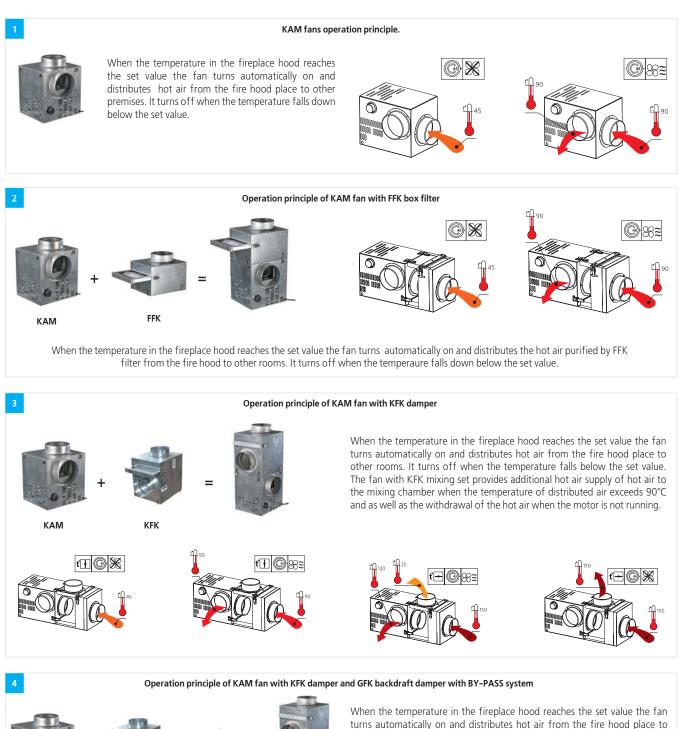
The fans are supplied with single-phase motors for operation in 230/50Hz power supply network. Insulation Class F. The motors have built-in overheating protection with automatic restart. The motor is placed off-airflow and is equipped with forward-curved impeller blades as well as ball bearings for long service life. The fan models marked KAM are equipped with asynchronous motors and extra impeller for air blowing-off and cooling. The fan motors models marked KAM Eco are equipped with the external rotor. KAM Eco max fans are equipped with the high powered external rotor motor. The fan motors models marked KAM EcoDuo have two speeds and equipped with the external rotor.

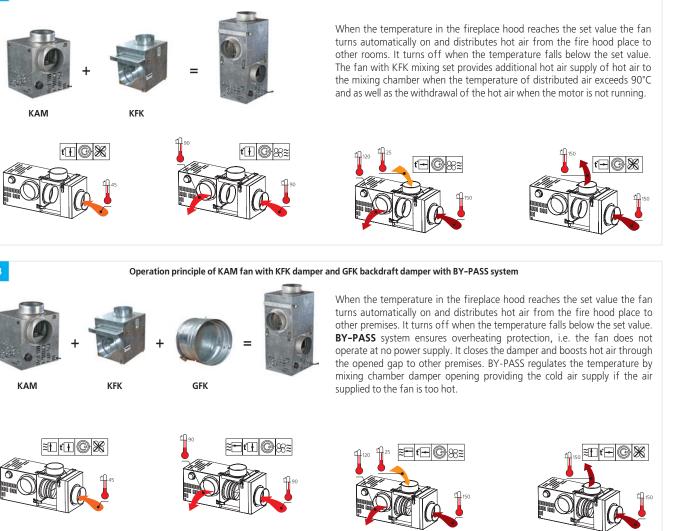
#### Speed control

Both smooth and step fan control is performed by means of the thyristor or autotransformer (Models KAM, KAM Eco). The fan speed is controlled within the range of 0 to 100%. KAM EcoDuo fan speed is controlled by means of the speed switch.

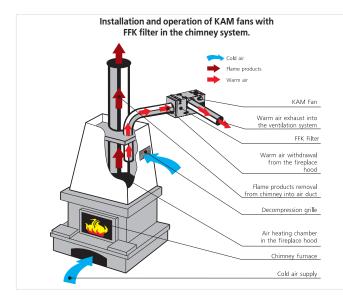
#### Mounting

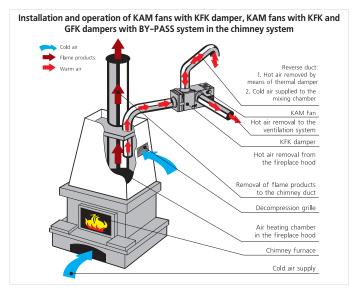

The fireplace fans are designed for connection with round air ducts. The fans can be mounted in any position with respect to the airflow direction indicated with a pointer on the casing. Access for the fan maintenance shall be reserved. Warm air feed ducts shall be laid between the fan and each of the heated rooms. Concealed air ducts system with forced warm air circulation allows saving useful space in the house and fits to the house design.


#### Accessories


**FFK** – removable G3 metal filter-box for boosted air purification. The filter is connected to the fan casing by lock-latches to provide easy removal of the filter for cleaning.

**KFK** – removable metal mixing chamber with incorporated thermal control damper and G3 filter for boosted air purification. The mixing set is fixed to the fan casing by means of lock-latches to ensure easy removal for cleaning. Fan configuration with KFK mixing chamber provides cool air supply into the mixing chamber when the operating temperature exceeds 90°C. Such configuration also allows hot air withdrawal while the fan motor is not running.


**GFK** – gravitation backdraft damper to prevent air back draft in the system. Such fan configuration that includes KFK mixing set and GFK backdraft damper ensures fan motor overheating protection based on BY-PASS actuation, in particular when the motor is not running due to no power supply. The fans with such configuration enable backdraft damper shutting and hot air distribution to other premises through ventilation ducts when the motor is not running.







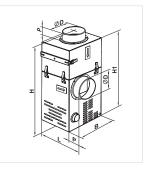


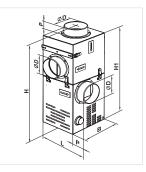
# CHIMNEY CENTRIFUGAL FANS





#### Fan overall dimensions:


| Turne                          |     |     | Dimensio | ons [mm] |     |    | Mass |
|--------------------------------|-----|-----|----------|----------|-----|----|------|
| Туре                           | ØD  | В   | Н        | H1       | L   | Р  | [kg] |
| KAM 125                        | 124 | 245 | 350      | 300      | 260 | 50 | 4,5  |
| KAM 140                        | 139 | 285 | 350      | 300      | 300 | 50 | 5,7  |
| KAM 150                        | 149 | 285 | 350      | 300      | 300 | 50 | 5,7  |
| KAM 160                        | 159 | 285 | 350      | 300      | 300 | 50 | 5,7  |
| KAM 125 Eco / EcoDuo           | 124 | 245 | 320      | 270      | 260 | 50 | 5,6  |
| KAM 140 Eco / EcoDuo           | 139 | 285 | 320      | 270      | 300 | 50 | 6,8  |
| KAM 150 Eco / EcoDuo / Eco max | 149 | 285 | 320      | 270      | 300 | 50 | 6,8  |
| KAM 160 Eco / EcoDuo           | 159 | 285 | 320      | 270      | 300 | 50 | 6,8  |




### Overall dimensions of fans with additional equipment:

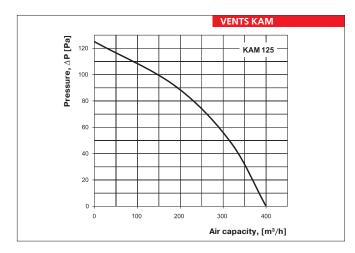
| Fontune                        | Additional |     | C   | Dimensio | ons [mr | ן]  |    | Mass |
|--------------------------------|------------|-----|-----|----------|---------|-----|----|------|
| Fan type                       | equipment  | ØD  | В   | Н        | H1      | L   | Р  | [kg] |
| KAM 125                        | FFK        | 124 | 245 | 530      | 480     | 260 | 50 | 6,7  |
| KAM 140                        | FFK        | 139 | 285 | 540      | 490     | 300 | 50 | 8,7  |
| KAM 150                        | FFK        | 149 | 285 | 540      | 490     | 300 | 50 | 8,7  |
| KAM 160                        | FFK        | 159 | 285 | 540      | 490     | 300 | 50 | 8,7  |
| KAM 125 Eco / EcoDuo           | FFK        | 124 | 245 | 500      | 450     | 260 | 50 | 7,8  |
| KAM 140 Eco / EcoDuo           | FFK        | 139 | 285 | 510      | 460     | 300 | 50 | 9,8  |
| KAM 150 Eco / EcoDuo / Eco max | FFK        | 149 | 285 | 510      | 460     | 300 | 50 | 9,8  |
| KAM 160 Eco / EcoDuo           | FFK        | 159 | 285 | 510      | 460     | 300 | 50 | 9,8  |

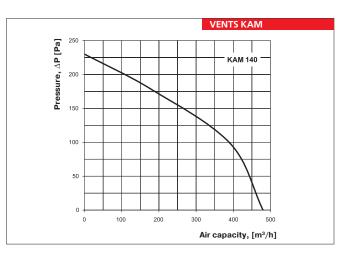
| Time                           | Additional    |     | Mass |     |     |     |    |      |
|--------------------------------|---------------|-----|------|-----|-----|-----|----|------|
| Туре                           | equipment     | ØD  | В    | Н   | H1  | L   | Р  | [kg] |
| KAM 125                        | KFK / KFK+GFK | 124 | 245  | 610 | 560 | 260 | 50 | 8,3  |
| KAM 140                        | KFK / KFK+GFK | 139 | 285  | 650 | 600 | 300 | 50 | 9,7  |
| KAM 150                        | KFK / KFK+GFK | 149 | 285  | 650 | 600 | 300 | 50 | 9,7  |
| KAM 160                        | KFK / KFK+GFK | 159 | 285  | 650 | 600 | 300 | 50 | 9,7  |
| KAM 125 Eco / EcoDuo           | KFK / KFK+GFK | 124 | 245  | 580 | 530 | 260 | 50 | 9,4  |
| KAM 140 Eco / EcoDuo           | KFK / KFK+GFK | 139 | 285  | 620 | 570 | 300 | 50 | 10,8 |
| KAM 150 Eco / EcoDuo / Eco max | KFK / KFK+GFK | 149 | 285  | 620 | 570 | 300 | 50 | 10,8 |
| KAM 160 Eco / EcoDuo           | KFK / KFK+GFK | 159 | 285  | 620 | 570 | 300 | 50 | 10,8 |



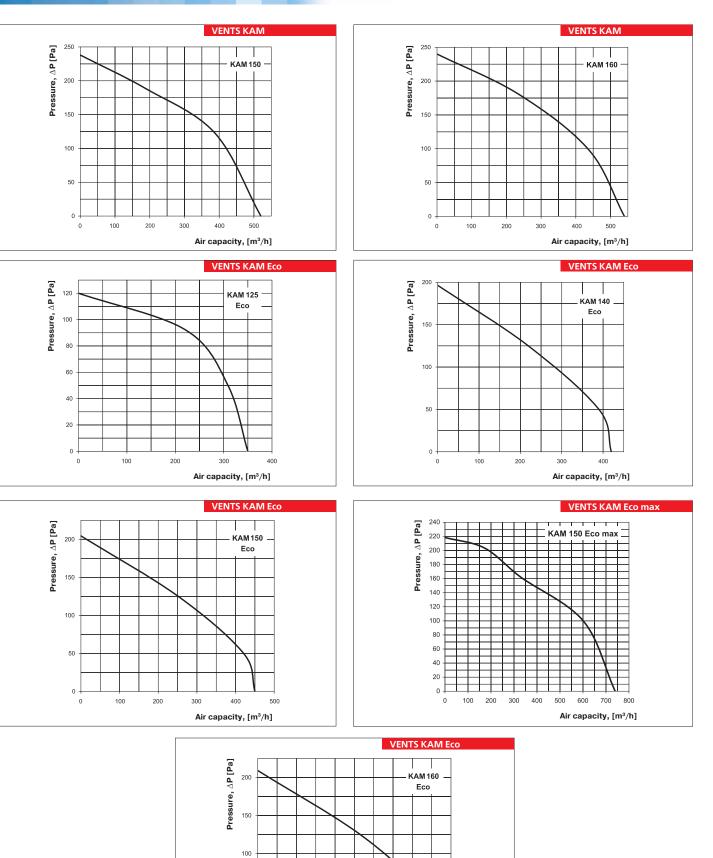


#### Technical data:


|                                      | KAM<br>125 | KAM<br>140 | KAM<br>150 | KAM<br>160 |
|--------------------------------------|------------|------------|------------|------------|
| Voltage [V / 50 Hz]                  | 1~ 230     | 1~ 230     | 1~ 230     | 1~ 230     |
| Power [W]                            | 108        | 110        | 115        | 116        |
| Current [A]                          | 0,81       | 0,82       | 0,84       | 0,86       |
| Maximum air flow [m <sup>3</sup> /h] | 400        | 480        | 520        | 540        |
| RPM [min <sup>-1</sup> ]             | 1300       | 1290       | 1280       | 1270       |
| Noise level at 3 m [dBA]             | 42         | 42         | 42         | 42         |
| Maximum operating temperature [°C]   | 150        | 150        | 150        | 150        |
| Protection rating                    | IP X2      | IP X2      | IP X2      | IP X2      |


#### Technical data:

|                                      | KAM 125<br>Eco | KAM 140<br>Eco | KAM 150<br>Eco | KAM 150<br>Eco max | KAM 160<br>Eco |
|--------------------------------------|----------------|----------------|----------------|--------------------|----------------|
| Voltage [V / 50 Hz]                  | 1~ 230         | 1~ 230         | 1~ 230         | 1~ 230             | 1~ 230         |
| Power [W]                            | 32             | 41             | 43             | 127                | 44             |
| Current [A]                          | 0,14           | 0,18           | 0,19           | 0,55               | 0,19           |
| Maximum air flow [m <sup>3</sup> /h] | 350            | 420            | 450            | 740                | 470            |
| RPM [min <sup>-1</sup> ]             | 1335           | 1250           | 1165           | 1310               | 1110           |
| Noise level at 3 m [dBA]             | 37             | 38             | 39             | 45                 | 39             |
| Maximum operating temperature [°C]   | 150            | 150            | 150            | 150                | 150            |
| Protection rating                    | IP X2          | IP X2          | IP X2          | IP X2              | IP X2          |

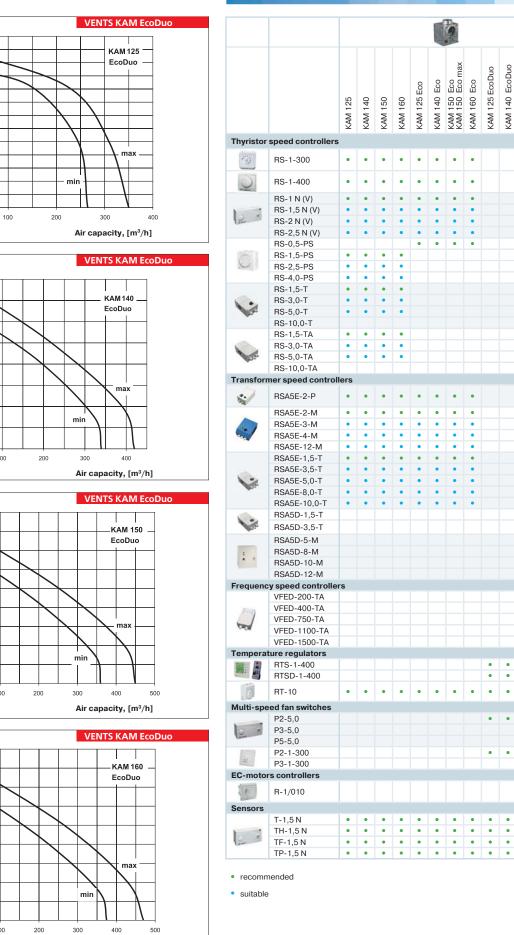

#### Technical data:

|                                      | KAM 125<br>EcoDuo |      | KAM 140<br>EcoDuo |      | KAM 150<br>EcoDuo |      | KAM 160<br>EcoDuo |      |
|--------------------------------------|-------------------|------|-------------------|------|-------------------|------|-------------------|------|
| Speed                                | min.              | max. | min.              | max. | min.              | max. | min.              | max. |
| Voltage [V / 50 Hz]                  | 1~ 230            |      | 1~ 230            |      | 1~ 230            |      | 1~ 230            |      |
| Power [W]                            | 26                | 32   | 32                | 41   | 34                | 43   | 35                | 44   |
| Current [A]                          | 0.12              | 0.14 | 0.14              | 0.18 | 0.15              | 0.19 | 0.15              | 0.19 |
| Maximum air flow [m <sup>3</sup> /h] | 265               | 350  | 340               | 420  | 360               | 450  | 375               | 470  |
| RPM [min <sup>-1</sup> ]             | 1210              | 1335 | 1180              | 1250 | 1075              | 1165 | 1040              | 1110 |
| Noise level at 3 m [dBA]             | 29                | 37   | 31                | 38   | 31                | 39   | 32                | 39   |
| Maximum operating temperature [°C]   | 150               |      | 150               |      | 150               |      | 150               |      |
| Protection rating                    | IP                | X2   | IP X2             |      | IP X2             |      | IP X2             |      |





# CHIMNEY CENTRIFUGAL FANS




VENTS. Industrial and commercial ventilation | 02-2012

Air capacity, [m<sup>3</sup>/h]

0 + 

# **ELECTRICAL ACCESSORIES COMPATIBILITY**



Pressure, ∆P [Pa]

120

100

80

60

40

20

0

Pressure, ∆P [Pa]

150

100

50

0 0

Pressure, ΔP [Pa]

200

150

100

50

0 -

Pressure, ∆P [Pa]

200

150

100

50

0 0

100

0

100

100

0

KAM 150 EcoDuo KAM 160 EcoDuo

> • •

•

• •

٠ •

•

•

•

•

•

•

Air capacity, [m<sup>3</sup>/h]

# SOUND-INSULATED FANS

VENTS VS



In-line centrifugal sound- and heat-insulated duct fans with back-curved impeller blades and the air capacity up to 16870 m<sup>3</sup>/h. Applied for supply and exhaust ventilation systems for premises with high requirements to noise level. Compatible with round and rectangular air ducts.



Compact sound- and heat-insulated centrifugal fans with forward-curved impeller blades and • the air capacity up to 1500 m<sup>3</sup>/h. Applied in supply and exhaust ventilation systems for premises with high requirements to noise level. Compatible with Ø 100, 125, 150, 160, 200 and 250 mm round ducts.

**VENTS KSB** 



Compact in-line sound- and heat-insulated centrifugal fans with back-curved impeller blades and ь the air capacity up to 2150 m<sup>3</sup>/h. Designed for supply and exhaust ventilation systems for premises with high requirements to noise level. Compatible with Ø 100, 125, 150, 160, 200, 250 and 315 mm round ducts.

**VENTS KSD** 



Inline centrifugal fans with forward curved in sound- and thermal insulated casing with air capacity up • to 3930 m<sup>3</sup>/h for supply and exhaust ventilation systems installed in various premises with high demands to noise level. Fan models with two suction tubes are used to facilitate synchronous air extract from several areas or several premises. The fans are designed for connection to round air ducts.

WWW.VENTILATION-SYSTEM.COM





| <b>VENTS VS</b><br>sound-insulated fan<br>Air capacity – up to 16870 m³/h | <b>page</b><br>102 |
|---------------------------------------------------------------------------|--------------------|
| <b>VENTS KSA</b><br>sound-insulated fan<br>Air capacity – up to 1500 m³/h | page<br>108        |
| <b>VENTS KSB</b><br>sound-insulated fan<br>Air capacity – up to 2150 m³/h | page<br>112        |
| <b>VENTS KSD</b><br>sound-insulated fan<br>Air capacity – up to 3930 m³/h | page<br>116        |

VENTS. Industrial and commercial ventilation | 02-2012

# SOUND-INSULATED FANS

# Series VENTS VS



Inline centrifugal duct fans in heat- and sound-insulated casing with the air capacity up to **16 870 m<sup>3</sup>/h** 

#### Applications

Supply and exhaust ventilation systems for various premises with high noise level requirements. The unique fan design ensures changing the position of the side panels as well the position of the panel with the exhaust branch pipe that supplies air in all directions both linearly and at the angle of 90°. Such design enables assembling various ventilation system configurations depending on a project. VS fans can be used as a separate part of an assembled supply unit. Due to the galvanized-steel casing and heat insulation the fans are suitable for outdoor mounting.

#### Design

The fan casing is made of aluminum frame fixed with angles and removable heat- and sound-insulated double layer panels of galvanized steel. 25 mm noncombustible mineral wool layer is applied for the panel insulation. Round connecting pipes are equipped with rubber seals. **Connecting air ducts are not included into delivery set and are ordered separately!** 

#### Motor

The centrifugal impeller with galvanized steel backcurved blades is powered by means of 2-, 4- or 6-pole asynchronous motor with external rotor. For thermal overheating protection thermal contacts with leaded outside terminals are built in the motor for connection to the external protection devices and VS 355-4E model is equipped with overheating protection with automatic restart. Due to the motor ball bearings with selective lubricating the fan operation is low-noise and maintenance-free.

#### Speed control

Both smooth or step speed control is performed with the thyristor or autotransformer controller. Speed is controlled by means of power voltage decrease. Air capacity as a function of motor speed. Several fans can be connected to one controller in case their total power and operating current do not exceed the controller rated values.


#### Mounting

In-line fans are designed for mounting into rectangular ducts. In case of connection through the flexible connectors the fan is fixed to a building by means of supports, suspension brackets or fixation brackets. The fans can be mounted in any position with respect to the airflow direction which is indicated with a pointer on the casing. Access for the fan maintenance shall be provided.





VS series fan with VPG connecting reducers.



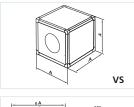


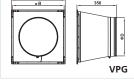
VS fan with VVG flexible ant-vibration flexible connectors

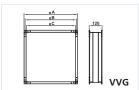


### Technical data:

Technical data:

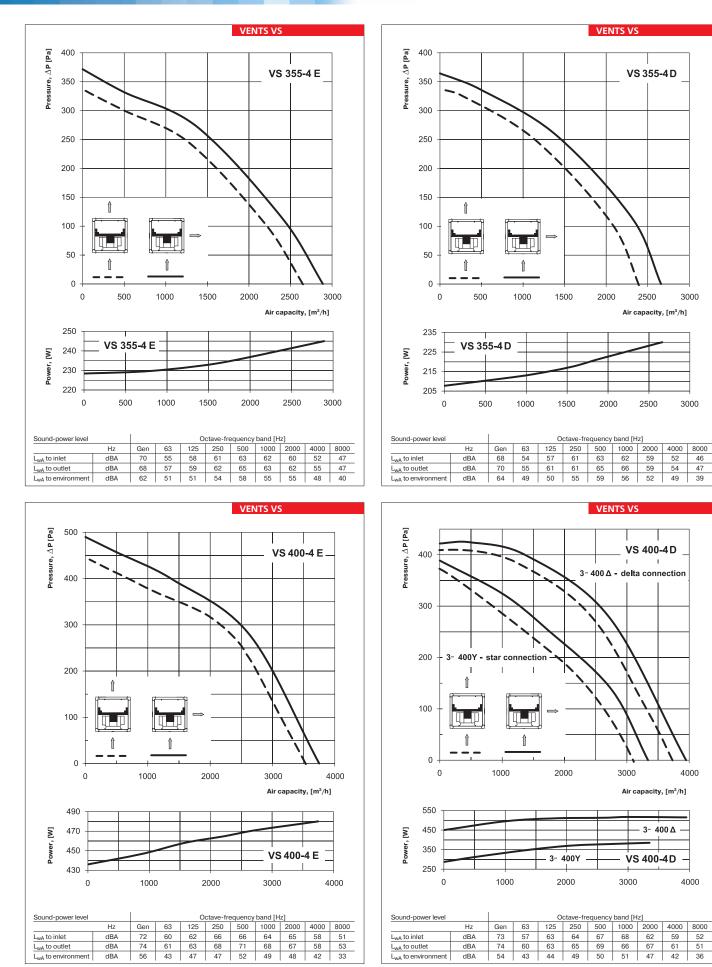

|                                                                  | VS 355-4E | LE VS 355-4D VS 400-4E |         | VS 400-4D |          |  |
|------------------------------------------------------------------|-----------|------------------------|---------|-----------|----------|--|
| Voltage [V/50/60 Hz]                                             | 1~ 230    | 3~ 400                 | 1~ 230  | 3∼ 400 ∆  | 3~ 400 Y |  |
| Power [W]                                                        | 245       | 230                    | 480     | 515       | 385      |  |
| Current [A]                                                      | 1,12      | 0,52                   | 2,40    | 1,41      | 0,70     |  |
| Max. air capacity [m³/h] with the air flow:<br>- perpendicularly | 2890      | 2660                   | 3750    | 3950      | 3340     |  |
| - straight forward                                               | 2650      | 2380                   | 3535    | 3740      | 3110     |  |
| RPM [min <sup>-1</sup> ]                                         | 1420      | 1400                   | 1370    | 1415      | 1235     |  |
| Noise level at 3 m [dBA]                                         | 54        | 53                     | 51      | 51        | 47       |  |
| Maximum operating temperature [°C]                               | -25 +50   | -25 +70                | -40 +80 | -40 +60   | -40 +80  |  |
| Protection rating                                                | IP X4     | IP X4                  | IP X4   | IP        | X4       |  |
| Technical data:                                                  |           |                        |         |           |          |  |

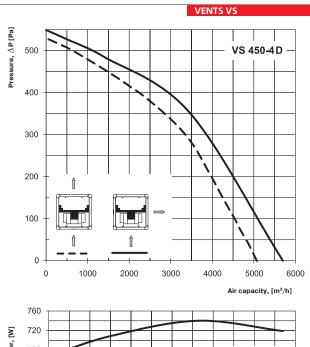

|                                                                  | VS 450-4E | VS 450-4D | VS 500-4E | VS 500-4D | VS 560-4D |
|------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Voltage [V/50/60 Hz]                                             | 1~ 230    | 3~ 400    | 1~ 230    | 3~ 400    | 3~ 400    |
| Power [W]                                                        | 680       | 740       | 1300      | 1430      | 2380      |
| Current [A]                                                      | 3,00      | 1,50      | 5,70      | 3,00      | 5,00      |
| Max. air capacity [m³/h] with the air flow:<br>- perpendicularly | 5630      | 5700      | 7330      | 7940      | 11340     |
| - straight forward                                               | 4930      | 5080      | 6680      | 7200      | 10490     |
| RPM [min <sup>-1</sup> ]                                         | 1250      | 1350      | 1320      | 1375      | 1365      |
| Noise level at 3 m [dBA]                                         | 53        | 54        | 55        | 58        | 56        |
| Maximum operating temperature [°C]                               | -40 +70   | -40 +80   | -20 +50   | -40 +80   | -40 +60   |
| Protection rating                                                | IP X4     |
|                                                                  |           |           |           |           |           |

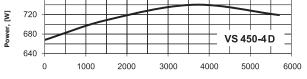

|                                                                  | VS 560-6D | VS 630-4D | VS 630C-4D | VS 630-6D | VS 710-6D |
|------------------------------------------------------------------|-----------|-----------|------------|-----------|-----------|
| Voltage [V/50/60 Hz]                                             | 3~ 400    | 3~ 400    | 3~ 400     | 3~ 400    | 3~ 400    |
| Power [W]                                                        | 780       | 3310      | 4250       | 1310      | 2000      |
| Current [A]                                                      | 1,70      | 6,20      | 7,55       | 2,80      | 3,90      |
| Max. air capacity [m3/h] with the air flow:<br>- perpendicularly | 7970      | 15170     | 16870      | 12030     | 15830     |
| - straight forward                                               | 7330      | 13740     | 14930      | 10440     | 14880     |
| RPM [min <sup>-1</sup> ]                                         | 885       | 1170      | 1300       | 880       | 890       |
| Noise level at 3 m [dBA]                                         | 49        | 67        | 69         | 55        | 59        |
| Maximum operating temperature [°C]                               | -40 +55   | -40 +35   | -40 +60    | -40 +60   | -20 +40   |
| Protection rating                                                | IP X4     | IP X4     | IP X4      | IP X4     | IP X4     |

Fan and additional equipment overall dimensions:

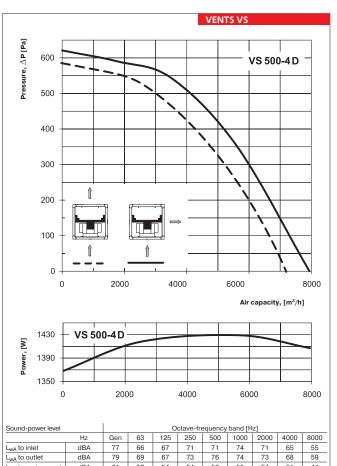
|            | Dimonoiono [mm] |      | Offered op   | tiono for fono | Dir | noncio | no [mr | <b>n</b> 1 |
|------------|-----------------|------|--------------|----------------|-----|--------|--------|------------|
| Туре       | Dimensions [mm] | Mass | Offered op   | tions for fans | Dir | nensio | ns (mr | nj         |
| . )        | А               | [kg] | VPG          | VVG            | А   | В      | С      | ØD         |
| VS 355-4E  | 500             | 25   | VPG 500/355  | VVG 500x500    | 490 | 470    | 445    | 355        |
| VS 355-4D  | 500             | 25   | VFG 300/333  | VVG 300x300    | 490 | 470    | 443    | 333        |
| VS 400-4E  | 670             | 39   | VPG 670/400  |                | 660 | 640    | 615    | 400        |
| VS 400-4D  | 670             | 39   | VPG 070/400  |                | 000 | 040    | 015    | 400        |
| VS 450-4E  | 670             | 43   | VPG 670/450  | VVG 670x670    | 660 | 640    | 615    | 450        |
| VS 450-4D  | 670             | 43   | VPG 070/450  | VVG 070X070    | 000 | 040    | 015    | 450        |
| VS 500-4E  | 670             | 52   | VPG 670/500  |                | 660 | 640    | 615    | 500        |
| VS 500-4D  | 670             | 56   | VPG 070/500  |                | 000 | 040    | 015    | 500        |
| VS 560-4D  | 800             | 99   | VPG 800/560  |                | 790 | 770    | 745    | 560        |
| VS 560-6D  | 800             | 86   | VFG 800/300  |                | 790 | 110    | 745    | 500        |
| VS 630-4D  | 800             | 102  |              | VVG 800x800    |     |        |        |            |
| VS 630C-4D | 800             | 100  | VPG 800/630  |                | 790 | 770    | 745    | 630        |
| VS 630-6D  | 800             | 98   |              |                |     |        |        |            |
| VS 710-6D  | 1000            | 136  | VPG 1000/710 | VVG 1000x1000  | 990 | 970    | 945    | 710        |

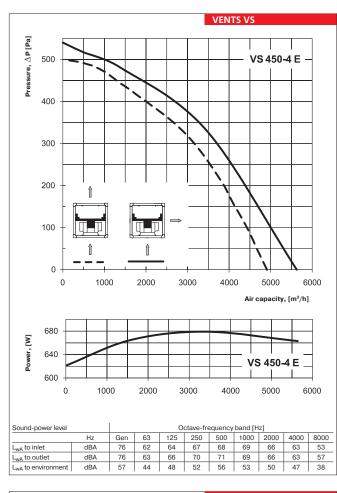


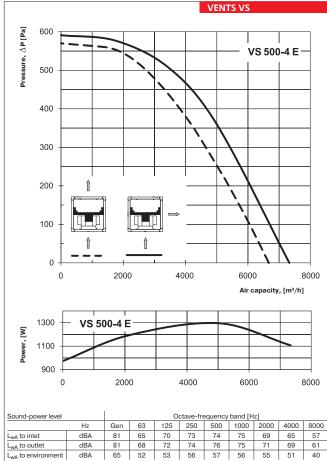




FAN SERIES VENTS VS


# SOUND-INSULATED FANS



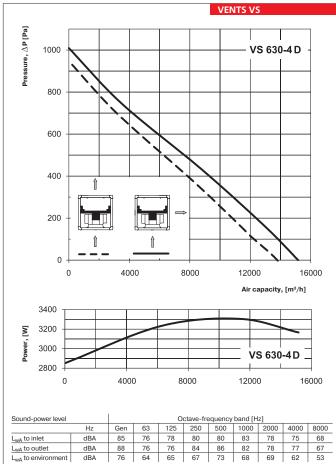


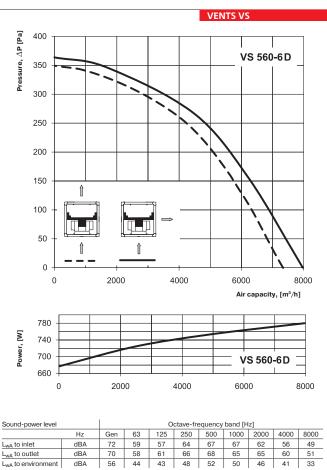

| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 76  | 61                         | 65  | 67  | 68  | 68   | 66   | 50   | 55   |
| L <sub>wA</sub> to outlet      | dBA | 75  | 63                         | 67  | 69  | 70  | 72   | 68   | 63   | 54   |
| L <sub>wA</sub> to environment | dBA | 61  | 46                         | 47  | 52  | 52  | 51   | 51   | 44   | 36   |

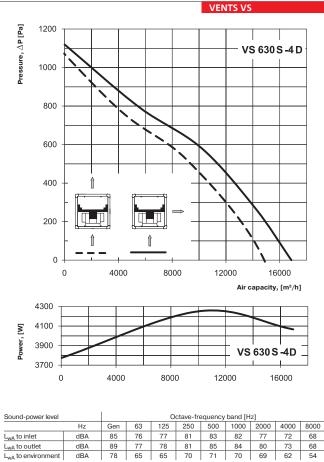






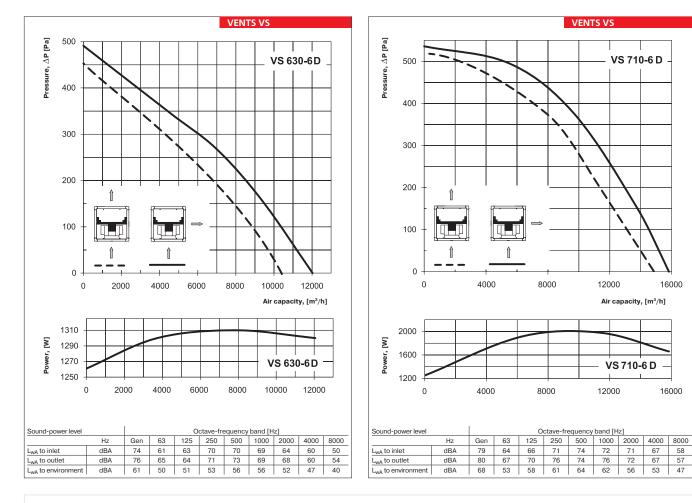

L<sub>wA</sub> to outlet L<sub>wA</sub> to environment


dBA


dBA

### SOUND-INSULATED FANS










dBA

  69 62





# Series VENTS KSA



Centrifugal fans in heat-and sound-insulated casing with the air capacity up to **1500 m<sup>3</sup>/h** 

#### Applications

KSA fan design enables their application in supply and exhaust ventilation systems for the premises with high noise level requirements. Suitable for connection with Ø 100, 125, 150, 160, 200 and 250 mm round ducts.

#### Design

The fan casing is made of aluzink. Heat- and soundinsulating layer is made of polystyrene foam.

### Motor

The impeller made of galvanized steel and forward curved blades is powered by means of the 2- or 4-pole asynchronous motor with external rotor. The motor is equipped with the ball bearings for long service life. For precise features, safe operation and low noise, each impeller is dynamically balanced while assembly. Motor protection rating IP 44.

### Speed control

Both smooth or step speed control is performed with the symistor or autotransformer controller. Several fans can be connected to one controller in case their total power and operating current do not exceed the controller rated values.

#### Mounting

Connection pipes have round section. The basic version of the fan includes the power cord with no plug. The power cord and C14 (KSA...R) plug can be supplied. Electric connection and mounting shall be performed in compliance with the operation manual and wiring diagram.

## KSA fan with electronic module for speed control with temperature sensor

KSA fan with electronic module for temperature and speed is the perfect solution for greenhouses and other premises requiring air temperature control. Fans marked KSA...U fitted with TSC electronic speed control module with temperature sensor provide automatic speed regulation as a function of air temperature in the duct. Temperature and minimum speed can be adjusted with two control knobs on the controller panel. The fan can be supplied with the external duct temperature sensor with 4 m cable and a cover for mechanical damage protection. The LED indicator for thermostat switching on is placed at the front panel of the fan.

### Automatic speed controller pattern for KSA fans.

Set the desirable threshold temperature value for thermostat switching on by means of rotating the control knob. Normally the fan operates with the speed which is set with the knob. If the temperature exceeds the set point, the fan boosts to the maximum speed producing maximum air capacity. After that when the temperature drops down below the set point, the fan goes back to preset speed. The switching delay disables frequent motor switching (if the set temperature in the duct is equal to the threshold temperature).

There are two patters of delay that may be used in various cases:

1. Temperature sensor delay (KSA...U): if the temperature rises by 2°C above the set threshold of thermostat actuation, the motor switches to the increased rotation speed. The motor switches to the preset (low) speed as the temperature drops below the set threshold of thermostat switching on. This pattern may be used to keep air temperature to within 2°C. In this case fan switches are rare.

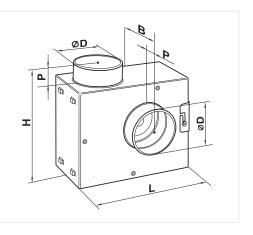
2. Timer delay (KSA...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold. The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

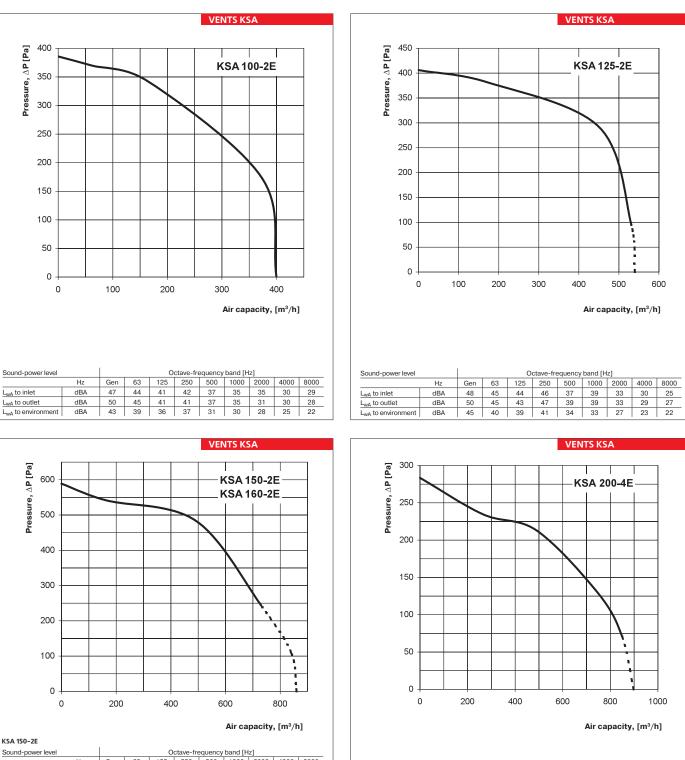
This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.

| Fan       |                                      |         | ecting  |                                    | I        | Votor     |                                                                                                           | Options                                             |                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------|--------------------------------------|---------|---------|------------------------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| series    |                                      | pipe di | iameter |                                    | Polarity | Phase     |                                                                                                           |                                                     |                                                                                                                                                                                                                                                                |  |  |  |  |
| VENTS KSA | 100; 125; 150; 160;<br>200; 250; 315 |         | -       | <sup>–</sup> 2, 4 E – single-phase |          |           | ${f R}$ – equipped with the power cord and plug C 14; ${f U}$ – speed controller module with the built in |                                                     |                                                                                                                                                                                                                                                                |  |  |  |  |
|           |                                      |         |         |                                    |          |           |                                                                                                           |                                                     | <ul> <li>Un – speed controller module with the external temperature sensor;</li> <li>U1 – speed controller with the built in timer and temperature sensor;</li> <li>U1n – speed controller with the built in timer and external temperature sensor.</li> </ul> |  |  |  |  |
|           |                                      |         |         |                                    |          |           |                                                                                                           | temperature se<br><b>U1n</b> – speed co             | roller with the k<br>nsor;<br>ntroller with th                                                                                                                                                                                                                 |  |  |  |  |
|           |                                      |         |         |                                    | Ad       | cessories |                                                                                                           | temperature se<br><b>U1n</b> – speed co             | roller with the k<br>nsor;<br>ntroller with th                                                                                                                                                                                                                 |  |  |  |  |
|           | 0                                    | 3       |         |                                    | Ac       | cessories |                                                                                                           | temperature sei<br>U1n – speed co<br>external tempe | roller with the k<br>nsor;<br>ntroller with th                                                                                                                                                                                                                 |  |  |  |  |

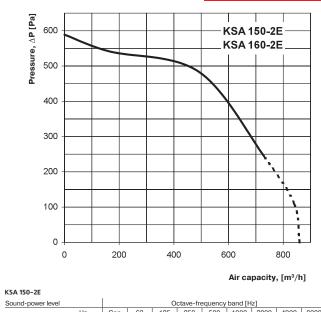
# Designation key:

Technical data:

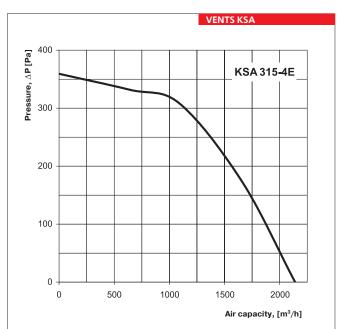

|                                    | KSA 100-2E | KSA 125-2E | KSA 150-2E |
|------------------------------------|------------|------------|------------|
| Voltage [V / 50 Hz]                | 230        | 230        | 230        |
| Power [W]                          | 115        | 120        | 260        |
| Current [A]                        | 0,51       | 0,52       | 1,16       |
| Maximum air flow [m³/h]            | 400        | 530        | 730        |
| RPM [min <sup>-1</sup> ]           | 2650       | 2650       | 2600       |
| Noise level at 3 m [dBA]           | 36,1       | 38,3       | 39,4       |
| Maximum operating temperature [°C] | -25 +40    | -25 +40    | -25 +40    |
| Protection rating                  | IPX4       | IPX4       | IPX4       |

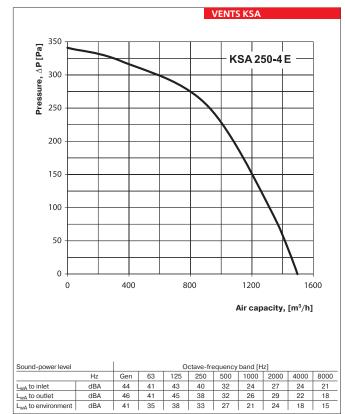

# Technical data:

|                                    | KSA 160-2E | KSA 200-4E | KSA 250-4E | KSA 315-4E |
|------------------------------------|------------|------------|------------|------------|
| Voltage [V / 50 Hz]                | 230        | 230        | 230        | 230        |
| Power [W]                          | 260        | 110        | 395        | 570        |
| Current [A]                        | 1,16       | 0,45       | 1,98       | 2,48       |
| Maximum air flow [m³/h]            | 730        | 850        | 1500       | 2140       |
| RPM [min <sup>-1</sup> ]           | 2600       | 1300       | 1330       | 1325       |
| Noise level at 3 m [dBA]           | 37,9       | 29,1       | 35,5       | 43,7       |
| Maximum operating temperature [°C] | -25 +40    | -25 +40    | -25 +40    | -40 +55    |
| Protection rating                  | IPX4       | IPX4       | IPX4       | IPX4       |


# Fan overall dimensions:

| Turne      |     | Mass |     |     |    |       |
|------------|-----|------|-----|-----|----|-------|
| Туре       | ØD  | В    | Н   | L   | Р  | [kg]  |
| KSA 100-2E | 99  | 184  | 308 | 310 | 48 | 4,22  |
| KSA 125-2E | 123 | 204  | 308 | 310 | 48 | 4,57  |
| KSA 150-2E | 148 | 231  | 343 | 358 | 48 | 6,28  |
| KSA 160-2E | 158 | 231  | 343 | 358 | 48 | 6,28  |
| KSA 200-4E | 198 | 282  | 408 | 445 | 48 | 8,25  |
| KSA 250-4E | 248 | 330  | 500 | 525 | 48 | 10,50 |
| KSA 315-4E | 314 | 392  | 495 | 535 | 48 | 17,0  |




| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 43  | 39 | 38  | 38        | 31      | 29      | 20   | 17   | 14   |
| L <sub>wA</sub> to outlet      | dBA | 43  | 36 | 38  | 34        | 34      | 27      | 23   | 18   | 18   |
| L <sub>wA</sub> to environment | dBA | 38  | 33 | 35  | 31        | 27      | 22      | 16   | 13   | 11   |



| Sound-power level              |     |     |    | 0   | ctave-fr | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250      | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 55  | 42 | 52  | 50       | 40      | 35      | 28   | 25   | 21   |
| L <sub>wA</sub> to outlet      | dBA | 55  | 43 | 51  | 48       | 40      | 34      | 29   | 23   | 23   |
| $L_{wA}$ to environment        | dBA | 50  | 39 | 48  | 44       | 35      | 30      | 25   | 20   | 17   |
| KSA 160-2E                     | Hz  | Gen | 63 | 125 | 250      | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 56  | 44 | 51  | 48       | 38      | 33      | 29   | 24   | 22   |
| L <sub>wA</sub> to outlet      | dBA | 54  | 42 | 51  | 50       | 37      | 31      | 30   | 25   | 25   |
| L <sub>wA</sub> to environment | dBA | 49  | 37 | 47  | 43       | 34      | 28      | 25   | 20   | 18   |





| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|--|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dBA | 45  | 41                         | 42  | 39  | 29  | 25   | 25   | 27   | 25   |  |
| L <sub>wA</sub> to outlet      | dBA | 48  | 43                         | 46  | 40  | 35  | 26   | 30   | 20   | 19   |  |
| L <sub>wA</sub> to environment | dBA | 44  | 36                         | 39  | 31  | 25  | 22   | 25   | 18   | 17   |  |

| <image/>                               |
|----------------------------------------|
| KSA fan greenhouse ventilation example |

# Series VENTS KSB



In-line centrifugal fans in heat- and sound-insulated casing with the air capacity up to 2150 m<sup>3</sup>/h

#### Applications

KSB fan design enables its application in supply and exhaust ventilation systems for the premises with high requirements to noise level and limited mounting space. Provision is made for installation in a premise above the suspended ceiling. Suitable for connection with 100, 125, 150, 160, 200 and 250 mm round ducts.

#### Design

The fan casing is made of galvanized steel sheet and provided with heat- and sound-insulating material. Round connecting pipes are fitted with rubber seals.

#### Motor

The centrifugal impeller with back-curved blades is powered by means of 2-pole asynchronous motor with external rotor. The motors are equipped with built-in thermal overheating protection with automatic restart. Motor ball bearings with selective lubricating oil ensure low-noise and maintenancefree fan operation. KSB...M model motor is installed onto the rubber anti-vibration mounts to reduce vibration and noise. Models marked KSB...S are featured with the high-powered motors.

#### Speed control

Both smooth or step speed control is performed with the thyristor or autotransformer controller. The motor speed is controlled by means of power voltage decrease. Air capacity as a function of motor speed accordingly. Several fans can be connected to one controller in case their total power and operating current do not exceed the controller rated values.

# Mounting

In-line fans designed for mounting inside the round ducts. The fan shall be fixed to a building by means of supports, suspension brackets or fixation brackets in case of flexible connectors application. The fan can be mounted in any position with respect to the air flow direction indicated with a pointer on the fan casing. Access to the fan maintenance shall be provided.

#### **Designation key:**



# KSB fan with electronic temperature and speed module

KSB fan with electronic speed control module with temperature sensor is the perfect solution for greenhousse and other premises requiring air temperature control. Fans marked KSB...U fitted with TSC electronic speed controle module with temperature sensor provide automatic speed regulation as a function of air temperature in the duct. Temperature and minimum speed can be adjusted with two control knobs on the controller panel. The fan can be supplied either with built-in temperature sensor or external one with 4 m cable and a cover for mechanical damage protection. The LED indicator for thermostat operation is placed at the front panel of the fan.

# KSB operation pattern with electronic speed module with temprature sensor

The set points for the maximum air temperature and the fan speed are manually adjusted by control knobs. Normally the fan operates with the speed which is set by the knob. If the temperature exceeds the set point, the fan boosts to the maximum speed. After that when the temperature drops down below the set point, the fan goes back to preset speed. The switching delay disables frequent motor switching (if the set temperature in the duct is equal to the threshold temperature).

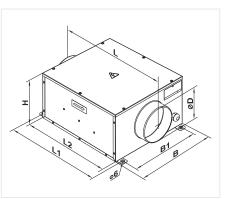
There are two patterns of delay that may be used in various cases:

Temperature sensor delay (KSB...U): if the temperature rises by 2°C above the set temperature,

the motor switches to the increased rotation speed. The motor switches to the preset (low) speed as the temperature drops below the set temperature threshold. This pattern can be used to keep air temperature to within 2°C. In this case fan switches are rare.

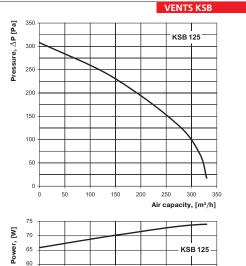
2. Timer delay (KSB...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold. The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.


Example for temperature sensor delay: motor operates with the motor speed =60% Initial conditions: - rated speed is set as 60% of the maximum speed - the temperature in the duct rises, reaches 25°C and keeps rising - operating threshold is set as 25°C - air temperature in the duct is 20°C fan switches to the maximum speed =100% and the delay timer switches for 5 minutes on Fan operates with the rated speed =60%- the temperature in the duct goes down - air temperature in the duct rises the fan operates with the maximum speed =100% fan operates with the rated speed =60%- the temperature in the duct reaches 25°C and keeps going down - air temperature in the duct reaches 27°C Fan switches to the speed =100% after the timer stops, the motor switches to the preset rated speed (=60%). After the speed switch the timer switches again for 5 minutes on. - air temperature in the duct goes down fan operates with the speed =100% - the temperature in the duct rises, reaches 25°C and keeps rising - temperature in the duct reaches 25°C again after the timer stops, the motor switches to the maximum speed (=100%). fan switches to the preset rated speed =60% After the speed switch the timer switches again for 5 minutes on. Example for timer delay: Thus, in timer delay pattern the delay timer activates every time the fan Initial conditions: speed changes. - set rotation speed = 60% of maximum speed

- set operating threshold =25°C

- air temperature in the duct =20°C

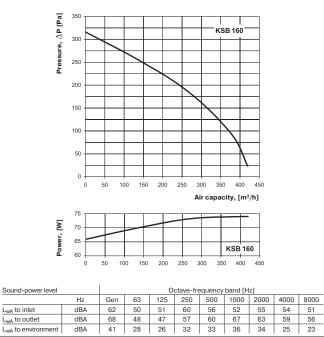

#### Fan overall dimensions:

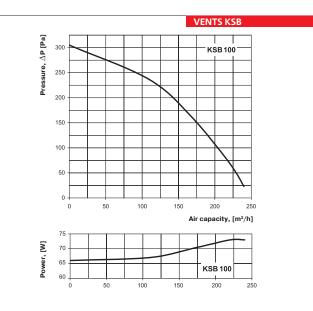
| Trues     |      |     | Dim | ensions [ | mm] |     |     | Mass |
|-----------|------|-----|-----|-----------|-----|-----|-----|------|
| Туре      | ØD B |     | B1  | Н         | L   | L1  | L2  | [kg] |
| KSB 100   | 99   | 322 | 280 | 192       | 447 | 380 | 350 | 5,4  |
| KSB 125   | 124  | 322 | 280 | 192       | 447 | 380 | 350 | 5,4  |
| KSB 150   | 149  | 352 | 310 | 212       | 477 | 410 | 380 | 6,4  |
| KSB 160   | 159  | 352 | 310 | 212       | 477 | 410 | 380 | 6,4  |
| KSB 200   | 199  | 432 | 368 | 287       | 588 | 506 | 480 | 10,0 |
| KSB 200 S | 199  | 432 | 368 | 287       | 588 | 506 | 480 | 12,0 |
| KSB 250   | 249  | 432 | 368 | 287       | 588 | 506 | 480 | 12,5 |
| KSB 315   | 314  | 502 | 438 | 397       | 648 | 566 | 540 | 15,5 |



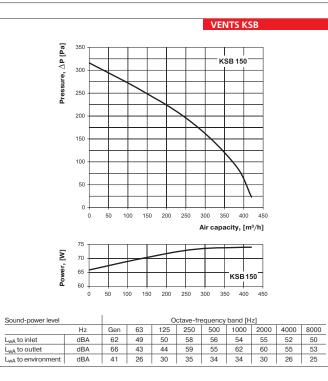
## Technical data:

|                                      | KSB 100 | KSB 125 | KSB 150 | KSB 160 |
|--------------------------------------|---------|---------|---------|---------|
| Voltage [V / 50 Hz]                  | 230     | 230     | 230     | 230     |
| Power [W]                            | 73      | 73      | 72      | 75      |
| Current [A]                          | 0,32    | 0,32    | 0,32    | 0,33    |
| Maximum air flow [m <sup>3</sup> /h] | 240     | 330     | 420     | 420     |
| RPM [min <sup>-1</sup> ]             | 2560    | 2590    | 2600    | 2690    |
| Noise level at 3 m [dBA]             | 33      | 35      | 36      | 36      |
| Maximum operating temperature [°C]   | -25 +55 | -25 +55 | -25 +55 | -25 +55 |
| Protection rating                    | IP X4   | IP X4   | IP X4   | IP X4   |



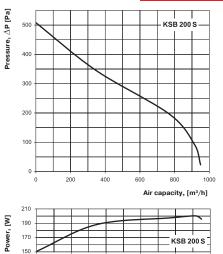



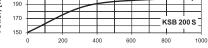

| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 64  | 51                         | 51  | 54  | 56  | 54   | 55   | 53   | 51   |
| L <sub>wA</sub> to outlet      | dBA | 65  | 50                         | 49  | 59  | 55  | 61   | 61   | 58   | 51   |
| L <sub>wA</sub> to environment | dBA | 38  | 29                         | 32  | 33  | 33  | 33   | 31   | 28   | 25   |


# VENTS KSB

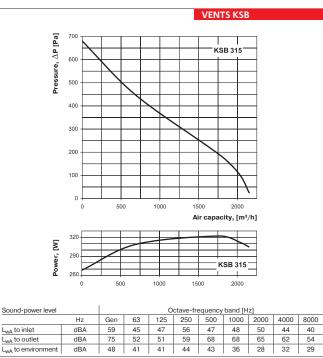
23

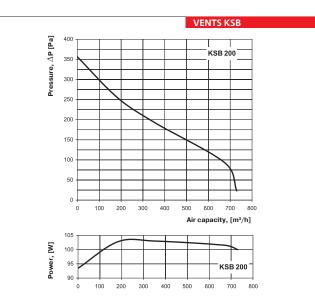




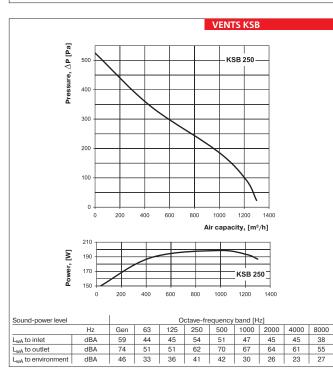


| Sound-power level              |     |     | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-----|-----|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 59  | 53                         | 57  | 54  | 52  | 51   | 54   | 51   | 47   |
| L <sub>wA</sub> to outlet      | dBA | 68  | 49                         | 50  | 53  | 56  | 66   | 63   | 56   | 54   |
| L <sub>wA</sub> to environment | dBA | 40  | 27                         | 29  | 32  | 31  | 34   | 29   | 29   | 20   |




|                                    | KSB 200 | KSB 200 S | KSB 250 | KSB 315 |
|------------------------------------|---------|-----------|---------|---------|
| Voltage [V / 50 Hz]                | 230     | 230       | 230     | 230     |
| Power [W]                          | 103     | 195       | 198     | 322     |
| Current [A]                        | 0,45    | 0,85      | 0,87    | 1,40    |
| Maximum air flow [m³/h]            | 730     | 950       | 1300    | 2150    |
| RPM [min <sup>-1</sup> ]           | 2550    | 2570      | 2420    | 2670    |
| Noise level at 3 m [dBA]           | 38      | 41        | 41      | 43      |
| Maximum operating temperature [°C] | -25 +50 | -25 +45   | -25 +50 | -25 +45 |
| Protection rating                  | IP X4   | IP X4     | IP X4   | IP X4   |


VENTS KSB






| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 53  | 41 | 43  | 53        | 51      | 47      | 44   | 44   | 36   |
| L <sub>wA</sub> to outlet      | dBA | 70  | 48 | 49  | 57        | 68      | 65      | 63   | 58   | 51   |
| L <sub>wA</sub> to environment | dBA | 45  | 29 | 32  | 37        | 40      | 27      | 29   | 26   | 27   |





| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 52  | 37 | 38  | 45        | 45      | 39      | 39   | 36   | 26   |
| L <sub>wA</sub> to outlet      | dBA | 67  | 49 | 46  | 55        | 64      | 59      | 60   | 53   | 41   |
| L <sub>wA</sub> to environment | dBA | 43  | 33 | 35  | 33        | 38      | 25      | 31   | 25   | 25   |



# Series VENTS KSD



Inline centrifugal fan for round ducts in heat- and soundinsulated casing. Air capacity up to **3930 m<sup>3</sup>/h.** 



### Application

KSD fan is designed for use in supply and exhaust ventilation systems with high requirements to noise level.

#### Design

The fan casing is made of galvanized steel plate and heat-and sound-insulated material. The connecting flanges are fitted with rubber seals. The fan series KSD 315/250x2 are equipped with two intake flanges Ø 250 mm to facilitate simultaneous air exhaust from several areas or rooms.

#### Motor

Four- or six-pole external rotor asynchronous motor equipped with double-inlet impeller with forward curved blades. The motor has overheating protection with automatic restart. Due to ball bearings with specially selected grease type the fan is maintenancefree and distinguished by low-noise operation.

#### Speed control

Both smooth and step speed control by a thyristor or autotransformer speed controller. Motor speed is frequency-controlled and the boosted air flow changes as the motor speed changes. Several fans may be connected to the same control unit if the total power and the operating current do not exceed the rated controller parameters.

#### Mounting

The inline fans are designed for mounting with round air ducts.

In case of mounting with flexible connectors the fan is attached to a building with supports, suspension or fixing brackets. The fan is suitable for mounting in any position in compliance with the air motion direction in the system (shown with pointer on the fan casing). While mounting sufficient space for fan maintenance must be provided.

#### Designation key:

| Series             |                           | Flang    | e diameter                    | [mm    | 1]                             | М                     | otoi         | r modificati       | ion                  |                                      | Optio                                                                                                    | ns             |          |
|--------------------|---------------------------|----------|-------------------------------|--------|--------------------------------|-----------------------|--------------|--------------------|----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------|----------|
| VENTS KSI          | Exhau<br>flange<br>diamet | 9        | Intake<br>flange<br>diameter* |        | Number<br>of intake<br>flanges | High-powered<br>motor |              | Number<br>of poles | Phase                | U – with electror<br>temperature sen | th a power cord an<br>nic <b>«Temperature</b><br>sor in the fan duct<br>onic <b>«Temperature</b><br>sor; | » module and b |          |
|                    | 250<br>315                |          | 250                           | x      | 2                              | S                     | -            | 4; 6               | E - single-<br>phase | sensor in the fan                    | nic <b>«Timer»</b> modu<br>duct.<br>ronic <b>«Timer»</b> mod                                             |                |          |
| * no intake flange | diameter if it is         | equal to | the exhaust fla               | nge di | iameter                        |                       | \ <i>ccc</i> | essories —         |                      |                                      |                                                                                                          |                |          |
| 0                  | 0                         | 0        |                               |        |                                |                       |              |                    | 1                    |                                      | 9 6                                                                                                      | **             | -        |
| page 282           | page 290                  | page     | 292 pag                       | je 296 | 5 page 3                       | 304 page 3            | 36           | page 33            | 8 page 35            | 2 page 352                           | page 353                                                                                                 | page 356       | page 357 |

# KSD fan with electronic temperature and speed module

KSD fan with electronic speed control module with temperature sensor is the perfect solution for greenhousse and other premises requiring air temperature control. Fans marked KSD...U fitted with TSC electronic speed controle module with temperature sensor provide automatic speed regulation as a function of air temperature in the duct. Temperature and minimum speed can be adjusted with two control knobs on the controller panel. The fan can be supplied either with built-in temperature sensor or external one with 4 m cable and a cover for mechanical damage protection. The LED indicator for thermostat operation is placed at the front panel of the fan.

# KSD operation pattern with electronic speed module with temprature sensor

The set points for the maximum air temperature and the fan speed are manually adjusted by control knobs. Normally the fan operates with the speed which is set by the knob. If the temperature exceeds the set point, the fan boosts to the maximum speed. After that when the temperature drops down below the set point, the fan goes back to preset speed. The switching delay disables frequent motor switching (if the set temperature in the duct is equal to the threshold temperature).

There are two patterns of delay that may be used in various cases:

1. Temperature sensor delay (KSD...U): if the temperature rises by 2°C above the set temperature,

for 5 minutes on

speed changes.

motor operates with the motor speed =60%

- the temperature in the duct goes down

the fan operates with the maximum speed =100%

- the temperature in the duct rises, reaches 25°C and keeps rising

fan switches to the maximum speed =100% and the delay timer switches

- the temperature in the duct reaches 25°C and keeps going down

after the timer stops, the motor switches to the preset rated speed (=60%). After the speed switch the timer switches again for 5 minutes on.

after the timer stops, the motor switches to the maximum speed (=100%).

Thus, in timer delay pattern the delay timer activates every time the fan

- the temperature in the duct rises, reaches 25°C and keeps rising

After the speed switch the timer switches again for 5 minutes on.

the motor switches to the increased rotation speed. The motor switches to the preset (low) speed as the temperature drops below the set temperature threshold. This pattern can be used to keep air temperature to within 2°C. In this case fan switches are rare.

2. Timer delay (KSD...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold. The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.

Example for temperature sensor delay:

Initial conditions:

- rated speed is set as 60% of the maximum speed
- operating threshold is set as 25°C
- air temperature in the duct is 20°C

Fan operates with the rated speed =60%

- air temperature in the duct rises fan operates with the rated speed =60%

- air temperature in the duct reaches 27°C Fan switches to the speed =100%

- air temperature in the duct goes down fan operates with the speed =100%

- temperature in the duct reaches  $25^{\circ}$ C again fan switches to the preset rated speed =60%

#### Example for timer delay:

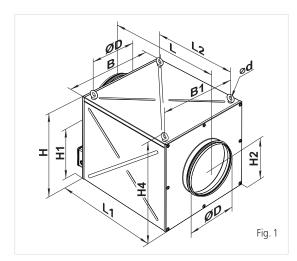
- Initial conditions:
- set rotation speed = 60% of maximum speed
- set operating threshold =25°C
- air temperature in the duct =20°C

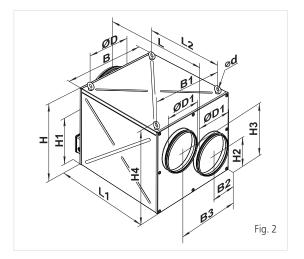


Optional supply with fastening eye

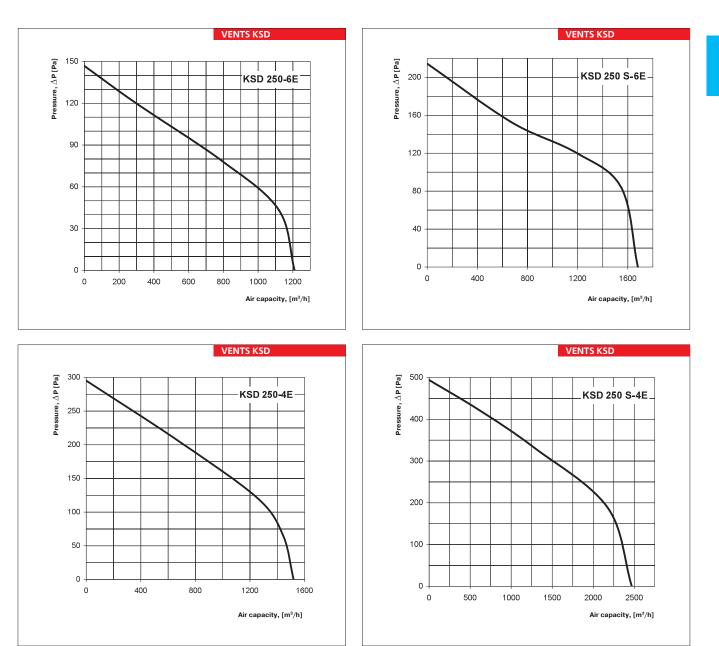


VENTS KSD...R is equipped with the power cord


VENTS. Industrial and commercial ventilation | 02-2012

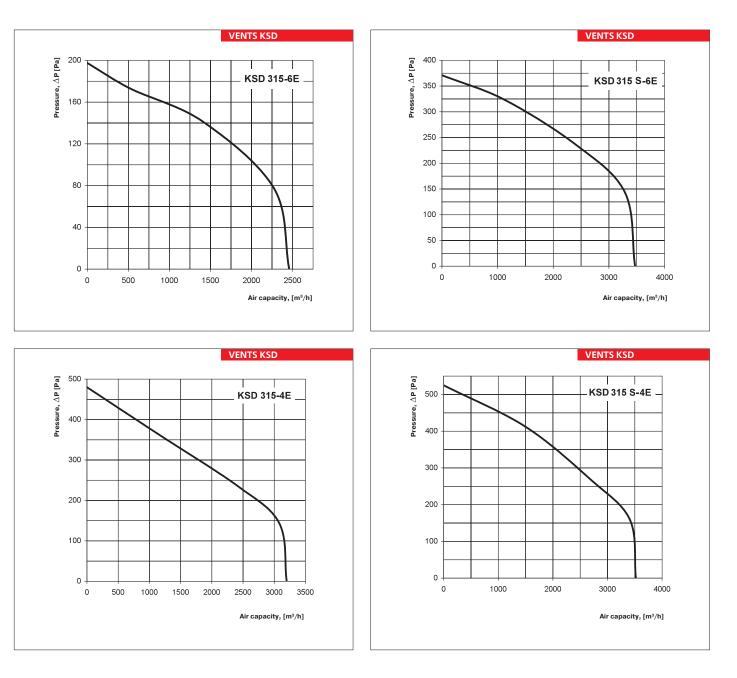

# Fan overall dimensions:

| Turne        |     |    |     |     | Dim | ensions [ | mm] |     |     |     |     | Mass | Figure |
|--------------|-----|----|-----|-----|-----|-----------|-----|-----|-----|-----|-----|------|--------|
| Туре         | ØD  | Ød | В   | B1  | Н   | H1        | H2  | H4  | L   | L1  | L2  | [kg] | Nº     |
| KSD 250-6E   | 248 | 20 | 453 | 400 | 433 | 298       | 216 | 470 | 568 | 470 | 400 | 30   | 1      |
| KSD 250 S-6E | 248 | 20 | 503 | 450 | 483 | 340       | 241 | 520 | 638 | 540 | 470 | 31,3 | 1      |
| KSD 250-4E   | 248 | 20 | 453 | 400 | 433 | 298       | 216 | 470 | 568 | 470 | 400 | 30   | 1      |
| KSD 250 S-4E | 248 | 20 | 503 | 450 | 483 | 340       | 241 | 520 | 638 | 540 | 470 | 31,3 | 1      |
| KSD 315-6E   | 313 | 20 | 600 | 550 | 500 | 340       | 251 | 537 | 680 | 580 | 510 | 31   | 1      |
| KSD 315 S-6E | 313 | 25 | 670 | 620 | 610 | 450       | 306 | 658 | 825 | 725 | 660 | 45   | 1      |
| KSD 315-4E   | 313 | 20 | 600 | 550 | 500 | 340       | 251 | 537 | 680 | 580 | 510 | 33   | 1      |
| KSD 315 S-4E | 313 | 20 | 650 | 610 | 530 | 367       | 266 | 567 | 735 | 635 | 570 | 38   | 1      |


# Fan overall dimensions:

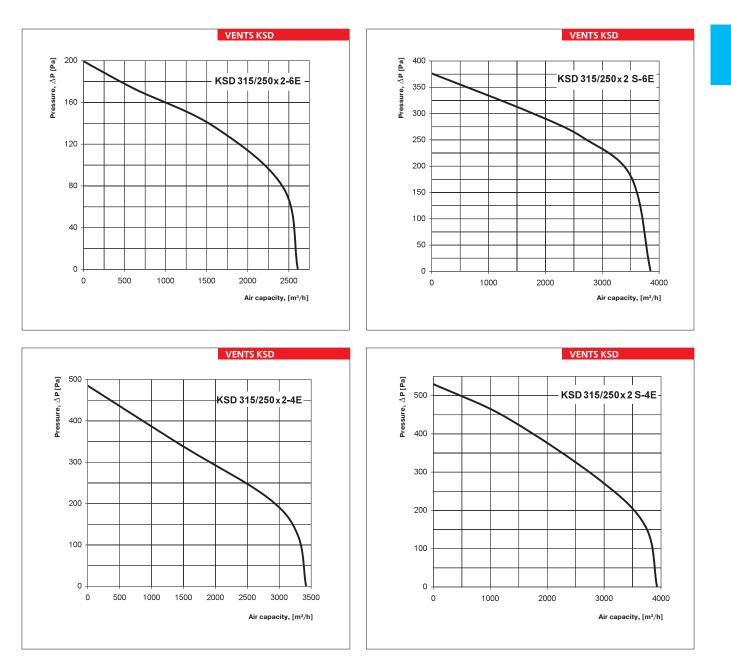
| Tumo               |     |     |    |     |     |     | Dime | nsions | [mm] |     |     |     |     |     |     | Mass | Figure |
|--------------------|-----|-----|----|-----|-----|-----|------|--------|------|-----|-----|-----|-----|-----|-----|------|--------|
| Туре               | ØD  | ØD1 | Ød | В   | B1  | B2  | B3   | Н      | H1   | H2  | H3  | H4  | L   | L1  | L2  | [kg] | Nº     |
| KSD 315/250x2-6E   | 313 | 248 | 20 | 600 | 550 | 171 | 431  | 500    | 340  | 176 | 326 | 537 | 680 | 580 | 510 | 31   | 2      |
| KSD 315/250x2 S-6E | 313 | 248 | 25 | 670 | 620 | 216 | 457  | 610    | 450  | 186 | 427 | 658 | 825 | 725 | 660 | 45   | 2      |
| KSD 315/250x2-4E   | 313 | 248 | 20 | 600 | 550 | 171 | 431  | 500    | 340  | 176 | 326 | 537 | 680 | 580 | 510 | 33   | 2      |
| KSD 315/250x2 S-4E | 313 | 248 | 20 | 650 | 610 | 188 | 465  | 530    | 367  | 186 | 346 | 567 | 735 | 635 | 570 | 38   | 2      |






|                                      | KSD<br>250-6E | KSD<br>250 S-6E | KSD<br>250-4E | KSD<br>250 S-4E |
|--------------------------------------|---------------|-----------------|---------------|-----------------|
| Voltage [V / 50 Hz]                  | 1~ 230        | 1~ 230          | 1~ 230        | 1~ 230          |
| Power [W]                            | 120           | 311             | 243           | 617             |
| Current [A]                          | 0,55          | 1,36            | 1,06          | 2,69            |
| Maximum air flow [m <sup>3</sup> /h] | 1210          | 1680            | 1520          | 2470            |
| RPM [min <sup>-1</sup> ]             | 860           | 940             | 1320          | 1465            |
| Noise level at 3 m [dBA]             | 40            | 41              | 44            | 46              |
| Maximum operating temperature [°C]   | -20+50        | -20+50          | -20+50        | -20+50          |
| Protection rating                    | IP 42         | IP 42           | IP 42         | IP 42           |




# Technical data:

|                                      | KSD<br>315-6E | KSD<br>315 S-6E | KSD<br>315-4E | KSD<br>315 S-4E |
|--------------------------------------|---------------|-----------------|---------------|-----------------|
| Voltage [V / 50 Hz]                  | 1~ 230        | 1~ 230          | 1~ 230        | 1~ 230          |
| Power [W]                            | 402           | 800             | 723           | 931             |
| Current [A]                          | 2,04          | 4,59            | 3,15          | 4,18            |
| Maximum air flow [m <sup>3</sup> /h] | 2460          | 3470            | 3200          | 3520            |
| RPM [min <sup>-1</sup> ]             | 920           | 960             | 1350          | 1430            |
| Noise level at 3 m [dBA]             | 42            | 43              | 45            | 47              |
| Maximum operating temperature [°C]   | -20+50        | -20+50          | -20+50        | -20+50          |
| Protection rating                    | IP 42         | IP 42           | IP 42         | IP 42           |



Technical data:

|                                      | KSD<br>315/250x2-6E | KSD<br>315/250x2 S-6E | KSD<br>315/250x2-4E | KSD<br>315/250x2 S-4E |
|--------------------------------------|---------------------|-----------------------|---------------------|-----------------------|
| Voltage [V / 50 Hz]                  | 1~ 230              | 1~ 230                | 1~ 230              | 1~ 230                |
| Power [W]                            | 427                 | 953                   | 764                 | 1066                  |
| Current [A]                          | 2,13                | 5,06                  | 3,36                | 4,78                  |
| Maximum air flow [m <sup>3</sup> /h] | 2610                | 3850                  | 3420                | 3930                  |
| RPM [min <sup>-1</sup> ]             | 955                 | 970                   | 1390                | 1455                  |
| Noise level at 3 m [dBA]             | 42                  | 43                    | 45                  | 47                    |
| Maximum operating temperature [°C]   | -20+50              | -20+50                | -20+50              | -20+50                |
| Protection rating                    | IP 42               | IP 42                 | IP 42               | IP 42                 |



# ELECTRICAL ACCESSORIES COMPATIBILITY

|                       |                              |           |           |           |           |   |           | ۱         | ۲         | l         |           |           |           |            |           |           |            |            | 0          | 0          |            |            |         |         |         | C       |         |           |         |         |
|-----------------------|------------------------------|-----------|-----------|-----------|-----------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|------------|------------|------------|---------|---------|---------|---------|---------|-----------|---------|---------|
|                       |                              | VS-355-4E | VS-355-4D | VS-400-4E | VS-400-4D |   | VS-450-4E | VS-450-4D | VS-500-4E | VS-500-4D | VS-560-4D | VS-560-6D | VS-630-4D | VS-630C-4D | VS-630-6D | VS-710-6D | KSA 100-2E | KSA 125-2E | KSA 150-2E | KSA 160-2E | KSA 200-4E | KSA 250-4E | KSB 100 | KSB 125 | KSB 150 | KSB 160 | KSB 200 | KSB 200 S | KSB 250 | KSB 315 |
| Thyristor             | speed controllers            |           | -         | -         | _         |   | -         | -         | -         | -         | -         | -         | -         | -          | -         | -         | -          | -          | -          | -          | -          | -          | -       | -       | -       | -       | -       | -         | -       | -       |
| 134                   | RS-1-300                     | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RS-1-400                     |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       |         | •         | •       | •       |
| $\mathbf{\mathbf{Y}}$ | RS-1 N (V)                   |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          |            |            | •          |            | •       | •       | •       | •       | •       | •         | •       |         |
| 2 -                   | RS-1,5 N (V)                 | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | ٠          | ٠          |            | •       | ٠       | ٠       | •       | •       | •         | •       | ٠       |
| 1                     | RS-2 N (V)<br>RS-2,5 N (V)   | •         |           | •         |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RS-0,5-PS                    |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            | •          |            | •       | •       | •       | •       | •       |           |         |         |
| 0                     | RS-1,5-PS                    | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RS-2,5-PS<br>RS-4,0-PS       | •         |           | •         |           |   | •         |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RS-1,5-T                     | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
| 1.                    | RS-3,0-T                     | •         |           | •         |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | ٠       | •       | •       | •       | •       | •         | •       | •       |
| 100                   | RS-5,0-T<br>RS-10,0-T        | •         |           | •         |           |   | •         |           | •         |           |           |           |           |            |           |           | •          | •          | •          | •          |            | •          |         |         |         |         |         | •         | •       | •       |
|                       | RS-1,5-TA                    | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
| 5                     | RS-3,0-TA                    | •         |           | ٠         |           |   |           |           |           |           |           |           |           |            |           |           | ٠          | •          | •          | ٠          | •          | •          | •       | •       | •       | ٠       | •       | •         | •       | •       |
| 22                    | RS-5,0-TA<br>RS-10,0-TA      | •         |           | •         |           |   | •         |           | •         |           |           |           |           |            |           |           | •          | •          | •          | •          |            | •          |         |         |         |         |         | •         | •       | •       |
| Transform             | ner speed control            |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| -                     | RSA5E-2-P                    | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RSA5E-2-M<br>RSA5E-3-M       | •         |           | •         |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
| -/                    | RSA5E-4-M                    | •         |           | •         |           |   | •         |           |           |           |           |           |           |            |           |           | ٠          | •          | •          | ٠          | •          | •          | ٠       | •       | •       | •       | ٠       | •         | •       | •       |
|                       | RSA5E-12-M                   | •         |           | •         |           |   | •         |           | ٠         |           |           |           |           |            |           |           | •          | •          | •          | ٠          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | RSA5E-1,5-T<br>RSA5E-3,5-T   | •         |           | •         |           |   | •         |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
| 52                    | RSA5E-5,0-T                  | •         |           | •         |           |   | •         |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
| 400                   | RSA5E-8,0-T                  | •         |           | •         |           |   | •         |           | ٠         |           |           |           |           |            |           |           | ٠          | •          | •          | ٠          | •          | •          | ٠       | •       | •       | •       | ٠       | •         | •       | •       |
|                       | RSA5E-10,0-T<br>RSA5D-1,5-T  | •         | •         | •         | •         | • | •         |           | •         |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
| 100                   | RSA5D-3,5-T                  |           | •         |           | •         | • |           | •         |           | •         |           | •         |           |            | •         |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
|                       | RSA5D-5-M                    |           | •         |           | •         | • |           | •         |           | ٠         |           | •         |           |            | ٠         | •         |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| 1 .                   | RSA5D-8-M                    |           | ٠         |           | •         | • |           | ٠         |           | ٠         | ٠         | ٠         | •         | •          | ٠         | •         |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
|                       | RSA5D-10-M<br>RSA5D-12-M     |           | •         |           | •         | • |           | •         |           | •         | •         | •         | •         | •          | •         | •         |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| Frequenc              | y speed controlle            | rs        |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
|                       | VFED-200-TA                  |           | •         |           |           | • |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| 1                     | VFED-400-TA<br>VFED-750-TA   |           | •         |           | •         | • |           | •         |           | •         |           | •         |           |            | •         |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| Card                  | VFED-1100-TA                 |           | •         |           | •         | • |           | •         |           | •         | ٠         | •         |           |            | •         | •         |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| Townson               | VFED-1500-TA                 |           | •         |           | •         | • |           | •         |           | •         | •         | •         | •         |            | •         | •         |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
|                       | ture regulators<br>RTS-1-400 |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| iii.                  | RTSD-1-400                   |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| 0                     | RT-10                        | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          | •          | •       | •       | •       | •       | •       | •         | •       | •       |
| Multi-spe             | ed fan switches              |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| 1                     | P2-5,0<br>P3-5,0             |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| N. C.                 | P5-5,0                       |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| #                     | P2-1-300                     |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
|                       | P3-1-300<br>rs controllers   |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| 10                    | R-1/010                      |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| Sensors               |                              |           |           |           |           |   |           |           |           |           |           |           |           |            |           |           |            |            |            |            |            |            |         |         |         |         |         |           |         |         |
| Sensors               | T-1,5 N                      | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | TH-1,5 N                     | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | ٠          | ٠          | ٠          | ٠          | ٠          |            | ٠       | ٠       | ٠       | ٠       | ٠       | ٠         | ٠       | ٠       |
| and in                | TF-1,5 N                     | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | •       |
|                       | TP-1,5 N                     | •         |           |           |           |   |           |           |           |           |           |           |           |            |           |           | •          | •          | •          | •          | •          |            | •       | •       | •       | •       | •       | •         | •       | _       |

• recommended

suitable

|            |                                 |            |              |            |              | Ń          | 1          | ń        | 11           |                  |                    |                  |                    |
|------------|---------------------------------|------------|--------------|------------|--------------|------------|------------|----------|--------------|------------------|--------------------|------------------|--------------------|
|            |                                 |            |              |            |              |            |            |          |              | -6E              | S-6E               | -4E              | S-4E               |
|            |                                 | KSD 250-6E | KSD 250 S-6E | KSD 250-4E | KSD 250 S-4E | KSD 315-6E | D 315 S-6E | D 315-4E | KSD 315 S-4E | KSD 315/250x2-6E | KSD 315/250x2 S-6E | KSD 315/250x2-4E | KSD 315/250x2 S-4E |
|            |                                 | _          | KSI          | KSI        | KSI          | KSI        | KSD        | KSD      | KSI          | KSI              | KSI                | KSI              | KSI                |
| 1.000      | ner speed control               | lers       |              |            |              |            |            |          |              |                  |                    |                  |                    |
| 3          | RS-1-300                        | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| Q          | RS-1-400                        | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
|            | RS-1 N (V)                      | •          |              | •          |              |            |            |          |              |                  |                    |                  |                    |
| 2 -        | RS-1,5 N (V)<br>RS-2 N (V)      | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| Gal        | RS-2,5 N (V)                    | •          | •            | •          |              | •          |            |          |              | •                |                    |                  |                    |
|            | RS-0,5-PS                       |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| 1000       | RS-1,5-PS                       | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| 0          | RS-2,5-PS                       | •          | •            | •          |              | •          |            |          |              | •                |                    |                  |                    |
|            | RS-4,0-PS                       | •          | •            | •          | •            | •          |            | ٠        |              | ٠                |                    | ٠                |                    |
|            | RS-1,5-T                        | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| 1.         | RS-3,0-T                        | •          | •            | •          | •            | •          |            |          |              | •                |                    |                  |                    |
| 100        | RS-5,0-T                        | •          | •            | •          | •            | •          | •          | •        | •            | •                |                    | •                | ٠                  |
|            | RS-10,0-T                       |            | •            | •          | •            | •          | •          | •        | •            | •                | •                  | •                | ٠                  |
|            | RS-1,5-TA                       | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
|            | RS-3,0-TA                       | •          | •            | •          | •            | •          |            |          |              | •                |                    |                  |                    |
| 25         | RS-5,0-TA<br>RS-10,0-TA         | •          | •            | •          | •            | •          | •          | •        | •            | •                | •                  | •                | •                  |
| Transform  | ner speed control               | lers       |              |            |              |            |            |          |              |                  |                    |                  |                    |
| ÷          | RSA5E-2-P                       | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
|            | RSA5E-2-M                       | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| en /       | RSA5E-3-M                       | •          | •            | •          | •            | •          |            |          |              | •                |                    |                  |                    |
| Sec.       | RSA5E-4-M                       | •          | •            | •          | •            | •          |            | •        |              | •                |                    | •                |                    |
|            | RSA5E-12-M                      | •          | •            | •          | •            | •          | •          | •        | •            | •                | •                  | •                | •                  |
|            | RSA5E-1,5-T<br>RSA5E-3,5-T      |            |              |            | •            | •          |            | •        |              | •                |                    | •                |                    |
| 1 -        | RSA5E-5,0-T                     | •          | •            | •          | •            | •          | •          | •        | •            | •                |                    | •                | •                  |
| 105        | RSA5E-8,0-T                     | •          | •            | •          | •            | •          | •          | •        | •            | •                | •                  | •                | •                  |
|            | RSA5E-10,0-T                    | •          | •            | •          | •            | •          | •          | •        | •            | •                | •                  | •                | •                  |
| On.        | RSA5D-1,5-T                     |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| 100        | RSA5D-3,5-T                     |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| To.        | RSA5D-5-M                       |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | RSA5D-8-M                       |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| 1 .        | RSA5D-10-M                      |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | RSA5D-12-M                      |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| Frequenc   | y speed controlle               | rs         |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | VFED-200-TA                     |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| 1-17       | VFED-400-TA                     |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| the second | VFED-750-TA                     |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | VFED-1100-TA                    |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| Temperat   | VFED-1500-TA<br>ture regulators |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | RTS-1-400                       |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | RTSD-1-400                      |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| Multi-spe  | RT-10<br>eed fan switches       | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| -          | P2-5,0                          |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| i) a       | P3-5,0<br>P5-5,0                |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| -          | P2-1-300                        |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| EC-motor   | P3-1-300<br>rs controllers      |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | R-1/010                         |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
| Sensors    |                                 |            |              |            |              |            |            |          |              |                  |                    |                  |                    |
|            | T-1,5 N                         | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| 0 -        | TH-1,5 N                        | •          | •            | ٠          |              |            |            |          |              |                  |                    |                  |                    |
| 4 3        | TF-1,5 N                        | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |
| Lame .     | TP-1,5 N                        | •          | •            | •          |              |            |            |          |              |                  |                    |                  |                    |

• recommended

suitable

VENTS VCU Series



• Single-inlet scroll-type centrifugal fans with external rotor motor and the air capacity up to 2000 m<sup>3</sup>/h. The fan is designed for the supply and exhaust ventilation systems.

VENTS VCUN Series



Single-inlet scroll-type centrifugal fans with the impeller mounted on the three-phase asynchronous motor shaft. The air capacity is up to 19 000 m<sup>3</sup>/h. The fan is designed for supply and exhaust ventilation systems.









| VENTS VCU<br>centrifugal fan in scroll casing<br>Air capacity – up to 2000 m³/h                 | page<br>126 |
|-------------------------------------------------------------------------------------------------|-------------|
| VENTS VCUN<br>centrifugal fan in scroll casing<br>Air capacity – up to 19 000 m <sup>3</sup> /h | page<br>130 |

# Series VENTS VCU



Scroll-type single-inlet centrifugal fans powered by the motors with external rotor. The air capacity up to **2000 m<sup>3</sup>/h**. The fan is designed for supply and exhaust ventilation systems.

#### Applications

Designed for supply and exhaust ventilation of various premises. The fan can be used as a components for ventilation and air conditioning systems and is suitable for outside mounting.

#### Design

The fan casing is made of steel with polymeric coating.

# Motor

The impeller with forward-curved blades of galvanized steel is powered by 2- and 4-pole asynchronous motor with external rotor. The motors are equipped with incorporated thermal overheating protection with automatic restart as well as ball bearings for long service life. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembling. Motor protection rating IP 44.

#### Speed control

Both smooth and step speed control is performed with the symistor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the controller rated values.

#### Mounting

The fan is suitable for installation in ventilating chambers, air conditioning units or can be used separately. In case of independent operation it can be connected to air ducts by means of either both exhaust and inlet branch pipes or exhaust branch pipe only. The exhaust and intake branch pipes have rectangular or circular sections accordingly. Power is supplied by means of the external terminals.



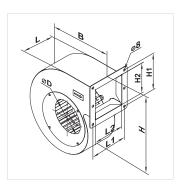
# Designation key:

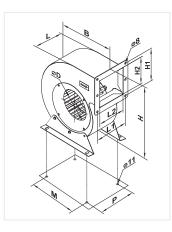
| Designation key: |         |          |             |                |                         |          |                              |          |                   |                    |          |  |
|------------------|---------|----------|-------------|----------------|-------------------------|----------|------------------------------|----------|-------------------|--------------------|----------|--|
| Series           |         |          | Motor m     | nodification   |                         | Imp      | eller diamet                 | er, mm   | Im                | Impeller width, mm |          |  |
|                  |         | Numb     | er of poles | Pł             | nase                    |          |                              |          |                   |                    |          |  |
| VENTS VCU        | J       |          | 2<br>4      | <b>E</b> – sin | <b>E</b> – single phase |          | 140; 160; 180; 200; 225; 250 |          | 60; 62            | ; 102; 140         |          |  |
|                  |         | 3        |             |                | Acces                   |          |                              |          | 9.<br>• • • • • • | **                 |          |  |
| page 282 page    | e 290 p | bage 292 | page 296    | page 304       | page 336                | page 338 | page 352                     | page 352 | page 353          | page 356           | page 357 |  |

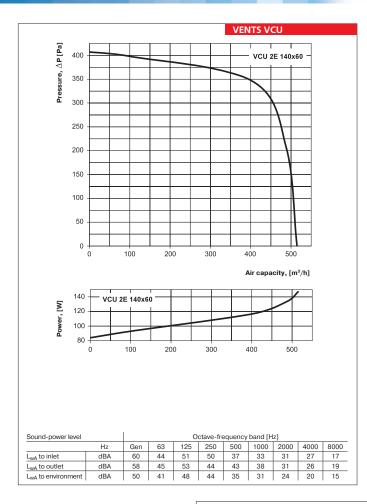
Technical data:

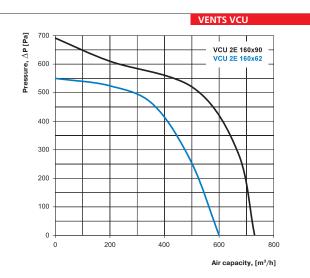
|                                      | VCU 2E 140x60 | VCU 2E 160x62 | VCU 2E 160x90 | VCU 4E 180x92 |
|--------------------------------------|---------------|---------------|---------------|---------------|
| Voltage [V / 50 Hz]                  | 230           | 230           | 230           | 230           |
| Power [W]                            | 148           | 240           | 320           | 160           |
| Current [A]                          | 0,64          | 1,05          | 1,48          | 0,7           |
| Maximum air flow [m <sup>3</sup> /h] | 515           | 600           | 730           | 800           |
| RPM [min <sup>-1</sup> ]             | 2820          | 2100          | 2745          | 1465          |
| Noise level at 3 m [dBA]             | 68            | 68            | 70            | 62            |
| Maximum operating temperature [°C]   | -25 +45       | -25 +50       | -25 +45       | -25 +45       |
| Protection rating                    | IP X4         | IP X4         | IP X4         | IP X4         |

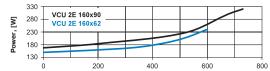
# Technical data:


|                                    | VCU 4E 200x80 | VCU 4E 200x102 | VCU 4E 225x102 | VCU 4E 250x140 |
|------------------------------------|---------------|----------------|----------------|----------------|
| Voltage [V / 50 Hz]                | 230           | 230            | 230            | 230            |
| Power [W]                          | 125           | 280            | 395            | 570            |
| Current [A]                        | 0,55          | 1,25           | 1,98           | 2,48           |
| Maximum air flow [m³/h]            | 730           | 1350           | 1480           | 2000           |
| RPM [min <sup>-1</sup> ]           | 1430          | 1475           | 1330           | 1310           |
| Noise level at 3 m [dBA]           | 63            | 65             | 69             | 60             |
| Maximum operating temperature [°C] | -25 +45       | -25 +40        | -40 +70        | -40 +70        |
| Protection rating                  | IP X4         | IP X4          | IP X4          | IP X4          |


# Fan overall dimensions:

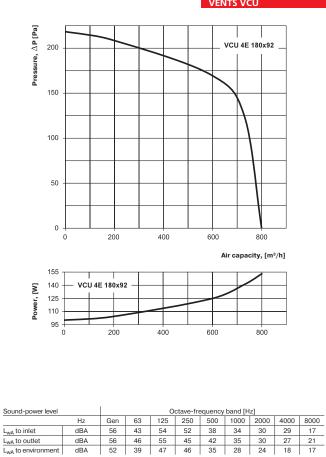

| Turne          |     |     | [   | Dimensio | ons [mm] | ]   |     |     | Mass |
|----------------|-----|-----|-----|----------|----------|-----|-----|-----|------|
| Туре           | ØD  | В   | Н   | H1       | H2       | L   | L1  | L2  | [kg] |
| VCU 2E 140x60  | 140 | 243 | 287 | 125      | 93       | 85  | 107 | 75  | 3,2  |
| VCU 2E 160x62  | 160 | 277 | 324 | 136      | 106      | 89  | 112 | 82  | 4,2  |
| VCU 2E 160x90  | 160 | 277 | 324 | 136      | 106      | 136 | 158 | 127 | 5,1  |
| VCU 4E 180x92  | 180 | 311 | 360 | 150      | 120      | 145 | 166 | 137 | 6,5  |
| VCU 4E 200x80  | 200 | 335 | 398 | 165      | 134      | 121 | 140 | 113 | 6,8  |
| VCU 4E 200x102 | 200 | 335 | 398 | 165      | 134      | 157 | 175 | 148 | 7,3  |


### Fan overall dimensions:


| Turne          |     | Dimensions [mm] |     |     |     |     |     |     |     |     |      |
|----------------|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Туре           | ØD  | В               | Н   | H1  | H2  | L   | L1  | L2  | Р   | М   | [kg] |
| VCU 4E 225x102 | 225 | 365             | 441 | 210 | 171 | 145 | 170 | 137 | 178 | 250 | 11,2 |
| VCU 4E 250x140 | 250 | 410             | 485 | 230 | 191 | 205 | 230 | 197 | 238 | 270 | 15,5 |

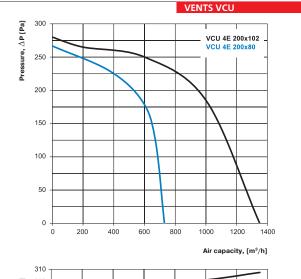


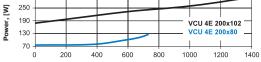






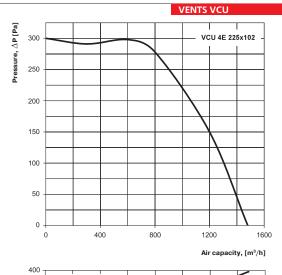


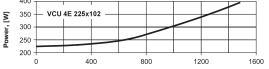


# VCU 2E 160x90


| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 58                         | 41 | 55  | 53  | 40  | 33   | 33   | 25   | 21   |
| L <sub>wA</sub> to outlet      | dBA | 57                         | 45 | 56  | 46  | 43  | 36   | 30   | 26   | 21   |
| L <sub>wA</sub> to environment | dBA | 51                         | 39 | 48  | 45  | 36  | 32   | 25   | 20   | 17   |
| VCU 2E 160x62                  | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 57                         | 42 | 54  | 54  | 38  | 34   | 31   | 28   | 21   |
| L <sub>wA</sub> to outlet      | dBA | 57                         | 46 | 57  | 45  | 42  | 38   | 31   | 26   | 20   |
| $L_{\text{wA}}$ to environment | dBA | 49                         | 37 | 48  | 42  | 33  | 29   | 25   | 19   | 16   |

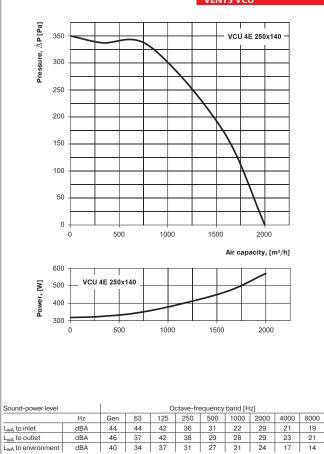


VENTS VCU


VENTS. Industrial and commercial ventilation | 02-2012







### VCU 4E 200x102

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 41  | 37 | 38  | 37        | 30      | 26      | 19   | 17   | 14   |
| L <sub>wA</sub> to outlet      | dBA | 42  | 40 | 41  | 36        | 36      | 25      | 16   | 17   | 18   |
| L <sub>wA</sub> to environment | dBA | 37  | 32 | 35  | 29        | 26      | 20      | 16   | 11   | 11   |
| VCU 4E 200x80                  | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 41  | 38 | 39  | 34        | 31      | 29      | 20   | 18   | 13   |
| L <sub>wA</sub> to outlet      | dBA | 44  | 40 | 40  | 36        | 34      | 25      | 20   | 16   | 17   |
| L <sub>wA</sub> to environment | dBA | 37  | 33 | 37  | 30        | 25      | 21      | 16   | 13   | 13   |





| Sound-power level              |     |     |                                        | 0  | ctave-fre | equency | band [H | z] |    |    |  |  |
|--------------------------------|-----|-----|----------------------------------------|----|-----------|---------|---------|----|----|----|--|--|
|                                | Hz  | Gen | Gen 63 125 250 500 1000 2000 4000 8000 |    |           |         |         |    |    |    |  |  |
| L <sub>wA</sub> to inlet       | dBA | 39  | 37                                     | 38 | 38        | 31      | 28      | 21 | 17 | 15 |  |  |
| L <sub>wA</sub> to outlet      | dBA | 44  | 37                                     | 41 | 38        | 34      | 27      | 16 | 17 | 19 |  |  |
| L <sub>wA</sub> to environment | dBA | 37  | 31                                     | 33 | 31        | 25      | 20      | 17 | 13 | 11 |  |  |



# VENTS VCU

FAN SERIES VENTS VCU

# Series VENTS VCUN



Scroll single-inlet centrifugal fans with the impeller mounted directly on the three-phase asynchronous motor shaft. Air capacity up to **19 000 m<sup>3</sup>/h**. The fan is designed for supply and exhaust ventilation systems.

#### Applications

Supply and exhaust ventilation systems for various premises. The fans can be used as components for ventilation and air conditioning units and are suitable for outdoor mounting.

### Design

The fan casing is made of steel with polymeric coating. VCUN fan can be supplied both with the clockwise or counterclockwise rotation impeller. Each modification has few scroll positions to enable connection to the air ducts at any angle with 45° pitch distance.

#### Motor

The impeller with galvanized forward-curved blades is mounted directly on the 2-, 4-, 6- or 8-pole threephase asynchronous motor shaft. Ball bearings in the motor ensure long service life. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 54.

#### Speed control

Both smooth or step speed control is performed by means of the autotransformer or frequency controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

#### Mounting

The fan is suitable for installation in ventilating chambers, air conditioning units or can be used separately. In case of independent operation it can be connected to air ducts by means of both exhaust and intake branch pipes or exhaust branch pipe only. The exhaust and inlet branch pipes have rectangular or circular sections accordingly. Power is supplied by means of external terminals.



#### Designation key:

| Series       | 5         |            | Impeller<br>diameter, m                  | m           | Impe<br>width,          |          | N<br>Power [k                                   |          | dification<br>Number of pole | es or  | Scroll<br>ientation*       |       | Casing<br>tion angle*             |
|--------------|-----------|------------|------------------------------------------|-------------|-------------------------|----------|-------------------------------------------------|----------|------------------------------|--------|----------------------------|-------|-----------------------------------|
| VENT         |           |            | 160; 180; 20<br>280; 315; 35<br>450; 500 |             | 74; 93; 103<br>183; 203 |          | 0,25; 0,37;<br>- 0,75; 1,1; 1,!<br>3; 4; 5,5; 7 | 5;2,2; - | 2; 4; 6; 8                   |        | right side;<br>– left side |       | 5; 90; 135;<br>; 225; 270;<br>315 |
| * Standard c | casing mo | odificatio | on PR90 (refe                            | r picture). |                         |          |                                                 |          |                              |        |                            |       |                                   |
|              |           |            |                                          |             |                         | Acc      | essories —                                      | -        |                              |        |                            | _     |                                   |
| 0            |           | F          | 0                                        | 0           |                         |          |                                                 |          | <b>N</b>                     |        |                            | Ŀ     |                                   |
| page 282     | pag       | e 282      | page 290                                 | page 292    | 2 page 296              | page 304 | page 336                                        | page 3   | 338 page 344                 | page 3 | 59 page                    | e 360 | page 361                          |

Technical data:

|                                      | VCUN<br>140x74-<br>0,25-4 | VCUN<br>140x74-<br>0,37-2 | VCUN<br>160x74-<br>0,55-4 | VCUN<br>160x74-<br>0,75-2 | VCUN<br>180x74-<br>0,55-4 | VCUN<br>180x74-<br>1,1-2 | VCUN<br>200x93-<br>0,55-4 | VCUN<br>200x93-<br>1,1-2 |
|--------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| Voltage [V / 50 Hz]                  | 400                       | 400                       | 400                       | 400                       | 400                       | 400                      | 400                       | 400                      |
| Power [kW]                           | 0,25                      | 0,37                      | 0,55                      | 0,75                      | 0,55                      | 1,1                      | 0,55                      | 1,1                      |
| Current [A]                          | 0,8                       | 0,9                       | 1,6                       | 1,8                       | 1,6                       | 2,6                      | 1,6                       | 2,6                      |
| Maximum air flow [m <sup>3</sup> /h] | 450                       | 710                       | 750                       | 1540                      | 1030                      | 1950                     | 1615                      | 1900                     |
| RPM [min <sup>-1</sup> ]             | 1350                      | 2730                      | 1360                      | 2820                      | 1360                      | 2800                     | 1360                      | 2800                     |
| Noise level at 3 m [dBA]             | 60                        | 65                        | 62                        | 68                        | 64                        | 70                       | 67                        | 73                       |
| Maximum operating temperature [°C]   | 60                        | 60                        | 60                        | 60                        | 60                        | 60                       | 60                        | 60                       |
| Protection rating                    | IP 54                     | IP 54                    | IP 54                     | IP 54                    |

Technical data:

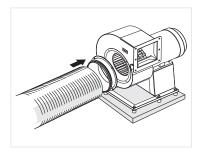
|                                      | VCUN<br>225x103-<br>1,1-4 | VCUN<br>225x103-<br>2,2-2 | VCUN<br>240x114-<br>2,2-4 | VCUN<br>240x114-<br>3,0-2 | VCUN<br>250x127-<br>1,5-6 | VCUN<br>250x127-<br>2,2-4 | VCUN<br>250x127-<br>5,5-2 | VCUN<br>280x127-<br>1,5-6 |
|--------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Voltage [V / 50 Hz]                  | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       |
| Power [kW]                           | 1,1                       | 2,2                       | 2,2                       | 3,0                       | 1,5                       | 2,2                       | 5,5                       | 1,5                       |
| Current [A]                          | 2,8                       | 4,7                       | 5,1                       | 6,1                       | 4,2                       | 5,1                       | 10,7                      | 4,2                       |
| Maximum air flow [m <sup>3</sup> /h] | 2125                      | 3350                      | 2930                      | 4350                      | 2415                      | 3720                      | 4820                      | 3450                      |
| RPM [min <sup>-1</sup> ]             | 1420                      | 2865                      | 1420                      | 2870                      | 940                       | 1420                      | 2850                      | 940                       |
| Noise level at 3 m [dBA]             | 72                        | 75                        | 74                        | 78                        | 68                        | 78                        | 81                        | 69                        |
| Maximum operating temperature [°C]   | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        |
| Protection rating                    | IP 54                     |

## Technical data:

|                                      | VCUN<br>280x127-<br>2,2-4 | VCUN<br>280x127-<br>5,5-2 | VCUN<br>315x143-<br>2,2-6 | VCUN<br>315x143-<br>4,0-4 | VCUN<br>355x143-<br>2,2-6 | VCUN<br>355x143-<br>4,0-4 | VCUN<br>400x183-<br>1,5-8 | VCUN<br>400x183-<br>2,2-6 |
|--------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Voltage [V / 50 Hz]                  | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       | 400                       |
| Power [kW]                           | 2,2                       | 5,5                       | 2,2                       | 4,0                       | 2,2                       | 4,0                       | 1,5                       | 2,2                       |
| Current [A]                          | 5,1                       | 10,7                      | 5,6                       | 8,7                       | 5,6                       | 8,7                       | 4,2                       | 5,8                       |
| Maximum air flow [m <sup>3</sup> /h] | 4395                      | 6330                      | 4375                      | 6530                      | 5090                      | 8150                      | 6545                      | 8100                      |
| RPM [min <sup>-1</sup> ]             | 1420                      | 2850                      | 940                       | 1410                      | 940                       | 1410                      | 700                       | 940                       |
| Noise level at 3 m [dBA]             | 75                        | 81                        | 70                        | 79                        | 71                        | 79                        | 62                        | 73                        |
| Maximum operating temperature [°C]   | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        | 60                        |
| Protection rating                    | IP 54                     |

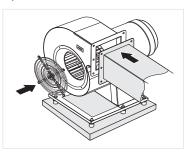
Technical data:

| recimical data.                      |                           |                           |                           |                            |                           |                           |                            |
|--------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|
|                                      | VCUN<br>400x183-<br>5,5-4 | VCUN<br>450x203-<br>3,0-8 | VCUN<br>450x203-<br>4,0-6 | VCUN<br>450x203-<br>11,0-4 | VCUN<br>500x229-<br>5,5-8 | VCUN<br>500x229-<br>7,5-6 | VCUN<br>500x229-<br>11,0-4 |
| Voltage [V / 50 Hz]                  | 400                       | 400                       | 400                       | 400                        | 400                       | 400                       | 400                        |
| Power [kW]                           | 5,5                       | 3,0                       | 4,0                       | 11,0                       | 5,5                       | 7,5                       | 11,0                       |
| Current [A]                          | 11,0                      | 7,8                       | 9,1                       | 24,0                       | 14,8                      | 17,0                      | 24,0                       |
| Maximum air flow [m <sup>3</sup> /h] | 10175                     | 10230                     | 11150                     | 19000                      | 11550                     | 14960                     | 17250                      |
| RPM [min <sup>-1</sup> ]             | 1430                      | 700                       | 950                       | 1450                       | 700                       | 955                       | 1450                       |
| Noise level at 3 m [dBA]             | 80                        | 70                        | 76                        | 84                         | 72                        | 78                        | 85                         |
| Maximum operating temperature [°C]   | 60                        | 60                        | 60                        | 60                         | 60                        | 60                        | 60                         |
| Protection rating                    | IP 54                     | IP 54                     | IP 54                     | IP 54                      | IP 54                     | IP 54                     | IP 54                      |


FAN SERIES VENTS VCUN

# SELECTION TABLE FOR ACCESSORIES:

| Туре                | Rubber<br>anti-vibration<br>mounts | Spring-loaded<br>anti-vibration<br>mounts | Flange     | Grille           |
|---------------------|------------------------------------|-------------------------------------------|------------|------------------|
| VCUN 140x74-0,25-4  |                                    |                                           |            |                  |
| VCUN 140x74-0,37-2  |                                    |                                           | FVC 140    | RVC 140          |
| VCUN 160x74-0,55-4  |                                    |                                           | EVO 100    | DVO 100          |
| VCUN 160x74-0,75-2  |                                    |                                           | FVC 160    | RVC 160          |
| VCUN 180x74-0,55-4  |                                    |                                           | EVO 400    | DV/0 400         |
| VCUN 180x74-1,1-2   | VVCr 8                             | VVCp 8                                    | FVC 180    | RVC 180          |
| VCUN 200x93-0,55-4  |                                    |                                           | E1 (0, 000 | <b>D</b> 1/0.000 |
| VCUN 200x93-1,1-2   |                                    |                                           | FVC 200    | RVC 200          |
| VCUN 225x103-1,1-4  |                                    |                                           | EV 0 005   | 51/0.005         |
| VCUN 225x103-2,2-2  |                                    |                                           | FVC 225    | RVC 225          |
| VCUN 240x114-2,2-4  |                                    |                                           | 540.040    |                  |
| VCUN 240x114-3,0-2  |                                    |                                           | FVC 240    | RVC 240          |
| VCUN 250x127-1,5-6  |                                    |                                           |            |                  |
| VCUN 250x127-2,2-4  |                                    |                                           | FVC 250    | RVC 250          |
| VCUN 250x127-5,5-2  | VVCr 16                            | VVCp 16                                   |            |                  |
| VCUN 280x127-1,5-6  |                                    |                                           |            |                  |
| VCUN 280x127-2,2-4  |                                    |                                           | FVC 280    | RVC 280          |
| VCUN 280x127-5,5-2  |                                    |                                           |            |                  |
| VCUN 315x143-2,2-6  |                                    |                                           |            | DV0.045          |
| VCUN 315x143-4,0-4  |                                    |                                           | FVC 315    | RVC 315          |
| VCUN 355x143-2,2-6  | VVCr 26                            | VVCp 26                                   |            |                  |
| VCUN 355x143-4,0-4  |                                    |                                           | FVC 355    | RVC 355          |
| VCUN 400x183-1,5-8  |                                    |                                           |            |                  |
| VCUN 400x183-2,2-6  | VVCr 35                            | VVCp 35                                   | FVC 400    | RVC 400          |
| VCUN 400x183-5,5-4  |                                    |                                           |            |                  |
| VCUN 450x203-3,0-8  |                                    |                                           |            |                  |
| VCUN 450x203-4,0-6  | VVCr 50                            | VVCp 50                                   | FVC 450    | RVC 450          |
| VCUN 450x203-11,0-4 |                                    |                                           |            |                  |
| VCUN 500x229-5,5-8  |                                    |                                           |            |                  |
| VCUN 500x229-7,5-6  | VVCr 75                            | VVCp 75                                   | FVC 500    | RVC 500          |
| VCUN 500x229-11,0-4 |                                    |                                           |            |                  |


### FVC Flange

designed to connect round ducts to VCUN fans.



#### **RVC** Grille

designed for fan protection against foreign objects.



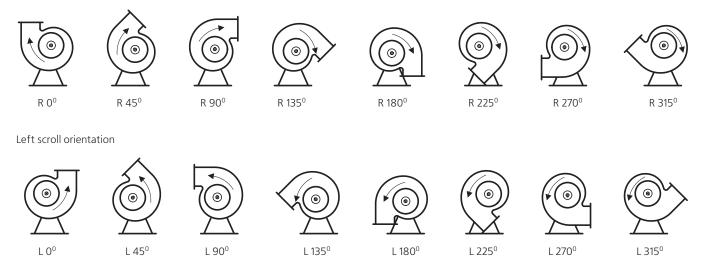
Anti-vibration mounts VVCr and VVCp Designed for noise reduction and vibration dampering produced by the fans. Provide dynamic loading decrease and increase reliability and durability of ventilation equipment.

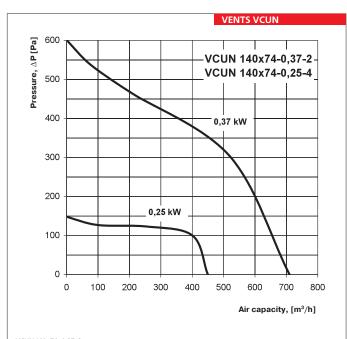


Anti-vibration mount VVCr

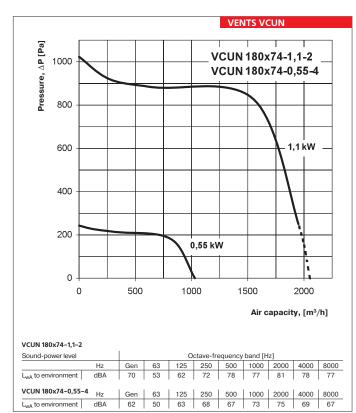


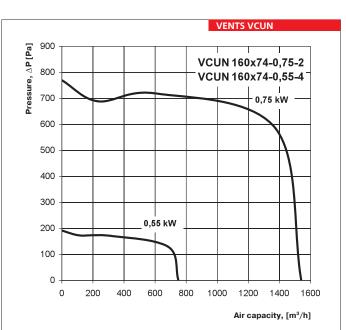
Anti-vibration mount VVCp


# INENTS

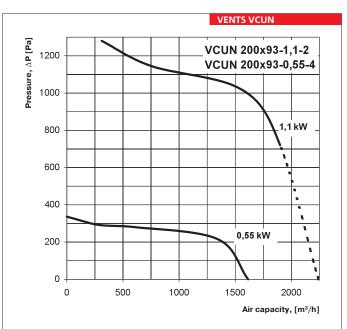

### Fan overall dimensions:

| Turne               | Dimensions [mm] |    |     |     |      |     |     |     | Mass |     |     |     |     |     |    |     |     |       |
|---------------------|-----------------|----|-----|-----|------|-----|-----|-----|------|-----|-----|-----|-----|-----|----|-----|-----|-------|
| Туре                | ØD              | ød | Ød1 | В   | Н    | H1  | H2  | Н3  | L    | L1  | L2  | Ρ   | М   | Т   | G  | Κ   | S   | [kg]  |
| VCUN 140x74-0,25-4  | 140             | 8  | 10  | 242 | 323  | 125 | 92  | 144 | 309  | 125 | 95  | 124 | 220 | 234 | 18 | 253 | 80  | 9,3   |
| VCUN 140x74-0,37-2  | 140             | 8  | 10  | 242 | 323  | 125 | 92  | 144 | 309  | 125 | 95  | 124 | 220 | 234 | 18 | 253 | 80  | 9,3   |
| VCUN 160x74-0,55-4  | 160             | 8  | 10  | 277 | 373  | 134 | 106 | 173 | 356  | 134 | 104 | 141 | 220 | 260 | 17 | 252 | 90  | 12,7  |
| VCUN 160x74-0,75-2  | 160             | 8  | 10  | 277 | 373  | 134 | 106 | 173 | 356  | 134 | 104 | 141 | 220 | 260 | 17 | 252 | 90  | 13,0  |
| VCUN 180x74-0,55-4  | 180             | 10 | 10  | 311 | 414  | 143 | 120 | 193 | 365  | 143 | 114 | 146 | 270 | 270 | 22 | 314 | 90  | 13,5  |
| VCUN 180x74-1,1-2   | 180             | 10 | 10  | 311 | 414  | 143 | 120 | 193 | 365  | 143 | 114 | 146 | 270 | 270 | 22 | 314 | 90  | 14,5  |
| VCUN 200x93-0,55-4  | 200             | 10 | 10  | 345 | 436  | 160 | 134 | 193 | 380  | 160 | 129 | 158 | 270 | 284 | 24 | 315 | 90  | 15,2  |
| VCUN 200x93-1,1-2   | 200             | 10 | 10  | 345 | 436  | 160 | 134 | 193 | 380  | 160 | 129 | 158 | 270 | 284 | 24 | 315 | 90  | 16,2  |
| VCUN 225x103-1,1-4  | 225             | 10 | 12  | 388 | 507  | 178 | 151 | 232 | 432  | 172 | 141 | 174 | 275 | 316 | 27 | 330 | 100 | 21,2  |
| VCUN 225x103-2,2-2  | 225             | 10 | 12  | 388 | 507  | 178 | 151 | 232 | 432  | 172 | 141 | 174 | 275 | 316 | 27 | 330 | 100 | 24,2  |
| VCUN 240x114-2,2-4  | 240             | 10 | 12  | 414 | 568  | 186 | 161 | 282 | 461  | 186 | 156 | 195 | 275 | 362 | 27 | 330 | 125 | 30,5  |
| VCUN 240x114-3,0-2  | 240             | 10 | 12  | 414 | 568  | 186 | 161 | 282 | 461  | 186 | 156 | 195 | 275 | 362 | 27 | 330 | 125 | 31,4  |
| VCUN 250x127-1,5-6  | 250             | 10 | 12  | 431 | 594  | 202 | 168 | 292 | 473  | 202 | 166 | 206 | 300 | 373 | 27 | 355 | 125 | 33,0  |
| VCUN 250x127-2,2-4  | 250             | 10 | 12  | 431 | 594  | 202 | 168 | 292 | 473  | 202 | 166 | 206 | 300 | 373 | 27 | 355 | 125 | 32,2  |
| VCUN 250x127-5,5-2  | 250             | 10 | 12  | 431 | 614  | 202 | 168 | 312 | 517  | 202 | 166 | 213 | 300 | 397 | 27 | 355 | 140 | 40,0  |
| VCUN 280x127-1,5-6  | 280             | 10 | 12  | 483 | 626  | 225 | 189 | 292 | 503  | 231 | 196 | 243 | 300 | 410 | 27 | 355 | 125 | 35,1  |
| VCUN 280x127-2,2-4  | 280             | 10 | 12  | 483 | 626  | 225 | 189 | 292 | 503  | 231 | 196 | 243 | 300 | 410 | 27 | 355 | 125 | 34,2  |
| VCUN 280x127-5,5-2  | 280             | 10 | 12  | 483 | 646  | 225 | 189 | 312 | 545  | 231 | 196 | 243 | 300 | 427 | 27 | 355 | 140 | 42,4  |
| VCUN 315x143-2,2-6  | 315             | 10 | 15  | 543 | 731  | 250 | 213 | 353 | 568  | 255 | 216 | 268 | 350 | 452 | 27 | 405 | 140 | 46,8  |
| VCUN 315x143-4,0-4  | 315             | 10 | 15  | 543 | 731  | 250 | 213 | 353 | 568  | 255 | 216 | 268 | 350 | 452 | 27 | 405 | 140 | 49,8  |
| VCUN 355x143-2,2-6  | 355             | 10 | 15  | 611 | 817  | 275 | 241 | 403 | 566  | 255 | 214 | 253 | 350 | 442 | 32 | 405 | 140 | 49,0  |
| VCUN 355x143-4,0-4  | 355             | 10 | 15  | 611 | 817  | 275 | 241 | 403 | 566  | 255 | 214 | 253 | 350 | 442 | 32 | 405 | 140 | 51,0  |
| VCUN 400x183-1,5-8  | 400             | 10 | 15  | 689 | 870  | 310 | 272 | 403 | 619  | 310 | 268 | 313 | 400 | 497 | 27 | 455 | 140 | 57,1  |
| VCUN 400x183-2,2-6  | 400             | 10 | 15  | 689 | 870  | 310 | 272 | 403 | 619  | 310 | 268 | 313 | 400 | 497 | 27 | 455 | 140 | 54,1  |
| VCUN 400x183-5,5-4  | 400             | 10 | 15  | 689 | 882  | 310 | 272 | 414 | 662  | 330 | 289 | 341 | 400 | 525 | 27 | 455 | 140 | 69,5  |
| VCUN 450x203-3,0-8  | 450             | 10 | 15  | 774 | 985  | 345 | 306 | 464 | 690  | 352 | 315 | 351 | 450 | 550 | 42 | 530 | 140 | 77,8  |
| VCUN 450x203-4,0-6  | 450             | 10 | 15  | 774 | 985  | 345 | 306 | 464 | 690  | 352 | 315 | 351 | 450 | 550 | 42 | 530 | 140 | 76,5  |
| VCUN 450x203-11,0-4 | 450             | 10 | 15  | 774 | 1005 | 345 | 306 | 484 | 722  | 352 | 315 | 371 | 450 | 608 | 42 | 530 | 178 | 105,0 |
| VCUN 500x229-5,5-8  | 500             | 11 | 15  | 860 | 1115 | 390 | 341 | 534 | 761  | 401 | 353 | 408 | 500 | 645 | 42 | 580 | 178 | 85,0  |
| VCUN 500x229-7,5-6  | 500             | 11 | 15  | 860 | 1115 | 390 | 341 | 534 | 761  | 401 | 353 | 408 | 500 | 645 | 42 | 580 | 178 | 86,0  |
| VCUN 500x229-11,0-4 | 500             | 11 | 15  | 860 | 1115 | 390 | 341 | 534 | 761  | 401 | 353 | 408 | 500 | 645 | 42 | 580 | 178 | 107,0 |

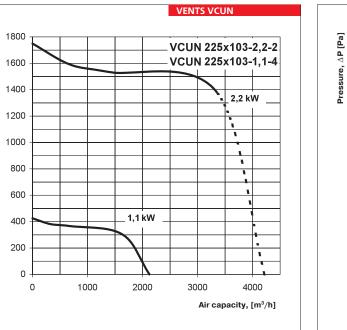

# Scroll orientation (view on the intake side)


Right scroll orientation



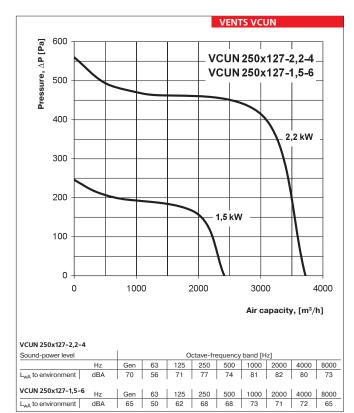


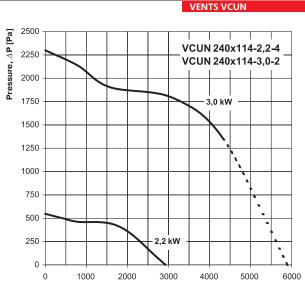

| VCUN 140x74-0,37               | -2               |     |    |     |           |         |         |      |      |      |
|--------------------------------|------------------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |                  |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz               | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 68  | 47 | 59  | 69        | 72      | 74      | 75   | 72   | 71   |
| VCUN 140x74-0,25               | -4 <sub>Hz</sub> | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 61  | 43 | 58  | 64        | 61      | 68      | 68   | 65   | 63   |





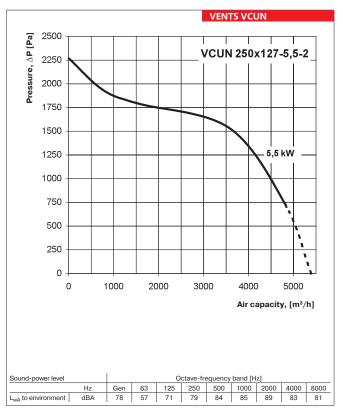

| VCUN 160x74-0,75-              | -2               |     |    |     |           |         |         |      |      |      |
|--------------------------------|------------------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |                  |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz               | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 67  | 48 | 60  | 69        | 74      | 74      | 78   | 73   | 72   |
| VCUN 160x74-0,55-              | -4 <sub>Hz</sub> | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 63  | 46 | 59  | 64        | 65      | 69      | 71   | 68   | 65   |

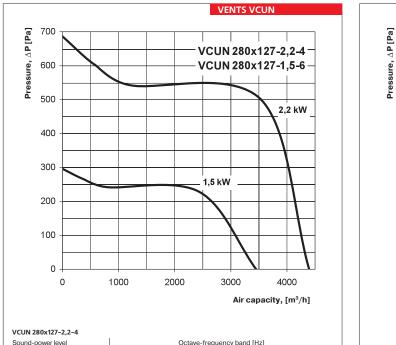




| VCUN 200x93-1,1-2              |      |     |    |     |           |         |         |      |      |      |
|--------------------------------|------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |      |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz   | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA  | 75  | 54 | 65  | 78        | 81      | 81      | 85   | 78   | 78   |
|                                |      |     |    |     |           |         |         |      |      |      |
| VCUN 200x93-0,55-              | 4 Hz | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA  | 65  | 51 | 64  | 71        | 72      | 75      | 77   | 72   | 70   |

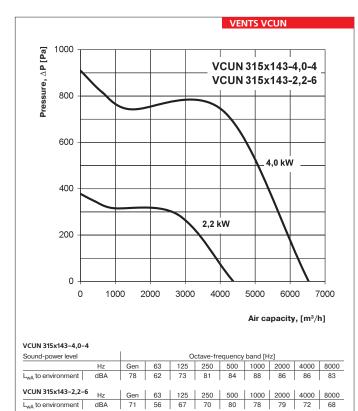


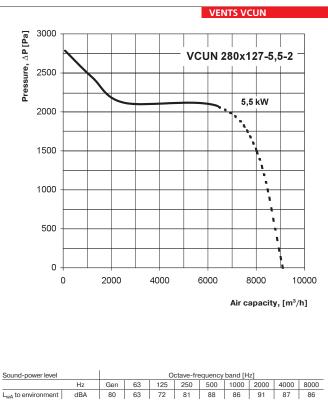
Pressure, ∆P [Pa]

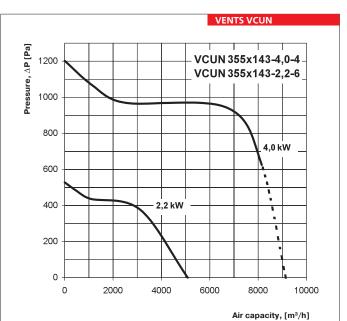

| VCUN 225x103-2,2-              | 2               |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----------------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |                 |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz              | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA             | 75  | 58 | 67  | 78        | 83      | 83      | 88   | 81   | 79   |
| VCUN 225x103-1,1-              | 4 <sub>Hz</sub> | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA             | 72  | 55 | 65  | 75        | 76      | 81      | 81   | 77   | 75   |



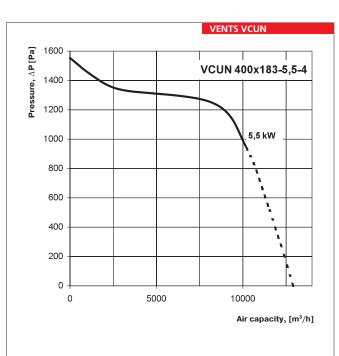




Air capacity, [m<sup>3</sup>/h]

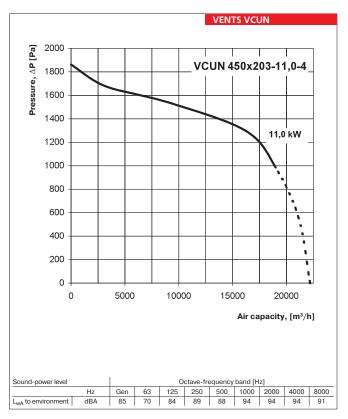

| VCUN 240x114-2,2-4             | 4               |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----------------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |                 |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz              | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA             | 71  | 57 | 69  | 75        | 75      | 81      | 82   | 79   | 76   |
| VCUN 240x114-3,0-2             | 2 <sub>Hz</sub> | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA             | 77  | 58 | 69  | 74        | 78      | 73      | 79   | 78   | 78   |
|                                |                 |     |    |     |           |         |         |      |      |      |

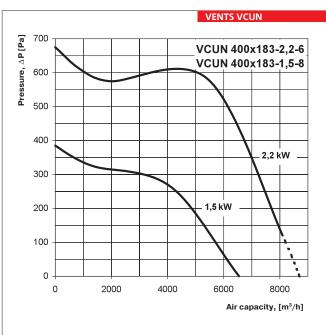




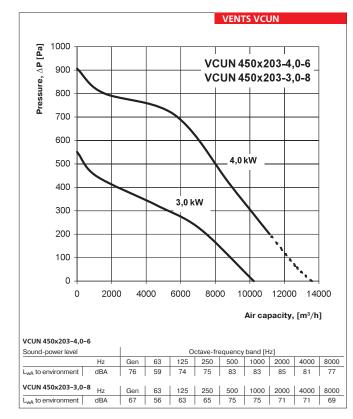


| L | CONTENTE: E/E                  | -                |     |    |     |     |     |      |      |      |      |  |
|---|--------------------------------|------------------|-----|----|-----|-----|-----|------|------|------|------|--|
|   | Sound-power level              |                  |     |    |     |     |     |      |      |      |      |  |
|   |                                | Hz               | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
|   | L <sub>wA</sub> to environment | dBA              | 73  | 61 | 74  | 76  | 81  | 82   | 83   | 81   | 77   |  |
|   | VCUN 280x127-1,5-              | -6 <sub>Hz</sub> | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
|   | L <sub>wA</sub> to environment | dBA              | 67  | 50 | 63  | 69  | 67  | 73   | 71   | 69   | 66   |  |



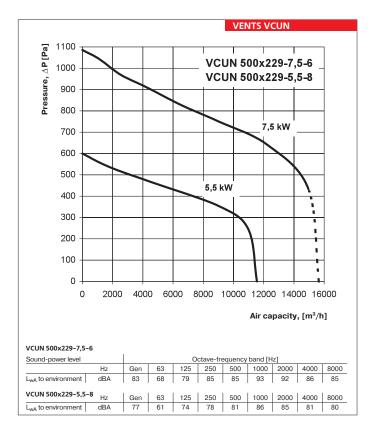


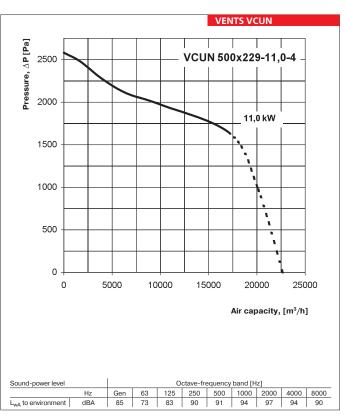




| VCUN 355x143-4,0-              | -4               |     |    |     |           |         |         |      |      |      |
|--------------------------------|------------------|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |                  |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz               | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 77  | 62 | 75  | 80        | 84      | 87      | 90   | 82   | 82   |
| VCUN 355x143-2,2-              | -6 <sub>Hz</sub> | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA              | 71  | 54 | 68  | 73        | 82      | 82      | 82   | 75   | 72   |






| VCUN 400x183-2,2-                                                              | -6  |     |    |     |           |         |         |      |      |      |
|--------------------------------------------------------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level                                                              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                                                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| $L_{\text{wA}}$ to environment                                                 | dBA | 75  | 57 | 72  | 75        | 81      | 80      | 81   | 78   | 76   |
| VCUN 400x183-1,5-8 Hz   Gen   63   125   250   500   1000   2000   4000   8000 |     |     |    |     |           |         |         |      |      | 8000 |
| L <sub>wA</sub> to environment                                                 | dBA | 68  | 53 | 65  | 69        | 74      | 76      | 77   | 73   | 67   |
|                                                                                |     |     |    |     |           |         |         |      |      | -    |



FAN SERIES VENTS VCUN





# ELECTRICAL ACCESSORIES COMPATIBILITY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |               |               | 6             |               | _              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    | (                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0             | 5             | 0             | 2             | 0             | 02             | 02             | 40             | -0,25-4            | -0.37-2            | -0,55-4            | -0,75-2            | -0,55-4            | -1,1-2            | -0,55-4            | -1,1-2            | 3-1,1-4            | 3-2,2-2            | 7-1,5-6            | 7-2,2-4            | 7-5,5-2            | 7-1,5-6            | 7-2,2-4            | 7-5,5-2            | 3-2.2-6            | 3-4.0-4            | 3-2,2-6            | 3-4,0-4            | 3-1,5-8            | 3-2,2-6            | 3-5,5-4            | 3-3,0-8            | 3-4,0-6            | 3-11,0-4            | 9-5,5-8            | 9-7,5-6            | 9-11,0-4            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | VCU 2E 140×60 | VCU 2E 160x62 | VCU 2E 160x90 | VCU 4E 180x92 | VCU 4E 200x80 | VCU 4E 200x102 | VCU 4E 225x102 | VCU 4E 250x140 | VCUN 140x74-0,25-4 | VCUN 140x74-0.37-2 | VCUN 160x74-0,55-4 | VCUN 160x74-0,75-2 | VCUN 180x74-0,55-4 | VCUN 180x74-1,1-2 | VCUN 200×93-0,55-4 | VCUN 200×93-1,1-2 | VCUN 225×103-1,1-4 | VCUN 225×103-2,2-2 | VCUN 250×127-1,5-6 | VCUN 250×127-2,2-4 | VCUN 250×127-5,5-2 | VCUN 280×127-1,5-6 | VCUN 280x127-2,2-4 | VCUN 280×127-5,5-2 | VCUN 315x143-2.2-6 | VCUN 315×143-4.0-4 | VCUN 355x143-2,2-6 | VCUN 355x143-4,0-4 | VCUN 400×183-1,5-8 | VCUN 400x183-2,2-6 | VCUN 400x183-5,5-4 | VCUN 450x203-3,0-8 | VCUN 450x203-4,0-6 | VCUN 450x203-11,0-4 | VCUN 500x229-5,5-8 | VCUN 500x229-7,5-6 | VCUN 500x229-11,0-4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               | Ś             | Š             | Š             | Š             | Š              | Š              | Ş              | Ş                  | Š                  | Ś                  | Ś                  | Š                  | Š                 | Š                  | Š                 | Š                  | Ś                  | Š                  | Ś                  | Š                  | Ś                  | Š                  | Š                  | Š                  | Ś                  | Š                  | Š                  | Š                  | Š                  | Š                  | Ś                  | Ś                  | Š                   | Ś                  | Ś                  | Š                   |
| in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | speed controllers          |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-300                   | •             | •             | •             | •             | •             | •              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-400                   | •             | •             | •             | •             | •             | •              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1 N (V)<br>RS-1,5 N (V) | •             |               |               | •             | •             |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-2 N (V)                 | •             | •             | •             | •             | •             | •              | •              |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-2,5 N (V)               | •             | ٠             | ٠             | ٠             | ٠             | ٠              | ٠              | ٠              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-0,5-PS                  |               |               | _             | _             |               | _              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-PS<br>RS-2,5-PS     | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| weating a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS-4,0-PS                  | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1,5-T                   | ٠             | ٠             | ٠             | ٠             | ٠             | ٠              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS-3,0-T                   | •             | •             | •             | •             | •             | •              | •              | ٠              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS-5,0-T<br>RS-10,0-T      | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-TA<br>RS-3,0-TA     | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    | _                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-5,0-TA                  | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-10,0-TA                 |               | ٠             | •             |               |               | ٠              | •              | ٠              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mer speed control          | lers          |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| Si .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RSA5E-2-P                  | •             | •             | •             | •             | •             | •              | •              |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-2-M<br>RSA5E-3-M     | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| a./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-4-M                  | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-12-M                 | •             | ٠             | •             | •             | ٠             | ٠              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-1,5-T                | ٠             | ٠             | ٠             | ٠             | ٠             | ٠              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-3,5-T                | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-5,0-T<br>RSA5E-8,0-T |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-10,0-T               | •             | •             | •             | •             | •             | •              | •              | •              |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5D-1,5-T                |               |               |               |               |               |                |                |                | ٠                  | ٠                  |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-3,5-T                |               |               |               |               |               |                |                |                | •                  | •                  | •                  | •                  | •                  | •                 | •                  | •                 | •                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5D-5-M                  |               |               |               |               |               |                |                |                | •                  | ٠                  | •                  | •                  | •                  | •                 | •                  | •                 | ٠                  | •                  | •                  |                    |                    | •                  |                    |                    |                    |                    |                    |                    | ٠                  |                    |                    |                    |                    |                     |                    |                    |                     |
| 2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-8-M<br>RSA5D-10-M    |               |               |               |               |               |                |                |                | •                  | •                  | •                  | •                  | •                  | •                 | •                  | •                 | •                  | •                  | •                  | •                  |                    | •                  | •                  |                    | •                  |                    | •                  |                    | •                  | •                  |                    | •                  | •                  |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5D-12-M                 |               |               |               |               |               |                |                |                | •                  | •                  | •                  | •                  | •                  | •                 | •                  | •                 | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  |                     |                    |                    |                     |
| Frequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cy speed controlle         | rs            |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-200-TA                |               |               |               |               |               |                |                |                | •                  | ٠                  |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VFED-400-TA<br>VFED-750-TA |               |               |               |               |               |                |                |                | •                  | -                  | •                  | •                  | •                  | •                 | •                  | •                 | •                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| treat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VFED-1100-TA               |               |               |               |               |               |                |                |                | •                  | •                  | •                  | •                  | •                  | •                 | •                  | •                 | •                  | •                  | •                  | •                  |                    | •                  | •                  |                    |                    |                    |                    |                    | •                  |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-1500-TA               |               |               |               |               |               |                |                |                | ٠                  | ٠                  | ٠                  | ٠                  | ٠                  | ٠                 | ٠                  | ٠                 | ٠                  | ٠                  | ٠                  | ٠                  |                    | •                  | ٠                  |                    | ٠                  |                    | ٠                  |                    | ٠                  | ٠                  |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ture regulators            |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTS-1-400<br>RTSD-1-400    |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT-10                      | •             | •             | •             | •             | •             | •              | •              |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| Multi-spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed fan switches            |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-5,0<br>P3-5,0<br>P5-5,0 |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-1-300<br>P3-1-300       |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| and the second s | rs controllers             |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R-1/010                    |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |               |               |               |               |               |                |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-1,5 N                    | ٠             | ٠             | ٠             | ٠             | ٠             | ٠              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    |                     |
| 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TH-1,5 N<br>TF-1,5 N       | •             | •             | •             | •             | •             | •              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    | _                   |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TP-1,5 N                   | •             | •             | •             | •             | •             | •              |                |                |                    |                    |                    |                    |                    |                   |                    |                   |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                    | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |               |               |               |               |                | -              | _              | _                  | -                  |                    | _                  | _                  | _                 | _                  |                   |                    | _                  | _                  |                    |                    |                    | _                  | _                  |                    |                    |                    | _                  |                    |                    | _                  |                    |                    |                     | _                  | _                  | _                   |

• recommended

suitable



•

a square mounting plate.



VENTS OVK Series



Low pressure axial fans in steel casing with the air capacity up to 11900 m<sup>3</sup>/h for wall mounting on

 $\blacktriangleright$  Low pressure axial fans in the steel casing with the air capacity up to 11900 m<sup>3</sup>/h for wall mounting on a round mounting plate.

VENTS VKF Series



Low pressure axial fans in steel casing with the air capacity up to 11900 m<sup>3</sup>/h for vent duct mounting.



 $\blacktriangleright$  Low pressure axial fans in steel casing with the air capacity up to 1700 m<sup>3</sup>/h for wall mounting on a square mounting plate.



• Low pressure axial fans in the steel casing with the air capacity up to 1700 m<sup>3</sup>/h for wall mounting on a round mounting plate.

VENTS VKOM Series



Low pressure axial fans in steel casing with the air capacity up to 1700 m<sup>3</sup>/h for vent duct mounting.

WWW.VENTILATION-SYSTEM.COM



| VENTS OV<br>Axial fan                       | page |
|---------------------------------------------|------|
| Air capacity – up to 11 900 m³/h            | 142  |
| VENTS OVK<br>Axial fan                      | page |
| Air capacity – up to 11 900 m³/h            | 142  |
| VENTS VKF<br>Axial fan                      | page |
| Air capacity – up to 11 900 m³/h            | 142  |
| VENTS OV1<br>Axial fan                      | page |
| Air capacity – up to 1700 m³/h              | 148  |
| VENTS OVK1<br>Axial fan                     | page |
| Air capacity – up to 1700 m³/h              | 148  |
| VENTS VKOM<br>Axial fan                     | page |
| Air capacity – up to 1700 m³/h              | 148  |
| VENTS OV1 R<br>Axial fan                    | page |
| Air capacity – up to 1070 m <sup>3</sup> /h | 152  |

# **AXIAL FANS**

# Series VENTS OV



Series VENTS OVK Series VENTS VKF



Low pressure axial fans

in the steel casing with the air

capacity up to **11900 m<sup>3</sup>/h** 

for vent duct mounting.

Low pressure axial fans in the steel casing with the air capacity up to **11900 m<sup>3</sup>/h** for wall mounting.

#### Applications

Combined supply and exhaust ventilation systems for various premises where high air capacity at relatively low system resistance is required. OV and OVK fans can be used for the direct air exhaust or pressurization in smoke ventilation systems. OV and OVK fan are suitable for outdoor wall mounting.

#### Design

The fan casing and the impeller are made of steel with polymeric coating. OV and OVK fan terminal box is equipped with the cord for remote connection. VKF fan is fitted with the external terminal box mounted on the fan casing. Motor

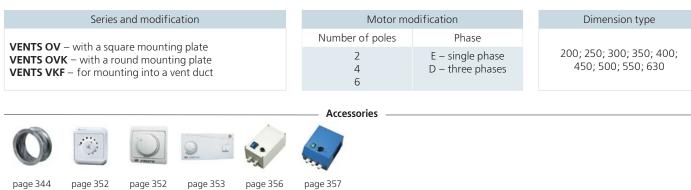
The impellers are powered by two- or three-pole, single- or three-phase asynchronous motors with external rotor and built-in thermal overheating protection depending on the model. Ball bearings in the motor provide long service life designed for at least 40 000 hours. Motor protection rating IP 44.

Low pressure axial fans

in the steel casing with the air

capacity up to **11900 m<sup>3</sup>/h** 

for wall mounting.


#### Speed control

Both smooth or step speed control is performed by means of the thymistor or autotransformer controller. Several fans can be connected to one controller if the total power and operating current do not exceed the rated controller values.

#### Mounting

Fan is installed on the wall surface by means of a square (OV series) or round (OVK series) mounting plate. VKF fan is installed into the duct by means of connecting flanges. The fan is powered through the external remote terminal box. Power supply and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.

#### Designation key:



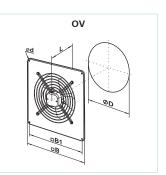
### Technical data:

|                                      | OV /<br>OVK /<br>VKF<br>2E 200 | OV /<br>OVK /<br>VKF<br>2E 250 | OV /<br>OVK /<br>VKF<br>2D 250 | OV /<br>OVK /<br>VKF<br>4E 250 | OV /<br>OVK /<br>VKF<br>4D 250 |
|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Voltage [V / 50 Hz]                  | 230                            | 230                            | 400                            | 230                            | 400                            |
| Power [W]                            | 55                             | 80                             | 80                             | 50                             | 60                             |
| Current [A]                          | 0,26                           | 0,4                            | 0,22                           | 0,22                           | 0,17                           |
| Maximum air flow [m <sup>3</sup> /h] | 860                            | 1050                           | 1060                           | 800                            | 850                            |
| RPM [min <sup>-1</sup> ]             | 2300                           | 2400                           | 2600                           | 1380                           | 1400                           |
| Noise level at 3 m [dBA]             | 50                             | 60                             | 60                             | 55                             | 55                             |
| Maximum operating temperature [°C]   | -30 +60                        | -30 +60                        | -30 +60                        | -30 +60                        | -30 +60                        |
| Protection rating                    | IP 24<br>(VKF IP X4)           |
| Technical data:                      |                                |                                |                                |                                |                                |
|                                      | OV /<br>OVK /<br>VKF<br>2E 300 | OV /<br>OVK /<br>VKF<br>2D 300 | OV /<br>OVK /<br>VKF<br>4E 300 | OV /<br>OVK /<br>VKF<br>4D 300 | OV /<br>OVK /<br>VKF<br>4E 350 |

|                                      | 2E 300               | 2D 300               | 4E 300               | 4D 300               | 4E 350               |
|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Voltage [V / 50 Hz]                  | 230                  | 400                  | 230                  | 400                  | 230                  |
| Power [W]                            | 145                  | 145                  | 75                   | 75                   | 140                  |
| Current [A]                          | 0,66                 | 0,25                 | 0,35                 | 0,22                 | 0,65                 |
| Maximum air flow [m <sup>3</sup> /h] | 2230                 | 2310                 | 1340                 | 1310                 | 2500                 |
| RPM [min <sup>-1</sup> ]             | 2300                 | 2350                 | 1350                 | 1380                 | 1380                 |
| Noise level at 3 m [dBA]             | 60                   | 60                   | 58                   | 58                   | 62                   |
| Maximum operating temperature [°C]   | -30 +60              | -30 +60              | -30 +60              | -30 +60              | -30 +60              |
| Protection rating                    | IP 24<br>(VKF IP X4) |

### Technical data:

|                                      | OV /<br>OVK /<br>VKF<br>4D 350 | OV /<br>OVK /<br>VKF<br>4E 400 | OV /<br>OVK /<br>VKF<br>4D 400 | OV /<br>OVK /<br>VKF<br>4E 450 | OV /<br>OVK /<br>VKF<br>4D 450 |
|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Voltage [V / 50 Hz]                  | 400                            | 230                            | 400                            | 230                            | 400                            |
| Power [W]                            | 140                            | 180                            | 180                            | 250                            | 250                            |
| Current [A]                          | 0,38                           | 0,82                           | 0,47                           | 1,2                            | 0,6                            |
| Maximum air flow [m <sup>3</sup> /h] | 2520                           | 3580                           | 3740                           | 4680                           | 5280                           |
| RPM [min <sup>-1</sup> ]             | 1380                           | 1380                           | 1380                           | 1350                           | 1360                           |
| Noise level at 3 m [dBA]             | 62                             | 63                             | 64                             | 64                             | 65                             |
| Maximum operating temperature [°C]   | -30 +60                        | -30 +60                        | -30 +60                        | -30 +60                        | -30 +60                        |
| Protection rating                    | IP 24<br>(VKF IP X4)           |


Technical data:

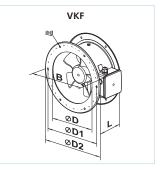
| lechnical data:                      |                                |                                |                                |              |
|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------|
|                                      | OV /<br>OVK /<br>VKF<br>4E 500 | OV /<br>OVK /<br>VKF<br>4E 550 | OV /<br>OVK /<br>VKF<br>4E 630 | OV<br>6E 630 |
| Voltage [V / 50 Hz]                  | 230                            | 230                            | 230                            | 1~ 230       |
| Power [W]                            | 420                            | 550                            | 750                            | 540          |
| Current [A]                          | 1,95                           | 2,55                           | 3,5                            | 2,4          |
| Maximum air flow [m <sup>3</sup> /h] | 7060                           | 8800                           | 11900                          | 10900        |
| RPM [min <sup>-1</sup> ]             | 1300                           | 1300                           | 1360                           | 850          |
| Noise level at 3 m [dBA]             | 69                             | 70                             | 75                             | 72           |
| Maximum operating temperature [°C]   | -30 +60                        | -30 +60                        | -30 +60                        | -40 +70      |
| Protection rating                    | IP 24<br>(VKF IP X4)           | IP 24<br>(VKF IP X4)           | IP 24<br>(VKF IP X4)           | IP 54        |

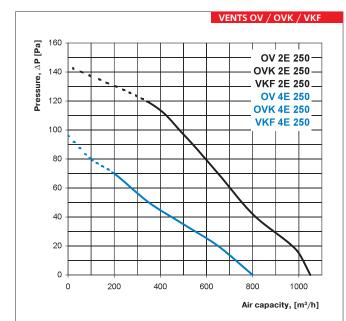
#### AXIAL FANS

#### Fan overall dimensions:

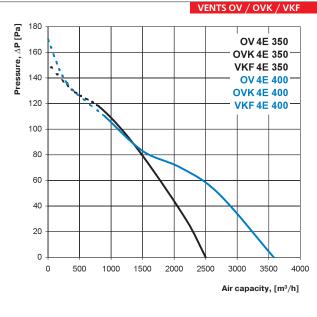
| Turne     |     | Dimensions [mm] |     |     |     |           |  |  |  |  |  |
|-----------|-----|-----------------|-----|-----|-----|-----------|--|--|--|--|--|
| Туре      | ØD  | Ød              | В   | B1  | L   | Mass [kg] |  |  |  |  |  |
| OV 2E 200 | 210 | 7               | 312 | 260 | 145 | 3,0       |  |  |  |  |  |
| OV 2E 250 | 260 | 7               | 370 | 320 | 155 | 4,0       |  |  |  |  |  |
| OV 2D 250 | 260 | 7               | 370 | 320 | 155 | 4,0       |  |  |  |  |  |
| OV 4E 250 | 260 | 7               | 370 | 320 | 155 | 3,5       |  |  |  |  |  |
| OV 4D 250 | 260 | 7               | 370 | 320 | 155 | 3,5       |  |  |  |  |  |
| OV 2E 300 | 326 | 9               | 430 | 380 | 195 | 6,1       |  |  |  |  |  |
| OV 2D 300 | 326 | 9               | 430 | 380 | 155 | 5,4       |  |  |  |  |  |
| OV 4E 300 | 326 | 9               | 430 | 380 | 195 | 5,0       |  |  |  |  |  |
| OV 4D 300 | 326 | 9               | 430 | 380 | 155 | 5,4       |  |  |  |  |  |
| OV 4E 350 | 388 | 9               | 485 | 435 | 200 | 7,8       |  |  |  |  |  |
| OV 4D 350 | 388 | 9               | 485 | 435 | 200 | 7,8       |  |  |  |  |  |
| OV 4E 400 | 417 | 9               | 540 | 490 | 240 | 8,8       |  |  |  |  |  |
| OV 4D 400 | 417 | 9               | 540 | 490 | 240 | 8,8       |  |  |  |  |  |
| OV 4E 450 | 465 | 11              | 576 | 535 | 250 | 10,5      |  |  |  |  |  |
| OV 4D 450 | 465 | 11              | 576 | 535 | 250 | 10,5      |  |  |  |  |  |
| OV 4E 500 | 520 | 11              | 655 | 615 | 260 | 14,0      |  |  |  |  |  |
| OV 4E 550 | 570 | 11              | 725 | 675 | 280 | 16,5      |  |  |  |  |  |
| OV 4E 630 | 650 | 11              | 800 | 710 | 295 | 20,0      |  |  |  |  |  |
| OV 6E 630 | 650 | 11              | 800 | 710 | 295 | 20,0      |  |  |  |  |  |



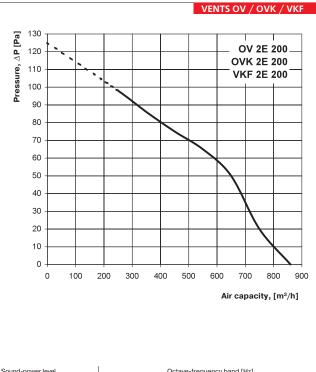

#### Fan overall dimensions:


| Туро       |     | Mass [kg] |     |    |     |             |
|------------|-----|-----------|-----|----|-----|-------------|
| Туре       | ØD  | ØD1       | ØD2 | Ød | L   | iviass [kg] |
| OVK 2E 200 | 210 | 250       | 280 | 7  | 145 | 2,8         |
| OVK 2E 250 | 260 | 295       | 320 | 7  | 155 | 3,8         |
| OVK 2D 250 | 260 | 295       | 320 | 7  | 155 | 3,8         |
| OVK 4E 250 | 260 | 295       | 320 | 7  | 155 | 3,4         |
| OVK 4D 250 | 260 | 295       | 320 | 7  | 155 | 3,4         |
| OVK 2E 300 | 326 | 380       | 397 | 9  | 195 | 5,9         |
| OVK 2D 300 | 326 | 380       | 397 | 9  | 155 | 5,1         |
| OVK 4E 300 | 326 | 380       | 397 | 9  | 195 | 5,0         |
| OVK 4D 300 | 326 | 380       | 397 | 9  | 155 | 5,1         |
| OVK 4E 350 | 388 | 442       | 460 | 9  | 200 | 7,5         |
| OVK 4D 350 | 388 | 442       | 460 | 9  | 200 | 7,5         |
| OVK 4E 400 | 417 | 504       | 528 | 9  | 240 | 8,5         |
| OVK 4D 400 | 417 | 504       | 528 | 9  | 240 | 8,5         |
| OVK 4E 450 | 465 | 578       | 607 | 11 | 250 | 10,0        |
| OVK 4D 450 | 465 | 578       | 607 | 11 | 250 | 10,0        |
| OVK 4E 500 | 520 | 590       | 655 | 11 | 260 | 14,0        |
| OVK 4E 550 | 570 | 645       | 710 | 11 | 280 | 16,5        |
| OVK 4E 630 | 650 | 760       | 800 | 11 | 295 | 20,0        |

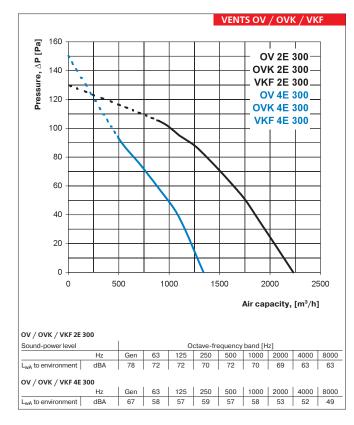



#### Fan overall dimensions:

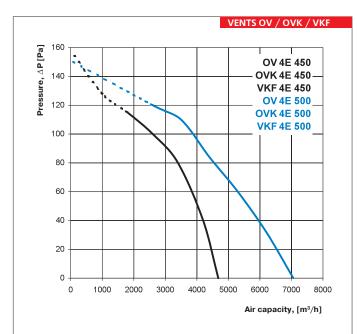
|            |     |     | Dimensi  | []       |     |     |           |
|------------|-----|-----|----------|----------|-----|-----|-----------|
| Туре       |     |     | Dimensio | ons [mm] |     |     | Mass [kg] |
| Type       | ØD  | ØD1 | ØD2      | Ød       | В   | L   | Mass [ng] |
| VKF 2E 200 | 205 | 250 | 280      | 7        | 290 | 120 | 3,1       |
| VKF 2E 250 | 260 | 295 | 320      | 7        | 340 | 150 | 4,0       |
| VKF 2D 250 | 260 | 295 | 320      | 7        | 340 | 150 | 4,0       |
| VKF 4E 250 | 260 | 295 | 320      | 7        | 340 | 150 | 4,1       |
| VKF 4D 250 | 260 | 295 | 320      | 7        | 340 | 150 | 4,1       |
| VKF 2E 300 | 310 | 380 | 397      | 9        | 420 | 160 | 6,5       |
| VKF 2D 300 | 310 | 380 | 397      | 9        | 420 | 160 | 6,0       |
| VKF 4E 300 | 310 | 380 | 397      | 9        | 420 | 160 | 6,5       |
| VKF 4D 300 | 310 | 380 | 397      | 9        | 420 | 160 | 6,0       |
| VKF 4E 350 | 362 | 442 | 460      | 9        | 480 | 160 | 8,1       |
| VKF 4D 350 | 362 | 442 | 460      | 9        | 480 | 160 | 8,1       |
| VKF 4E 400 | 412 | 504 | 528      | 9        | 550 | 170 | 9,1       |
| VKF 4D 400 | 412 | 504 | 528      | 9        | 550 | 170 | 9,1       |
| VKF 4E 450 | 462 | 578 | 607      | 11       | 630 | 200 | 10,6      |
| VKF 4D 450 | 462 | 578 | 607      | 11       | 630 | 200 | 10,6      |
| VKF 4E 500 | 515 | 600 | 650      | 11       | 635 | 220 | 12,8      |
| VKF 4E 550 | 565 | 650 | 700      | 13       | 685 | 230 | 15,5      |
| VKF 4E 630 | 645 | 740 | 790      | 13       | 780 | 230 | 18,5      |



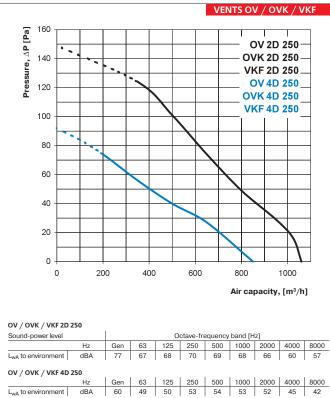


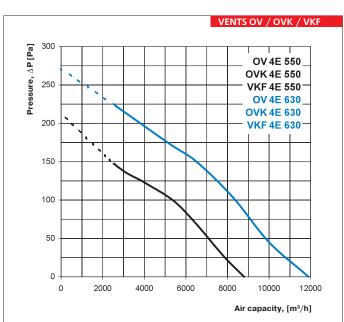


| OV / OVK / VKF 2E 2            | 250 |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| $L_{\text{wA}}$ to environment | dBA | 76  | 68 | 66  | 68        | 70      | 68      | 68   | 63   | 58   |
| OV / OVK / VKF 4E              | 250 |     |    |     |           |         |         |      |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| $L_{\text{wA}}$ to environment | dBA | 60  | 52 | 50  | 52        | 53      | 52      | 52   | 44   | 43   |



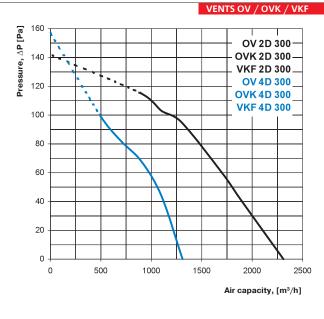

| OV / OVK / VKF 4E              | 350 |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 70  | 61 | 62  | 64        | 63      | 63      | 58   | 56   | 52   |
| OV / OVK / VKF 4E              | 400 |     |    |     |           |         |         |      |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 75  | 66 | 68  | 66        | 69      | 67      | 65   | 61   | 56   |



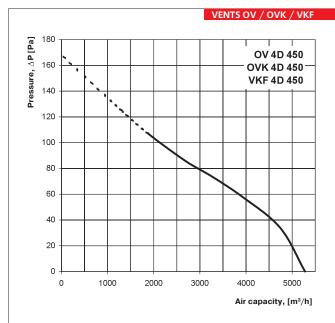

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 65  | 56 | 58  | 58        | 57      | 59      | 55   | 51   | 45   |
|                                |     |     |    |     |           |         |         |      |      |      |




#### **AXIAL FANS**

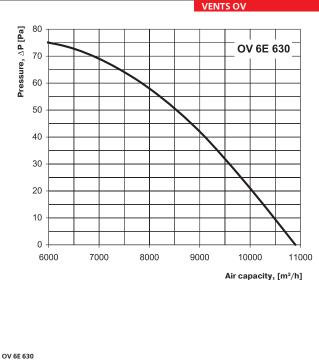


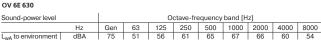

| OV / OVK / VKF 4E 4            | 450 |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 77  | 69 | 70  | 73        | 73      | 71      | 67   | 67   | 61   |
| OV / OVK / VKF 4E !            | 500 |     |    |     |           |         |         |      |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 80  | 71 | 73  | 72        | 74      | 73      | 70   | 67   | 63   |

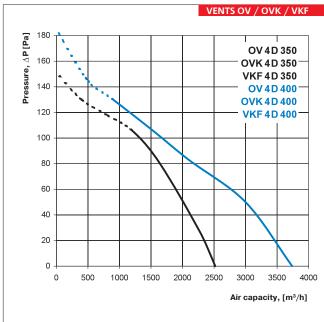





| Sound-power level              |           |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----------|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz        | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA       | 83  | 73 | 75  | 73        | 75      | 74      | 72   | 66   | 63   |
| OV / OVK / VKF 4E 630          |           |     |    |     |           |         |         |      |      |      |
| OV / OVK / VKF 4E              | 630       |     |    |     |           |         |         |      |      |      |
| OV / OVK / VKF 4E              | 630<br>Hz | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |





| OV / OVK / VKF 2D 3            | 300 |     |    |     |           |         |         |      |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 80  | 72 | 71  | 71        | 74      | 70      | 69   | 65   | 63   |
| OV / OVK / VKF 4D              | 300 |     |    |     |           |         |         |      |      |      |
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 63  | 58 | 55  | 58        | 56      | 58      | 57   | 52   | 48   |




#### OV / OVK / VKF 4D 450

| Sound-power level              |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to environment | dBA | 76  | 65 | 68  | 69        | 69      | 70      | 64   | 60   | 57   |







| OV / OVK / VKF 4D                 | 350 |     |    |     |           |         |         |      |      |      |
|-----------------------------------|-----|-----|----|-----|-----------|---------|---------|------|------|------|
| Sound-power level                 |     |     |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|                                   | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| ${\rm L}_{\rm wA}$ to environment | dBA | 72  | 62 | 61  | 64        | 64      | 61      | 61   | 56   | 54   |
| OV / OVK / VKF 4D                 | 400 |     |    |     |           |         |         |      |      |      |
|                                   | Hz  | Gen | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| $L_{\text{wA}}$ to environment    | dBA | 75  | 65 | 66  | 69        | 66      | 67      | 64   | 60   | 55   |



OV fan boiler room ventilation example.



VFK series fan installation into the vent duct by means of flanges.

#### **AXIAL FANS**

## Series VENTS OV1



Series
VENTS OVK1

Series VENTS VKOM



Low pressure axial fans in the steel casing with the air capacity up to **1700 m<sup>3</sup>/h** for wall mounting.

#### Applications

Combined supply and extract ventilation systems for various premises where high air capacity at relatively low system resistance is required. OV1 and OVK1 fans can be used for the direct exhaust of air. OV1 and OVK1 fans can be mounted onto the external walls.

#### Design

OV1, OVK1 and VKOM fan casings are made of steel with polymeric coating. VKOMz fan casing is made of galvanized steel and the impeller is made of aluminium. The terminal box is fitted with a cord for remote connection.

#### Motor

Single-phase asynchronous motor with external rotor is equipped with thermal overheating protection with automatic restart as well as ball bearings for long service life. Motor rating protection IP 44.

Low pressure axial fans in

the steel casing with the

air capacity up to 1700 m<sup>3</sup>/h

for wall mounting.

#### Speed control

Both smooth and step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values. Low pressure axial fans in the steel casing with the air capacity up to **1700 m<sup>3</sup>/h** for mounting into the vent duct

#### Mounting

The fan is installed on the wall surface by means of square (OV1 series) or round (OVK1 series) mounting plate. VKOM or VKOMz series fan is installed into the duct by means of clamps or directly inside the wall. RM reducers made of polymer-coated steel and RM...Zn made of galvanized steel are designed for connection of VKOM fans with 150, 200 and 250 mm round air ducts, refer page 150. The delivery set of VKOMz includes fixation brackets. The fan is powered through the remote terminal box. Power supply and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.

#### **Designation key:**

page 352

#### Series and modification

VENTS OV1 – with a square mounting plate VENTS OVK1 – with a round mounting plate VENTS VKOM – for mounting into a vent duct

page 352

#### Modifications (for VKOM series)

Z – galvanized steel

#### Dimension-type

150 - branch pipe ø **162** mm 200 - branch pipe ø **208** mm 250 - branch pipe ø **262** mm 315 - branch pipe ø **312/315** mm

Accessories



page 353



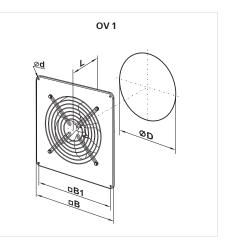
page 357

page 356

Technical data:

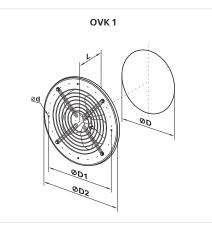
|                                      | OV1 /<br>OVK1 /<br>VKOM<br>150 | OV1 /<br>OVK1 /<br>VKOM<br>200 | OV1 /<br>OVK1 /<br>VKOM<br>250 | OV1 /<br>OVK1 /<br>VKOM<br>315 |
|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Voltage [V / 50 Hz]                  | 230                            | 230                            | 230                            | 230                            |
| Power [W]                            | 36                             | 43                             | 68                             | 110                            |
| Current [A]                          | 0,26                           | 0,28                           | 0,48                           | 0,75                           |
| Maximum air flow [m <sup>3</sup> /h] | 200                            | 405                            | 1070                           | 1700                           |
| RPM [min <sup>-1</sup> ]             | 1300                           | 1300                           | 1300                           | 1300                           |
| Noise level at 3 m [dBA]             | 33                             | 32                             | 48                             | 54                             |
| Maximum operating temperature [°C]   | 40                             | 40                             | 40                             | 40                             |
| Protection rating                    | IP 24 (VKOM IP X4)             |




Fixation bracket for surface mounting of VKOM (VKOMz) series fan.

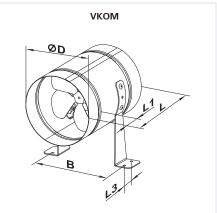


#### AXIAL FANS


#### Fan overall dimensions:

| Tura    |     | Dim |     |     |     |           |
|---------|-----|-----|-----|-----|-----|-----------|
| Туре    | ØD  | Ød  | В   | B1  | L   | Mass [kg] |
| OV1 150 | 162 | 7   | 250 | 210 | 120 | 2,5       |
| OV1 200 | 208 | 7   | 312 | 260 | 120 | 3,0       |
| OV1 250 | 262 | 7   | 370 | 320 | 140 | 3,5       |
| OV1 315 | 312 | 9   | 430 | 380 | 170 | 6,1       |

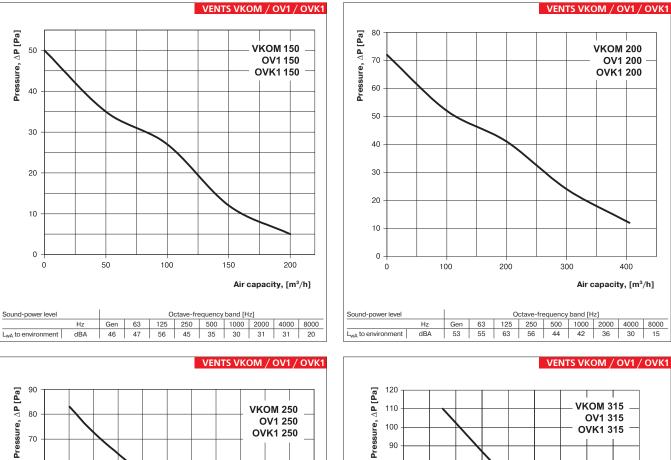



#### Fan overall dimensions:

| Ture     |     | Dim | Maga [kg] |    |     |           |
|----------|-----|-----|-----------|----|-----|-----------|
| Туре     | ØD  | ØD1 | ØD2       | Ød | L   | Mass [kg] |
| OVK1 150 | 162 | 190 | 220       | 7  | 120 | 2,5       |
| OVK1 200 | 208 | 270 | 300       | 7  | 120 | 2,5       |
| OVK1 250 | 262 | 330 | 360       | 7  | 140 | 3,0       |
| OVK1 315 | 312 | 390 | 420       | 9  | 170 | 5,1       |



#### Fan overall dimensions:


| Turno    |     | Dim |     | Mooo [kg] |    |           |
|----------|-----|-----|-----|-----------|----|-----------|
| Туре     | ØD  | В   | L   | L1        | L3 | Mass [kg] |
| VKOM 150 | 162 | 183 | 220 | 40        | 30 | 1,8       |
| VKOM 200 | 208 | 228 | 220 | 40        | 30 | 2,4       |
| VKOM 250 | 262 | 283 | 270 | 55        | 30 | 3,7       |
| VKOM 315 | 315 | 337 | 278 | 55        | 40 | 4,9       |



## Reducer RM for VKOM series fan

#### Overall dimensions of reducers for VKOM fan series:

| Trues      |     | Dimensio |     | Maga [kg] |           |
|------------|-----|----------|-----|-----------|-----------|
| Туре       | ØD  | ØD1      | Н   | H1        | Mass [kg] |
| RM 148/158 | 148 | 158      | 140 | 55        | 0,3       |
| RM 198/204 | 198 | 204      | 140 | 55        | 0,4       |
| RM 248/258 | 248 | 258      | 150 | 65        | 0,42      |



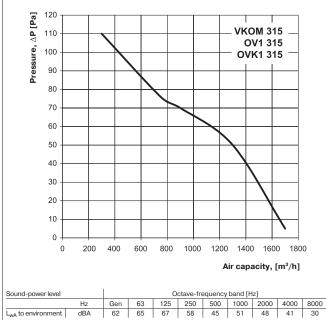
OVK1 250

Sound-power level

L<sub>wA</sub> to environment

Hz

dBA


Gen 

 Octave-frequency band [Hz]

 125
 250
 500
 1000
 2000
 4000
 8000

 70
 60
 43
 46
 41
 34
 19

Air capacity, [m<sup>3</sup>/h]





#### **AXIAL FANS**

## Series VENTS OV1 R



Low pressure axial fans in the steel casing with the air capacity up to **1070 m<sup>3</sup>/h** for wall mounting.

#### Applications

Combined supply and extract ventilation systems for various premises where high air capacity at relatively low system resistance is required. Fans can be used for the direct air exhaust and are mounted onto the external walls.

#### Design

Fan casings are made of steel with polymeric coating. Decorative front panel is made of high quality plastic. The terminal box is fitted with a cord for remote connection.

#### Motor

Single-phase asynchronous motor with external rotor is equipped with thermal overheating protection with

automatic restart as well as ball bearings for long service life. Motor rating protection IP 44.

#### Speed control

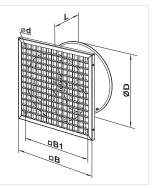
Both smooth and step speed control is performed with the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

#### Mounting

The fan is installed on the wall surface by means of square mounting plate. The fan is powered through the remote terminal box.

Power supply and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.

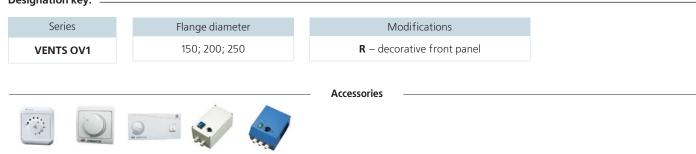
# 


page 353

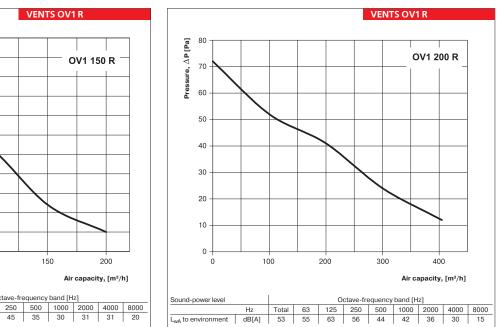
page 356

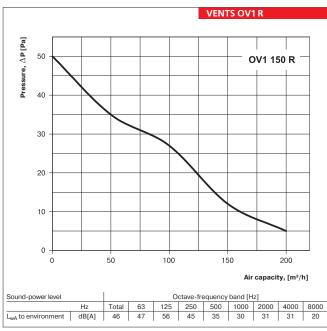
page 357

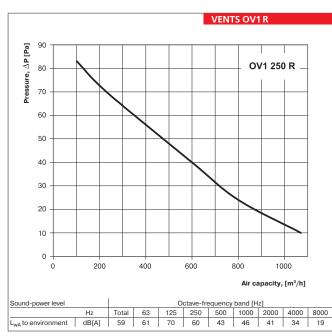
#### Fan overall dimensions:


| Turne     |     | Mass |     |     |     |      |
|-----------|-----|------|-----|-----|-----|------|
| Туре      | ØD  | Ød   | В   | B1  | L   | [kg] |
| OV1 150 R | 162 | 7    | 325 | 275 | 127 | 2,5  |
| OV1 200 R | 208 | 7    | 325 | 275 | 127 | 3,0  |
| OV1 250 R | 262 | 7    | 325 | 275 | 152 | 3,5  |




**Designation key:** 


page 352


page 352



|                                      | OV1 150 R | OV1 200 R | OV1 250 R |
|--------------------------------------|-----------|-----------|-----------|
| Voltage [V / 50 Hz]                  | 230       | 230       | 230       |
| Power [W]                            | 36        | 43        | 68        |
| Current [A]                          | 0,26      | 0,28      | 0,48      |
| Maximum air flow [m <sup>3</sup> /h] | 200       | 405       | 1070      |
| RPM [min <sup>-1</sup> ]             | 1300      | 1300      | 1300      |
| Noise level at 3 m [dBA]             | 33        | 32        | 48        |
| Maximum operating temperature [°C]   | 40        | 40        | 40        |
| Protection rating                    | IP 24     | IP 24     | IP 24     |







#### ELECTRICAL ACCESSORIES COMPATIBILITY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                       |                                       |                                       |                                       |                                       |                                       |                                       | 4                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | OV 2E 200<br>OVK 2E 200<br>VKF 2E 200 | OV 2E 250<br>OVK 2E 250<br>VKF 2E 250 | OV 4E 250<br>OVK 4E 250<br>VKF 4E 250 | OV 2E 300<br>OVK 2E 300<br>VKF 2E 300 | OV 4E 300<br>OVK 4E 300<br>VKF 4E 300 | OV 4E 350<br>OVK 4E 350<br>VKF 4E 350 | OV 4E 400<br>OVK 4E 400<br>VKF 4E 400 | OV 4E 450<br>OVK 4E 450<br>VKF 4E 450 | OV 4E 500<br>OVK 4E 500<br>VKF 4E 500 | OV 4E 550<br>OVK 4E 550<br>VKF 4E 550 | OV 4E 630<br>OVK 4E 630<br>VKF 4E 630 | OV 2D 250<br>OVK 2D 250<br>VKF 2D 250 | OV 4D 250<br>OVK 4D 250<br>VKF 4D 250 | OV 2D 300<br>OVK 2D 300<br>VKF 2D 300 | OV 4D 300<br>OVK 4D 300<br>VKF 4D 300 | OV 4D 350<br>OVK 4D 350<br>VKF 4D 350 | OV 4D 400<br>OVK 4D 400<br>VKF 4D 400 | OV 4D 450<br>OVK 4D 450<br>VKF 4D 450 |
| Thyristor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | speed controllers            |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | ,                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| (Assessed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-1-300                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS-1-400                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-1 N (V)<br>RS-1,5 N (V)   | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS-2 N (V)                   | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-2,5 N (V)<br>RS-0,5-PS    | •                                     | •                                     |                                       | -                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 12551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RS-1,5-PS                    | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS-2,5-PS                    |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-4,0-PS                    |                                       |                                       |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-1,5-T                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS-3,0-T                     |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS-5,0-T                     |                                       |                                       |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-10,0-T<br>RS-1,5-TA       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS-3,0-TA                    |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-5,0-TA                    |                                       |                                       |                                       | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS-10,0-TA                   |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ner speed control            | lers                                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RSA5E-2-P                    | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5E-2-M                    | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| e-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RSA5E-3-M<br>RSA5E-4-M       | •                                     | •                                     | •                                     | •                                     | •                                     |                                       | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RSA5E-12-M                   |                                       |                                       |                                       |                                       | •                                     |                                       | •                                     |                                       |                                       | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5E-1,5-T                  | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | -                                     | -                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5E-3,5-T                  | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RSA5E-5,0-T                  | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 462+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-8,0-T                  | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5E-10,0-T                 | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RSA5D-1,5-T                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RSA5D-3,5-T                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5D-5-M                    |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| 2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RSA5D-8-M<br>RSA5D-10-M      |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     |                                       |                                       |                                       | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSA5D-12-M                   |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y speed controlle            | rs                                    |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VFED-200-TA                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VFED-400-TA                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VFED-750-TA                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VFED-1100-TA<br>VFED-1500-TA |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |
| Temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ture regulators              |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTS-1-400                    |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 麗.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RTSD-1-400                   |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RT-10                        | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| Multi-spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed fan switches              |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2-5,0                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P3-5,0<br>P5-5,0             |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2-1-300                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P3-1-300                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| EC-motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs controllers               |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R-1/010                      |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-1,5 N                      | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| and the second se | TH-1,5 N                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TF-1,5 N<br>TP-1,5 N         | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     | •                                     |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |                                       |

• recommended

suitable

|           |                              |                                              | <b>(3</b>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|-----------|------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|           |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           |                              | ~ ° "                                        | 094                                          | 0 ° "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o ا                             |
|           |                              | OV1 150<br>OVK1 150<br>VKOM 150<br>OV1 150 R | OV1 200<br>OVK1 200<br>VKOM 200<br>OV1 200 R | OV1 250<br>OVK1 250<br>VKOM 250<br>OV1 250 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OV1 315<br>OVK1 315<br>VKOM 315 |
|           |                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | 1 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1      | 12 X 41 2<br>V 4 1 2<br>V 4 | 5 K1 3                          |
|           |                              |                                              | 0050                                         | 0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 005                             |
| Thyristor | speed controllers            |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 134       | RS-1-300                     | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RS-1-400                     | •                                            | •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                               |
| · ····    |                              |                                              |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
|           | RS-1 N (V)<br>RS-1,5 N (V)   |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 2 -       | RS-2 N (V)                   | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RS-2,5 N (V)                 | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RS-0,5-PS                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| 6         | RS-1,5-PS                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 0         | RS-2,5-PS                    |                                              |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RS-4,0-PS                    | •                                            |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 0         | RS-1,5-T<br>RS-3,0-T         |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                               |
| 1         | RS-5,0-T                     |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 4.        | RS-10,0-T                    |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           | RS-1,5-TA                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 6         | RS-3,0-TA                    |                                              |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 100       | RS-5,0-TA                    |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                               |
| <b>-</b>  | RS-10,0-TA                   | • • • • •                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Transform | ner speed control            | iers                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Si.       | RSA5E-2-P                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RSA5E-2-M                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| les 1     | RSA5E-3-M                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| area.     | RSA5E-4-M                    | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RSA5E-12-M                   | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RSA5E-1,5-T<br>RSA5E-3,5-T   |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 1 -       | RSA5E-5,0-T                  | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 100       | RSA5E-8,0-T                  | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
|           | RSA5E-10,0-T                 | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| 10        | RSA5D-1,5-T                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 100       | RSA5D-3,5-T                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| -         | RSA5D-5-M                    |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 1 .       | RSA5D-8-M                    |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           | RSA5D-10-M<br>RSA5D-12-M     |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Frequenc  | speed controlle              | rs                                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           | VFED-200-TA                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| E III     | VFED-400-TA                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           | VFED-750-TA                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 100       | VFED-1100-TA                 |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Tompored  | VFED-1500-TA                 |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| remperat  | ture regulators<br>RTS-1-400 |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 1992 : E  | RTSD-1-400                   |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 13        | RT-10                        | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| Multi-spe | ed fan switches              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| -         | P2-5,0                       |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 3         | P3-5,0                       |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 1         | P5-5,0                       |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| #         | P2-1-300<br>P3-1-300         |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| EC moto   | rs controllers               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|           |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Assessed  |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| C         | R-1/010                      |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| Assessed  |                              |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| C         | T-1,5 N                      | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |
| C         |                              | •                                            | •                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                               |

• recommended

suitable



## **ROOF FANS**

#### VENTS VKV Series



• Centrifugal roof fans in the steel casing with vertical exhaust of air and the air capacity up to 4700 m<sup>3</sup>/h. Designed for exhaust ventilation systems.

VENTS VKH Series



• Centrifugal roof fans in the steel casing with the horizontal exhaust of air and the air capacity up to 4700 m<sup>3</sup>/h. Designed for exhaust ventilation systems.

#### VENTS VKMK (VKMKp) Series



• Centrifugal roof fans in the steel casing with the horizontal exhaust of air and the air capacity up to 1880 m<sup>3</sup>/h. Designed for exhaust ventilation systems.

VENTS VOK Series



Axial roof fans in the steel casing with the horizontal exhaust of air and the air capacity up to 2500 m<sup>3</sup>/h.

#### VENTS VOK1 Series



• Axial roof fans in the steel casing with the horizontal exhaust of air and the air capacity up to 1700 m<sup>3</sup>/h.

WWW.VENTILATION-SYSTEM.COM







|                       | VENTS VKV<br>Centrifugal roof fan          | page |
|-----------------------|--------------------------------------------|------|
|                       | Air capacity – up to 4700 m³/h             | 158  |
|                       | VENTS VKH<br>Centrifugal roof fan          | page |
|                       | Air capacity – up to 4700 m³/h             | 158  |
|                       | VENTS VKV EC<br>Centrifugal roof fan       | page |
| E-motor               | Air capacity – up to 11400 m³/h            | 164  |
|                       | VENTS VKH EC<br>Centrifugal roof fan       | page |
| Essee - m<br>El-motor | Air capacity – up to 11400 m³/h            | 164  |
|                       | Roof fans accessories                      | page |
|                       | for series VKV / VKH                       | 164  |
|                       | VENTS VKMK (VKMKp)<br>Centrifugal roof fan | page |
|                       | Air capacity – up to 1880 m³/h             | 172  |
|                       | VENTS VOK<br>Axial roof fan                | page |
|                       | Air capacity – up to 2500 m³/h             | 174  |
|                       | VENTS VOK1<br>Axial roof fan               | page |
|                       | Air capacity – up to 1700 m³/h             | 176  |

## Fans series VENTS VKV



Fans series



Centrifugal roof fans with the air capacity up to **4700 m<sup>3</sup>/h** with the vertical exhaust of air

#### Applications

Exhaust ventilation system for various premises suitable for roof mounting. Compatible with Ø 200 to 500 mm air ducts. Suitable for any roof types as well as vertical ventilation shafts.

#### Design

The fan casing is made of steel with polymeric coating (VKV and VKH models), aluminum (VKVA, VKHA), galvanized steel (VKVz, VKHz).

#### Motor

The centrifugal impeller with backward-curved blades is mounted directly on the two-, four - or six-pole

Centrifugal roof fans with the air capacity up to **4700 m<sup>3</sup>/h** with the horizontal exhaust of air

single- or three-phase asynchronous motor shaft. The motor is equipped with thermal overheating protection with automatic restart as well as ball bearings for long service life. For precise features, safe operation and low noise, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

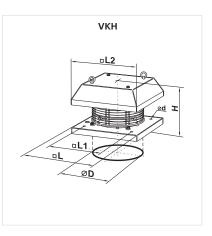
Both smooth or step speed control is performed by means of the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

#### Mounting

The fan is mounted on the roof directly above the ventilating duct or shaft and is firmly fixed to the flat surface by means of a connecting plate. While mounting VKH fans directly onto the flat roof a supporting block shall be provided to prevent water and snow drops into the vent of the ventilation shaft. Electrical connection and installation shall beperformed in compliance with the manual and circuit diagram on the terminal box.

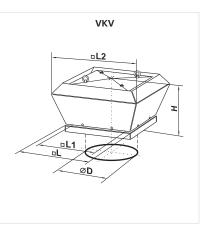
For connection of the fans to round air ducts use the following accessories: KKV damper, GVK flexible connector, FKV counter flange (page 170-171). For mounting of the fans to flat surface use the mounting frame RKV (page 171).

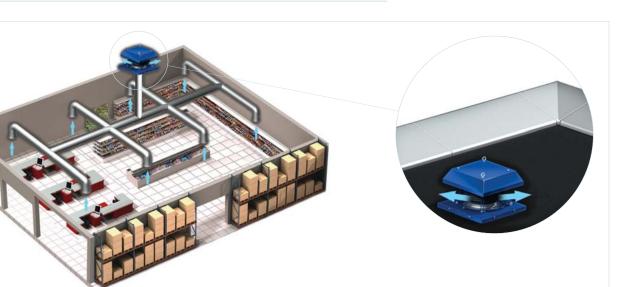





#### Designation key: \_




#### Fan overall dimensions:


| Turne      |     | Dimensions [mm] |     |     |     |     |      |  |  |
|------------|-----|-----------------|-----|-----|-----|-----|------|--|--|
| Туре       | ØD  | Ød              | Н   | L   | L1  | L2  | [kg] |  |  |
| VKH 2E 220 | 245 | 10              | 228 | 338 | 245 | 338 | 6,9  |  |  |
| VKH 2E 225 | 210 | 10              | 228 | 338 | 245 | 338 | 7,1  |  |  |
| VKH 2E 250 | 286 | 10              | 265 | 400 | 330 | 365 | 10,1 |  |  |
| VKH 2E 280 | 286 | 10              | 265 | 400 | 330 | 365 | 10,2 |  |  |
| VKH 4E 310 | 286 | 10              | 300 | 438 | 330 | 400 | 10,2 |  |  |
| VKH 4D 310 | 286 | 10              | 300 | 438 | 330 | 400 | 10,2 |  |  |
| VKH 4E 355 | 438 | 12              | 348 | 598 | 450 | 550 | 15,6 |  |  |
| VKH 4D 355 | 438 | 12              | 325 | 598 | 450 | 550 | 15,6 |  |  |
| VKH 4E 400 | 438 | 12              | 348 | 598 | 450 | 550 | 21,0 |  |  |
| VKH 4E 450 | 438 | 12              | 400 | 668 | 450 | 640 | 22,7 |  |  |
| VKH 4D 400 | 438 | 12              | 348 | 598 | 450 | 550 | 22,0 |  |  |
| VKH 4D 450 | 438 | 12              | 400 | 668 | 450 | 640 | 22,7 |  |  |
| VKH 6E 500 | 438 | 12              | 465 | 668 | 450 | 640 | 26,6 |  |  |



#### Fan overall dimensions:

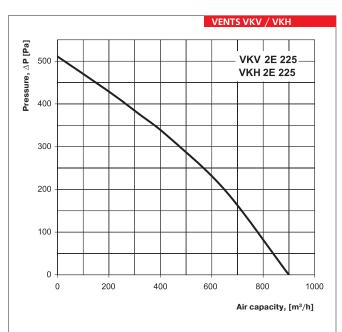
| Turne      |     |     | Mass |     |     |      |
|------------|-----|-----|------|-----|-----|------|
| Туре       | ØD  | Н   | L2   | L1  | L   | [kg] |
| VKV 2E 220 | 245 | 275 | 460  | 245 | 338 | 8,9  |
| VKV 2E 225 | 210 | 275 | 460  | 245 | 338 | 9,6  |
| VKV 2E 250 | 286 | 275 | 520  | 330 | 400 | 12,0 |
| VKV 2E 280 | 286 | 275 | 520  | 330 | 400 | 12,7 |
| VKV 4E 310 | 286 | 330 | 560  | 330 | 438 | 17,8 |
| VKV 4D 310 | 286 | 330 | 560  | 330 | 438 | 17,8 |
| VKV 4E 355 | 438 | 420 | 783  | 450 | 598 | 22,0 |
| VKV 4D 355 | 438 | 420 | 783  | 450 | 598 | 22,0 |
| VKV 4E 400 | 438 | 420 | 783  | 450 | 598 | 27,5 |
| VKV 4E 450 | 438 | 454 | 872  | 450 | 668 | 30,0 |
| VKV 4D 400 | 438 | 420 | 783  | 450 | 598 | 27,5 |
| VKV 4D 450 | 438 | 454 | 872  | 450 | 668 | 30,0 |
| VKV 6E 500 | 438 | 454 | 872  | 450 | 668 | 33,8 |



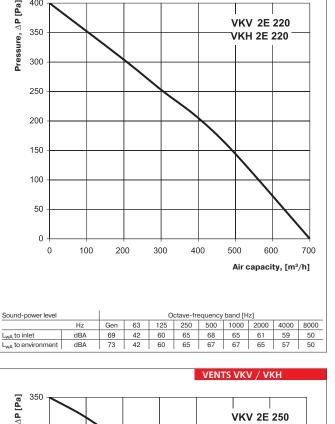


VKH fan store roof ventilation example.

FAN SERIES VKV / VKH


#### Technical data:

|                                      | VKV /<br>VKH<br>2E 220 | VKV /<br>VKH<br>2E 225 | VKV /<br>VKH<br>2E 250 | VKV /<br>VKH<br>2E 280 |
|--------------------------------------|------------------------|------------------------|------------------------|------------------------|
| Voltage [V / 50 Hz]                  | 230                    | 230                    | 230                    | 230                    |
| Power [W]                            | 85                     | 135                    | 155                    | 225                    |
| Current [A]                          | 0,38                   | 0,6                    | 0,7                    | 1,0                    |
| Maximum air flow [m <sup>3</sup> /h] | 700                    | 900                    | 1300                   | 1780                   |
| RPM [min <sup>-1</sup> ]             | 2700                   | 2650                   | 2600                   | 2700                   |
| Noise level at 3 m [dBA]             | 49                     | 49                     | 65                     | 66                     |
| Maximum operating temperature [°C]   | 55                     | 55                     | 50                     | 50                     |
| Protection rating                    | IP X4                  | IP X4                  | IP X4                  | IP X4                  |


#### Technical data:

|                                      | VKV /<br>VKH<br>4E 310 | VKV /<br>VKH<br>4D 310 | VKV /<br>VKH<br>4E 355 | VKV /<br>VKH<br>4D 355 |
|--------------------------------------|------------------------|------------------------|------------------------|------------------------|
| Voltage [V / 50 Hz]                  | 230                    | 400                    | 230                    | 400                    |
| Power [W]                            | 120                    | 110                    | 245                    | 170                    |
| Current [A]                          | 0,54                   | 0,32                   | 1,12                   | 0,52                   |
| Maximum air flow [m <sup>3</sup> /h] | 1820                   | 1950                   | 2800                   | 2350                   |
| RPM [min <sup>-1</sup> ]             | 1370                   | 1400                   | 1420                   | 1400                   |
| Noise level at 3 m [dBA]             | 45                     | 53                     | 46                     | 53                     |
| Maximum operating temperature [°C]   | 85                     | 65                     | 50                     | 70                     |
| Protection rating                    | IP X4                  | IP X4                  | IP X4                  | IP X4                  |

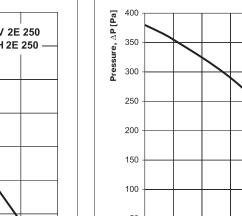
|                                      | VKV /<br>VKH<br>4E 400 | VKV /<br>VKH<br>4D 400 | VKV /<br>VKH<br>4E 450 | VKV /<br>VKH<br>4D 450 | VKV /<br>VKH<br>6E 500 |
|--------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Voltage [V / 50 Hz]                  | 230                    | 400 Y                  | 230                    | 400 Y                  | 230                    |
| Power [W]                            | 480                    | 385                    | 640                    | 470                    | 385                    |
| Current [A]                          | 2,4                    | 0,7                    | 3,1                    | 0,82                   | 1,82                   |
| Maximum air flow [m <sup>3</sup> /h] | 3400                   | 3800                   | 3850                   | 4300                   | 4700                   |
| RPM [min <sup>-1</sup> ]             | 1400                   | 1430                   | 1350                   | 1430                   | 880                    |
| Noise level at 3 m [dBA]             | 52                     | 52                     | 53                     | 53                     | 47                     |
| Maximum operating temperature [°C]   | 80                     | 60                     | 50                     | 50                     | 50                     |
| Protection rating                    | IP X4                  |

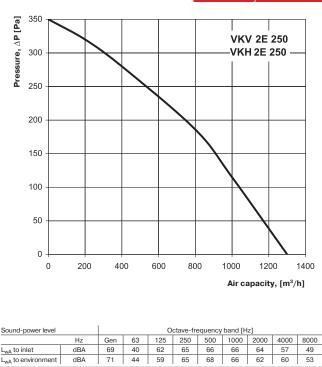


| Sound-power level Octave-frequency band [Hz] |     |     |    |     |     |     |      |      |      |      |
|----------------------------------------------|-----|-----|----|-----|-----|-----|------|------|------|------|
| ·                                            | Hz  | Gen | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet                     | dBA | 72  | 41 | 59  | 66  | 68  | 66   | 61   | 57   | 49   |
| $L_{\text{wA}}$ to environment               | dBA | 72  | 42 | 60  | 67  | 69  | 66   | 63   | 58   | 51   |

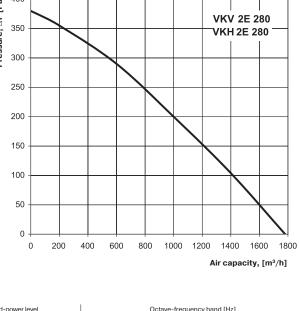


400

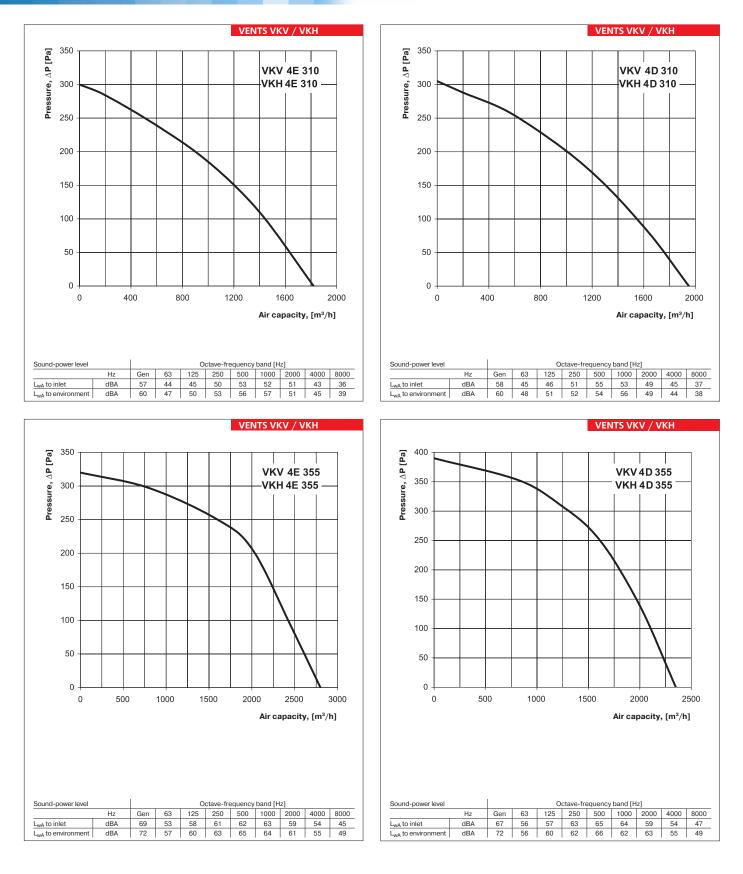

350

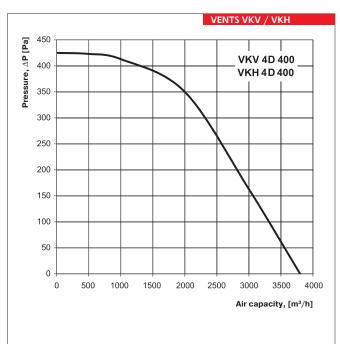

300

VENTS VKV / VKH

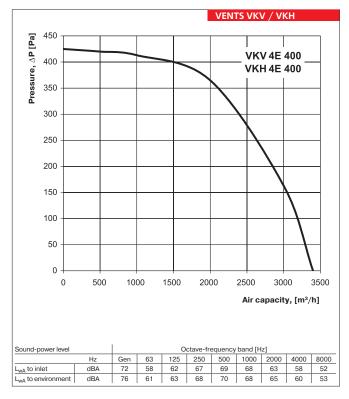

VKV 2E 220

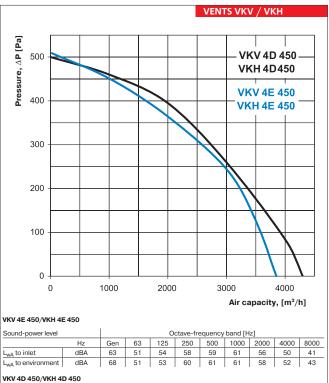
VKH 2E 220




#### VENTS VKV / VKH





| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72                         | 42 | 58  | 62  | 64  | 65   | 63   | 56   | 49   |
| L <sub>wA</sub> to environment | dBA | 72                         | 45 | 61  | 63  | 66  | 66   | 61   | 60   | 53   |





| Sound-power level              |     | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-----|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz  | Gen                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dBA | 72                         | 59 | 63  | 65  | 67  | 68   | 63   | 58   | 51   |
| L <sub>wA</sub> to environment | dBA | 74                         | 59 | 62  | 65  | 69  | 69   | 66   | 59   | 53   |





Octave-frequency band [Hz]

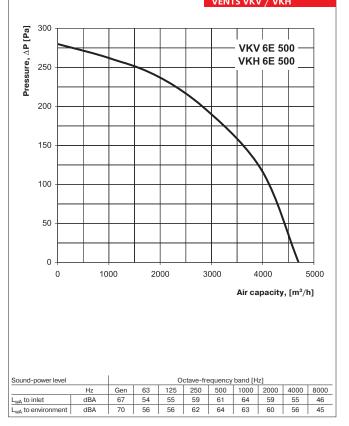
 Gen
 63
 125
 250
 500
 1000
 2000
 4000
 8000

 64
 49
 55
 59
 60
 60
 56
 48
 42

 66
 51
 56
 58
 61
 61
 56
 52
 46

Sound-power level

L<sub>wA</sub> to environment


L<sub>wA</sub> to inlet

Hz

dBA

dBA

### VENTS VKV / VKH



FAN SERIES VENTS

## Fans series **VENTS VKV EC**





Fans series

**VENTS VKH EC** 

Roof exhaust centrifugal fans with vertical air exhaust and air capacity up to **11400 m<sup>3</sup>/h**. Roof exhaust centrifugal fans with horizontal air exhaust and air capacity up to **11400 m<sup>3</sup>/h**.

#### Application

The fans are rated for exhaust ventilation and air conditioning systems for various premises that require reasonable energy saving solutions and controlled ventilation systems. EC motors reduce energy demand by 1.5–3 times and ensure high performance combined with low noise operation. Such characteristics are especially important for application in public premises as banks, supermarkets, restaurants, hotels, residential premises or domestic spaces, including water pools.

#### Design

The fan casing is made of polymer-coated steel (VKV and VKH models), aluminum (VKVA, VKHA), galvanized steel (VKVz, VKHz).

#### Motor

The fans are equipped with high-efficient electronically-commutated direct current motors with external rotor and impellers with backward curved blades. EC motor is free of friction and wear parts as a commutator and brushes. These components are replaced by a maintenance-free electronic circuit board. EC motors are featured with high performance and well controllable speed range. Premium efficiency reaching 90% is a definite advantage of electronically commutated motors.

#### Integrated functions and control

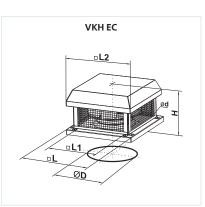
The fan is controlled by an external 0-10 V control signal. The fan capacity is regulated depending on temperature and pressure level, smoke content, etc.



#### Designation key:

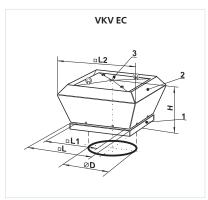
#### Series and modification Casing material Turbine standard size Motor type steel with polymeric coating VENTS VKV - vertical air exhaust 250; 280; 310; 355; EC - electronically commutated $\overline{A}$ – aluminum VENTS VKH - horizontal air exhaust 400; 450; 500; 560 synchronous motor z - galvanized steel Accessories page 282 page 336 page 338 page 352 page 170 page 170 page 171 page 171 page 282

The fan has low energy consumption at any speed. Maximum fan speed does not depend on the available current frequency and is suitable for operation both at 50 and 60 Hz. Several fans can be integrated into a single computer-driven control system. Custom designed software provides high accuracy control of the fans integrated into a network. The LED-display of the computer shows all the system parameters and the operation mode can be set individually for each fan in the network.

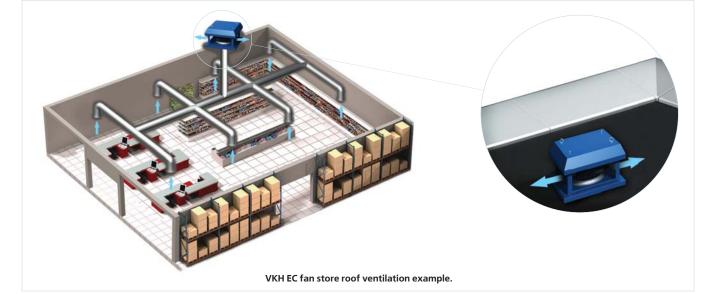

#### Mounting

VKV/VKH...EC fans are designed for mounting on the roof. The mounting plate enables the fan installation on a level surface directly above a ventilation shaft or air duct and the holes on this mounting plate provide reliable rigid fixing of the fan to a static surface. While mounting the VKH... EC fans to the level surface provide a support to exclude possible water or snow ingress into an exhaust vent of the respective ventilation shaft. While installing the fan provide enough space for maintenance works.

For connection of the fans to round air ducts use the following accessories: KKV damper, GVK flexible connector, FKV counter flange (page 170-171). For mounting of the fans to flat surface use the mounting frame RKV (page 171).

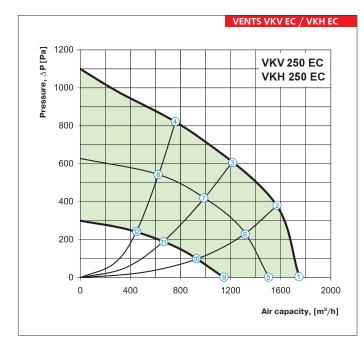

#### Fan overall dimensions:

| Turne      |     |    | Dimensio | ons [mm] |     |     | Mass |
|------------|-----|----|----------|----------|-----|-----|------|
| Туре       | ØD  | Ød | Н        | L        | L1  | L2  | [kg] |
| VKH 250 EC | 285 | 11 | 289      | 435      | 330 | 411 | 16   |
| VKH 280 EC | 285 | 11 | 264      | 435      | 330 | 431 | 17   |
| VKH 310 EC | 285 | 11 | 272      | 435      | 330 | 431 | 19   |
| VKH 355 EC | 438 | 11 | 326      | 595      | 450 | 558 | 32   |
| VKH 400 EC | 438 | 11 | 357      | 595      | 450 | 558 | 75   |
| VKH 450 EC | 438 | 11 | 407      | 665      | 535 | 637 | 80   |
| VKH 500 EC | 438 | 11 | 437      | 665      | 535 | 637 | 84   |
| VKH 560 EC | 605 | 14 | 487      | 940      | 750 | 912 | 95   |

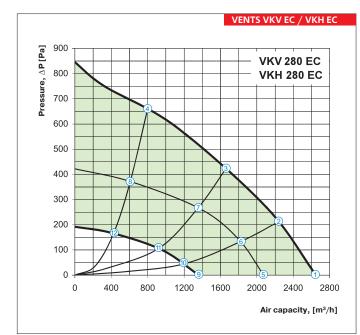



Fan overall dimensions:

| Turne      | Dimensions [mm] |     |     |     |      | Mass |
|------------|-----------------|-----|-----|-----|------|------|
| Туре       | ØD              | Н   | L   | L1  | L2   | [kg] |
| VKV 250 EC | 285             | 320 | 435 | 330 | 528  | 16   |
| VKV 280 EC | 285             | 327 | 435 | 330 | 557  | 18   |
| VKV 310 EC | 285             | 327 | 435 | 330 | 557  | 21   |
| VKV 355 EC | 438             | 387 | 595 | 450 | 708  | 38   |
| VKV 400 EC | 438             | 387 | 595 | 450 | 708  | 82   |
| VKV 450 EC | 438             | 464 | 665 | 535 | 898  | 84   |
| VKV 500 EC | 438             | 464 | 665 | 535 | 898  | 88   |
| VKV 560 EC | 605             | 560 | 940 | 750 | 1150 | 98   |



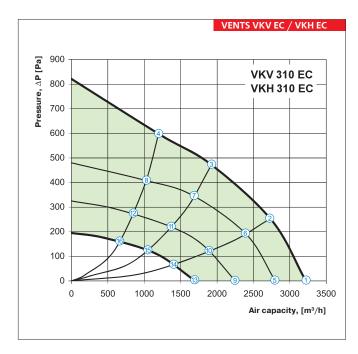


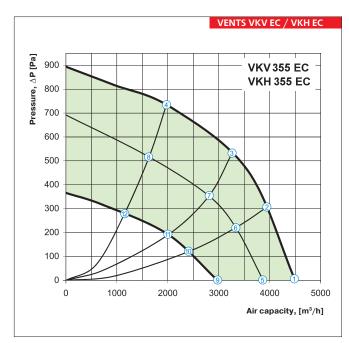




|                                      | VKV / VKH<br>250 EC | VKV / VKH<br>280 EC |
|--------------------------------------|---------------------|---------------------|
| Voltage [V / 50/60 Hz]               | 1~ 200-277          | 1~ 200-277          |
| Power [kW]                           | 0,485               | 0,455               |
| Current [A]                          | 3,0                 | 2,8                 |
| Maximum air flow [m <sup>3</sup> /h] | 1750                | 2650                |
| RPM [min <sup>-1</sup> ]             | 3580                | 2600                |
| Noise level at 3 m [dBA]             | 47                  | 47                  |
| Maximum operating temperature [°C]   | -25 +60             | -25 +40             |
| Protection rating                    | IP X4               | IP X4               |

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 380    | 2.30   | 3580                    |
| 2     | 465    | 3.00   | 3460                    |
| 3     | 485    | 3.00   | 3460                    |
| 4     | 440    | 2.40   | 3520                    |
| 5     | 193    | 1.20   | 2830                    |
| 6     | 245    | 1.50   | 2830                    |
| 7     | 260    | 1.60   | 2830                    |
| 8     | 225    | 1.40   | 2830                    |
| 9     | 80     | 0.50   | 2000                    |
| 10    | 100    | 0.60   | 2000                    |
| 11    | 106    | 0.70   | 2000                    |
| 12    | 94     | 0.60   | 2000                    |
|       |        |        |                         |

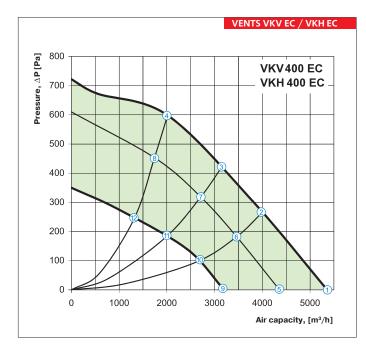



| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 380    | 2.30   | 3580                    |
| 2     | 465    | 3.00   | 3460                    |
| 3     | 485    | 3.00   | 3460                    |
| 4     | 440    | 2.40   | 3520                    |
| 5     | 193    | 1.20   | 2830                    |
| 6     | 245    | 1.50   | 2830                    |
| 7     | 260    | 1.60   | 2830                    |
| 8     | 225    | 1.40   | 2830                    |
| 9     | 80     | 0.50   | 2000                    |
| 10    | 100    | 0.60   | 2000                    |
| 11    | 106    | 0.70   | 2000                    |
| 12    | 94     | 0.60   | 2000                    |
|       |        |        |                         |




|                                      | VKV / VKH<br>310 EC | VKV / VKH<br>355 EC |
|--------------------------------------|---------------------|---------------------|
| Voltage [V / 50/60 Hz]               | 1~ 200-277          | 3~ 380-480          |
| Power [kW]                           | 0,48                | 0,94                |
| Current [A]                          | 3,1                 | 1,5                 |
| Maximum air flow [m <sup>3</sup> /h] | 3220                | 4500                |
| RPM [min <sup>-1</sup> ]             | 2300                | 2215                |
| Noise level at 3 m [dBA]             | 48                  | 51                  |
| Maximum operating temperature [°C]   | -25 +60             | -25 +60             |
| Protection rating                    | IP X4               | IP X4               |

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 370    | 2.35   | 2300                    |
| 2     | 445    | 2.85   | 2215                    |
| 3     | 480    | 3.10   | 2170                    |
| 4     | 448    | 2.85   | 2220                    |
| 5     | 210    | 1.30   | 1900                    |
| 6     | 284    | 1.70   | 1900                    |
| 7     | 312    | 1.80   | 1900                    |
| 8     | 278    | 1.70   | 1900                    |
| 9     | 124    | 0.80   | 1560                    |
| 10    | 158    | 1.00   | 1560                    |
| 11    | 175    | 1.10   | 1560                    |
| 12    | 158    | 1.00   | 1560                    |
| 13    | 57     | 0.40   | 1200                    |
| 14    | 73     | 0.50   | 1200                    |
| 15    | 80     | 0.50   | 1200                    |
| 16    | 70     | 0.50   | 1200                    |

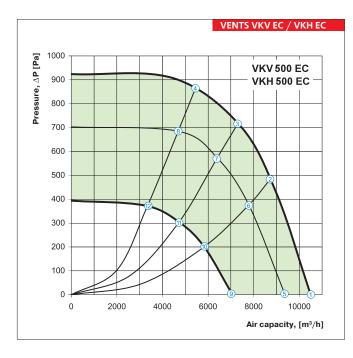

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 700    | 1.30   | 2205                    |
| 2     | 880    | 1.40   | 2215                    |
| 3     | 940    | 1.50   | 2215                    |
| 4     | 850    | 1.40   | 2215                    |
| 5     | 380    | 0.70   | 1825                    |
| 6     | 470    | 0.90   | 1805                    |
| 7     | 490    | 0.90   | 1790                    |
| 8     | 460    | 0.90   | 1800                    |
| 9     | 170    | 0.40   | 1335                    |
| 10    | 200    | 0.40   | 1315                    |
| 11    | 210    | 0.40   | 1315                    |
| 12    | 190    | 0.40   | 1310                    |



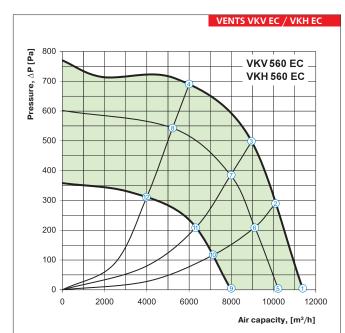



|                                      | VKV / VKH<br>400 EC | VKV / VKH<br>450 EC |
|--------------------------------------|---------------------|---------------------|
| Voltage [V / 50/60 Hz]               | 3~ 380-480          | 3~ 380-480          |
| Power [kW]                           | 0,77                | 1,01                |
| Current [A]                          | 1,3                 | 1,6                 |
| Maximum air flow [m <sup>3</sup> /h] | 5360                | 6700                |
| RPM [min <sup>-1</sup> ]             | 1755                | 1560                |
| Noise level at 3 m [dBA]             | 53                  | 55                  |
| Maximum operating temperature [°C]   | -25 +60             | -25 +60             |
| Protection rating                    | IP X4               | IP X4               |

| 630<br>750 | 1.10<br>1.30                                  | 1755<br>1760                                                                                                                                             |
|------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1.30                                          | 1760                                                                                                                                                     |
|            |                                               | 1700                                                                                                                                                     |
| ((0        | 1.30                                          | 1760                                                                                                                                                     |
| 720        | 1.20                                          | 1760                                                                                                                                                     |
| 400        | 0.80                                          | 1510                                                                                                                                                     |
| 420        | 0.80                                          | 1470                                                                                                                                                     |
| 430        | 0.80                                          | 1465                                                                                                                                                     |
| 410        | 0.80                                          | 1485                                                                                                                                                     |
| 170        | 0.40                                          | 1100                                                                                                                                                     |
| 180        | 0.40                                          | 1090                                                                                                                                                     |
| 180        | 0.40                                          | 1085                                                                                                                                                     |
| 180        | 0.40                                          | 1095                                                                                                                                                     |
|            | 400<br>420<br>430<br>410<br>170<br>180<br>180 | 720       1.20         400       0.80         420       0.80         430       0.80         410       0.80         170       0.40         180       0.40 |




| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 690    | 1.10   | 1560                    |
| 2     | 910    | 1.50   | 1555                    |
| 3     | 1010   | 1.60   | 1555                    |
| 4     | 960    | 1.50   | 1560                    |
| 5     | 430    | 0.80   | 1345                    |
| 6     | 530    | 1.00   | 1315                    |
| 7     | 580    | 1.00   | 1300                    |
| 8     | 540    | 1.00   | 1315                    |
| 9     | 190    | 0.40   | 985                     |
| 10    | 220    | 0.50   | 970                     |
| 11    | 250    | 0.50   | 965                     |
| 12    | 230    | 0.50   | 970                     |
|       |        |        |                         |




|                                      | VKV / VKH<br>500 EC | VKV / VKH<br>560 EC |
|--------------------------------------|---------------------|---------------------|
| Voltage [V / 50/60 Hz]               | 3~ 380-480          | 3~ 380-480          |
| Power [kW]                           | 2,7                 | 2,3                 |
| Current [A]                          | 4,3                 | 3,6                 |
| Maximum air flow [m <sup>3</sup> /h] | 10500               | 11400               |
| RPM [min <sup>-1</sup> ]             | 1700                | 1350                |
| Noise level at 3 m [dBA]             | 63                  | 65                  |
| Maximum operating temperature [°C]   | -25 +60             | -25 +60             |
| Protection rating                    | IP X4               | IP X4               |

| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1850   | 2.90   | 1700                    |
| 2     | 2500   | 3.90   | 1700                    |
| 3     | 2650   | 4.10   | 1700                    |
| 4     | 2400   | 3.60   | 1700                    |
| 5     | 1300   | 2.10   | 1500                    |
| 6     | 1700   | 2.60   | 1500                    |
| 7     | 1750   | 2.70   | 1500                    |
| 8     | 1650   | 2.60   | 1500                    |
| 9     | 570    | 1.10   | 1100                    |
| 10    | 700    | 1.30   | 1100                    |
| 11    | 750    | 1.30   | 1100                    |
| 12    | 700    | 1.30   | 1100                    |



| point | P, (W) | I, (A) | n, (min <sup>-1</sup> ) |
|-------|--------|--------|-------------------------|
| 1     | 1330   | 2.20   | 1350                    |
| 2     | 1900   | 2.90   | 1350                    |
| 3     | 2150   | 3.40   | 1350                    |
| 4     | 2100   | 2.20   | 1350                    |
| 5     | 900    | 1.60   | 1200                    |
| 6     | 1300   | 2.10   | 1200                    |
| 7     | 1550   | 2.50   | 1200                    |
| 8     | 1430   | 2.30   | 1200                    |
| 9     | 450    | 0.90   | 910                     |
| 10    | 600    | 1.10   | 910                     |
| 11    | 700    | 1.20   | 910                     |
| 12    | 650    | 1.20   | 910                     |
|       |        |        |                         |



#### ACCESSORIES FOR ROOF FANS OF VKV / VKH SERIES



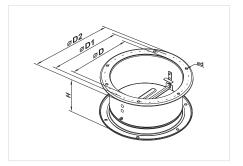


#### Application

The KKV backdraft damper is designed for automatic shutoff of the air duct during the fan standby and reverse back flow prevention when the ventilation system is off. Designed for mounting of VKV, VKH, VKV EC, VKH EC fan series.

#### Design

The casing and the rotating blade is made of galvanized steel plate. The damper vane is opened


under air flow pressure and is automatically closed at no air supply. The backdraft damper has gravitation operating mechanism.

#### Mounting

The damper is mounted into the ventilation system by means of fixing the end flanges to the mating flanges in the system. Fixation is effected with galvanized bolts and clamps. The connectors are suitable for installation into vertical exhaust air ducts only (no spring).

#### **Overall dimensions:**

| Turno       |     | Dimensions [mm] |     |    |     |      |
|-------------|-----|-----------------|-----|----|-----|------|
| Туре        | ØD  | ØD1             | ØD2 | Ød | Н   | [kg] |
| KKV 220-225 | 183 | 213             | 235 | 7  | 115 | 1,0  |
| KKV 250-315 | 256 | 285             | 306 | 7  | 156 | 1,7  |
| KKV 355-500 | 402 | 438             | 464 | 9  | 220 | 3,5  |





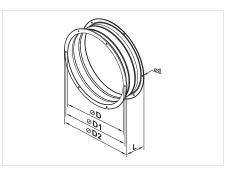


#### Application

The GKV flexible connectors are designed for minimizing the vibration transmission from fans to the air duct as well as partial compensation of thermal distortion in the ductworks. Applied in ventilation systems with the transferred air temperature over the range of  $-40^{\circ}$ C to  $+80^{\circ}$ C. Designed for mounting of VKV, VKH, VKV EC, VKH EC fan series.

#### Design

The flexible connectors consist of two flanges made


of galvanized steel plates that are connected by a vibration-isolating material made of polyethylene band reinforced with polyamide textile. The connectors are not designed for mechanical load and cannot be used as a part of load-bearing construction.

#### Mounting

The connectors are mounted into the ventilation system by fixing the end flanges to the mating flanges in the system. Fixation is effected with galvanized bolts and clamps.

#### **Overall dimensions:**

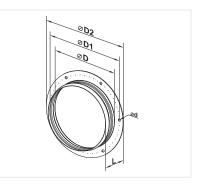
| Tupo        |     | Dimensions [mm] |     |    |     |      |
|-------------|-----|-----------------|-----|----|-----|------|
| Туре        | ØD  | ØD1             | ØD2 | Ød | L   | [kg] |
| GKV 220-225 | 183 | 213             | 235 | 7  | 200 | 0,8  |
| GKV 250-315 | 256 | 285             | 308 | 7  | 200 | 1,2  |
| GKV 355-500 | 402 | 438             | 484 | 9  | 200 | 1,75 |







#### Application


Designed for connection of the round air ducts with roof fans VKV, VKH, VKV EC, VKH EC.

#### Design

Made of galvanized steel.

#### **Overall dimensions:**

| Turco       | Dimensions [mm] |     |     |    |    | Mass |
|-------------|-----------------|-----|-----|----|----|------|
| Туре        | ØD              | ØD1 | ØD2 | Ød | L  | [kg] |
| FKV 220-225 | 183             | 213 | 235 | 7  | 40 | 0,34 |
| FKV 250-315 | 256             | 285 | 306 | 7  | 40 | 0,52 |
| FKV 355-500 | 402             | 438 | 464 | 9  | 40 | 1,05 |
|             |                 |     |     |    |    |      |



#### Mounting frame RKV (RKVI - insulated)



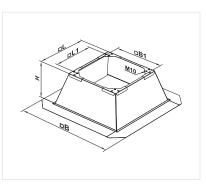
#### Application

Design

The mounting frame RKV (RKVI) is designed for mounting of roof fans on a flat surface, for example, for mounting of VKV, VKH, VKV EC, VKH EC fan series.

The RKV casing is made of galvanized steel and

provided with 20 mm thick thermal-insulating layer based on mineral cotton. The frame casing fully disables any water ingress and is used for final isolation directly on the roof. Specially designed flanges at the frame base ensure its easy and reliable mounting on the roof.


the RKVI casing is made of galvanized steel and

#### **Overall dimensions:**

| Turpo       | Dimensions [mm] |     |       |     |     |      |
|-------------|-----------------|-----|-------|-----|-----|------|
| Туре        | В               | B1  | Н     | L   | L1  | [kg] |
| RKV 220-225 | 720             | 254 | 300,5 | 301 | 245 | 10,4 |
| RKV 250-315 | 810             | 352 | 300,5 | 401 | 330 | 12,0 |
| RKV 355-400 | 980             | 506 | 300,5 | 561 | 450 | 16,4 |
| RKV 450-500 | 997             | 576 | 300,5 | 631 | 535 | 16,9 |

#### **Overall dimensions:**

| Туре         | Dimensions [mm] |     |       |     |     |      |
|--------------|-----------------|-----|-------|-----|-----|------|
| туре         | В               | B1  | Н     | L   | L1  | [kg] |
| RKVI 220-225 | 720             | 254 | 300,5 | 301 | 245 | 13,8 |
| RKVI 250-315 | 810             | 352 | 300,5 | 401 | 330 | 16,9 |
| RKVI 355-400 | 980             | 506 | 300,5 | 561 | 450 | 20,3 |
| RKVI 450-500 | 997             | 576 | 300,5 | 631 | 535 | 21,2 |



## Series VENTS VKMK



Centrifugal roof fans with the air capacity up to **1880 m<sup>3</sup>/h** in the steel casing with the horizontal exhaust of air

#### Applications

Exhaust ventilation system for various premises. Suitable for mounting on any roof types as well as connection to  $\emptyset$  150 up to 315 mm round air ducts.

#### Design

The fan casing is made of steel with polymeric coating. A thin steel connection plate is provided at the bottom of VKMKp model.

#### Motor

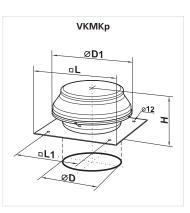
The centrifugal impeller with backward curved blades is powered by means of the single-phase motor with external rotor. The motors are equipped with thermal overheating protection with automatic restart as well as ball bearings for long service life. For precise features, safe operation and low noise of the fan, each turbine is dynamically balanced while assembly. Motor protection rating IP 44.

#### Speed control

Smooth or step speed control is performed by means of the thyristor or autotransformer controller. Several fans can be connected to one controller in case the total power and operating current do not exceed the rated controller values.

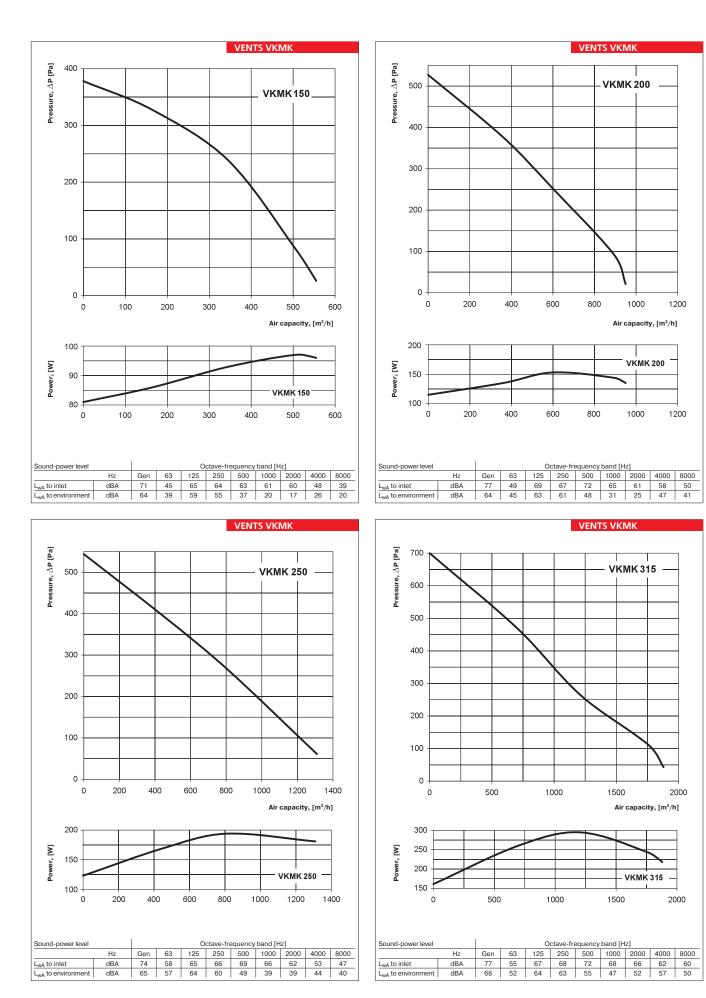
#### Mounting

The fan is mounted on the roof directly above the ventilating duct or shaft and is firmly fixed to the flat surface by means of a connecting plate. Electrical connection and mounting shall be performed in compliance with the manual and wiring diagram on the terminal box.


#### **Technical data:**

|                                    | VКМК<br>150 | VKMK<br>200 | VKMK<br>250 | VКМК<br>315 |
|------------------------------------|-------------|-------------|-------------|-------------|
| Voltage [V / 50 Hz]                | 230         | 230         | 230         | 230         |
| Power [W]                          | 98          | 154         | 194         | 296         |
| Current [A]                        | 0,43        | 0,67        | 0,85        | 1,34        |
| Maximum air flow [m³/h]            | 555         | 950         | 1310        | 1880        |
| RPM [min <sup>-1</sup> ]           | 2705        | 2375        | 2790        | 2720        |
| Noise level at 3 m [dBA]           | 47          | 48          | 52          | 54          |
| Maximum operating temperature [°C] | -25 +55     | -25 +50     | -25 +50     | -25 +45     |
| Protection rating                  | IP X4       | IP X4       | IP X4       | IP X4       |

Fan overall dimensions:


| T         |     | Dime | ensions | [mm] |     | Mass |
|-----------|-----|------|---------|------|-----|------|
| Туре      | ØD  | ØD1  | Н       | L    | L1  | [kg] |
| VKMK 150  | 149 | 400  | 230     | 440  | 330 | 7,2  |
| VKMK 200  | 198 | 400  | 250     | 440  | 330 | 8,1  |
| VKMK 250  | 248 | 400  | 249     | 590  | 450 | 10,1 |
| VKMK 315  | 315 | 500  | 269     | 590  | 450 | 10,1 |
| VKMKp 150 | 149 | 400  | 230     | 440  | 330 | 8,2  |
| VKMKp 200 | 198 | 400  | 250     | 440  | 330 | 9,3  |
| VKMKp 250 | 248 | 400  | 249     | 590  | 450 | 12,3 |
| VKMKp 315 | 315 | 500  | 269     | 590  | 450 | 12,2 |





#### Designation key:

|          |          |          | Serie         | es         |          |                |          |                    | Flange diameter, mm |  |  |  |
|----------|----------|----------|---------------|------------|----------|----------------|----------|--------------------|---------------------|--|--|--|
| VE       | NTS VKMK | p        | – with a flat | connection | plate    |                |          | 150; 200; 250; 315 |                     |  |  |  |
|          |          |          |               |            | Acces    | ssories        |          |                    |                     |  |  |  |
| 0        |          |          |               |            |          | 9.<br>9. marte | *.       |                    |                     |  |  |  |
| page 282 | page 282 | page 336 | page 338      | page 352   | page 352 | page 353       | page 356 | page 357           |                     |  |  |  |



#### **AXIAL ROOF FANS**

## Series VENTS VOK



Axial roof fans with the air capacity up to **2500 m<sup>3</sup>/h** in the steel casing with the horizontal exhaust of air.

#### Applications

Exhaust ventilation system for various premises for roof mounting. Compatible with  $\varnothing$  200 to 500 mm round air ducts.

#### Design

The fan casing is made of steel with polymeric coating.

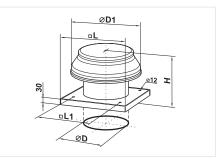
#### Motor

The impellers are powered with two- or four-pole, single- or three-phase asynchronous motors with external rotor and built-in thermal overheating protection with automatic restart depending on the model. Ball bearings in the motor ensure long service life. Motor protection rating IP 44.

#### Speed control

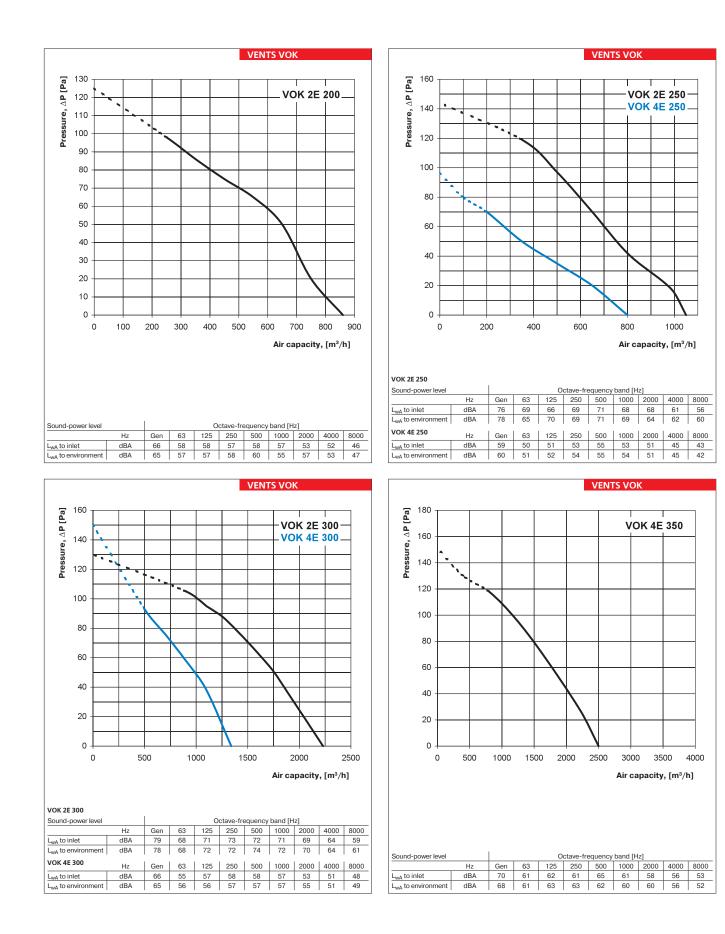
Both smooth or step speed control is performed by means of the thyristor or autotransformer controller. Several fans can be connected to one controller under condition that the total power and operating current do not exceed the rated controller values.

#### Mounting


The fan is mounted on the roof directly above the ventilating duct or shaft and is firmly fixed to the flat surface by means of a connecting plate. While mounting VOK fans directly onto the flat roof a supporting block shall be provided to prevent water and snow drops into the vent of the ventilation shaft. Electrical connection and installation shall be performed in compliance with the manual and circuit diagram on the terminal box.

#### **Technical data:**

|                                      | VOK<br>2E 200 | VOK<br>2E 250 | VOK<br>4E 250 | VOK<br>2E 300 | VOK<br>4E 300 | VOK<br>4E 350 |
|--------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Voltage [V / 50 Hz]                  | 230           | 230           | 230           | 230           | 230           | 230           |
| Power [W]                            | 55            | 80            | 50            | 145           | 75            | 140           |
| Current [A]                          | 0,26          | 0,4           | 0,22          | 0,66          | 0,35          | 0,65          |
| Maximum air flow [m <sup>3</sup> /h] | 860           | 1050          | 800           | 2230          | 1340          | 2500          |
| RPM [min <sup>-1</sup> ]             | 2300          | 2400          | 1380          | 2300          | 1350          | 1380          |
| Noise level at 3 m [dBA]             | 50            | 60            | 55            | 60            | 58            | 62            |
| Maximum operating temperature [°C]   | -30 +60       | -30 +60       | -30 +60       | -30 +60       | -30 +60       | -30 +60       |
| Protection rating                    | IP 54         |


#### Fan overall dimensions:

| Turno      |     | Dimensions [mm] |     |     |     |      |  |  |  |  |  |  |  |
|------------|-----|-----------------|-----|-----|-----|------|--|--|--|--|--|--|--|
| Туре       | ØD  | ØD1             | Н   | L   | L1  | [kg] |  |  |  |  |  |  |  |
| VOK 2E 200 | 207 | 341             | 220 | 410 | 245 | 4,3  |  |  |  |  |  |  |  |
| VOK 2E 250 | 262 | 401             | 250 | 460 | 330 | 6,5  |  |  |  |  |  |  |  |
| VOK 4E 250 | 262 | 401             | 250 | 460 | 330 | 6,5  |  |  |  |  |  |  |  |
| VOK 2E 300 | 312 | 401             | 260 | 560 | 450 | 8,7  |  |  |  |  |  |  |  |
| VOK 4E 300 | 312 | 401             | 260 | 560 | 450 | 8,7  |  |  |  |  |  |  |  |
| VOK 4E 350 | 362 | 500             | 260 | 630 | 535 | 10,9 |  |  |  |  |  |  |  |



#### Designation key:

| Series                     | M                     | otor modification           | Impeller diameter  |  |  |  |  |
|----------------------------|-----------------------|-----------------------------|--------------------|--|--|--|--|
|                            | Number of poles       | Phase                       |                    |  |  |  |  |
| VENTS VOK                  | 2<br>4                | <b>E</b> – single phase     | 200; 250; 300; 350 |  |  |  |  |
|                            |                       | Accessories                 |                    |  |  |  |  |
|                            | or 💿 🕻                | ] 📰 🎻 🤇                     |                    |  |  |  |  |
| page 282 page 282 page 336 | page 338 page 352 pag | ge 352 page 353 page 356 pa | age 357            |  |  |  |  |



#### **AXIAL ROOF FANS**

## Series VENTS VOK1



Axial roof fans with the air capacity up to **1700 m<sup>3</sup>/h** in the steel casing with the horizontal exhaust of air.

#### Applications

Exhaust ventilation system for various premises suitable for roof mounting. Compatible with Ø 200 to 315 mm round air ducts.

#### Design

The fan casing is made of steel with polymeric coating, impeller is made of aluminium.

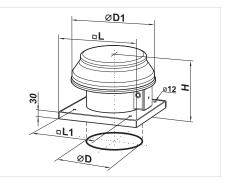
#### Motor

Single-phase asynchronous motor with external rotor and built-in thermal protection with automatic restart. Ball bearings ensure long service life. Motor protection rating IP 44.

#### Speed control

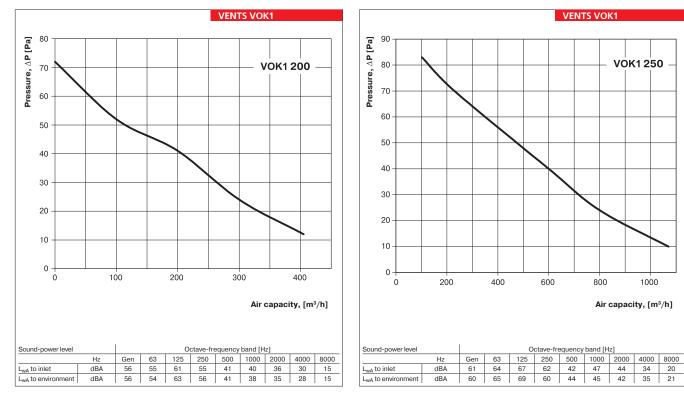
Both smooth or step speed control is performed by means of the thyristor or autotransformer controller. Several fans can be connected to one controller under condition that the total power and operating current do not exceed the rated controller values.

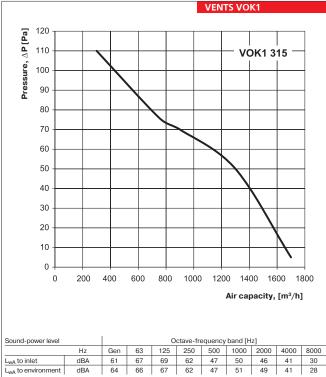
#### Mounting


The fan is mounted on the roof directly above the ventilating duct or shaft and is firmly fixed to the flat surface by means of a connecting plate. While mounting VOK1 fans directly onto the flat roof a supporting block shall be provided to prevent water and snow drops into the vent of the ventilation shaft. Electrical connection and installation shall be performed in compliance with the manual and wiring diagram on the terminal box.

#### Technical data:

|                                      | VOK1 200 | VOK1 250 | VOK1 315 |
|--------------------------------------|----------|----------|----------|
| Voltage [V / 50 Hz]                  | 230      | 230      | 230      |
| Power [W]                            | 43       | 68       | 110      |
| Current [A]                          | 0,28     | 0,48     | 0,75     |
| Maximum air flow [m <sup>3</sup> /h] | 405      | 1070     | 1700     |
| RPM [min <sup>-1</sup> ]             | 1300     | 1300     | 1300     |
| Noise level at 3 m [dBA]             | 32       | 48       | 54       |
| Maximum operating temperature [°C]   | 50       | 50       | 50       |
| Protection rating                    | IP X4    | IP X4    | IP X4    |


#### Fan overall dimensions:


| Turo     |     | Dimensions [mm] |     |     |     |      |  |  |  |  |  |  |  |
|----------|-----|-----------------|-----|-----|-----|------|--|--|--|--|--|--|--|
| Туре     | ØD  | ØD1             | Н   | L   | L1  | [kg] |  |  |  |  |  |  |  |
| VOK1 200 | 207 | 341             | 220 | 410 | 245 | 4,9  |  |  |  |  |  |  |  |
| VOK1 250 | 262 | 401             | 250 | 460 | 330 | 6,8  |  |  |  |  |  |  |  |
| VOK1 315 | 312 | 500             | 260 | 560 | 450 | 9,2  |  |  |  |  |  |  |  |
|          |     |                 |     |     |     |      |  |  |  |  |  |  |  |



#### Designation key:







#### ELECTRICAL ACCESSORIES COMPATIBILITY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                          |                          |                          |                          |                          | 7 5                      |                          |                          |                          |                          |                          |                          |                          |                          | <                        |                          |                          |                          |                          |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | VKV 2E 220<br>VKH 2E 220 | VKV 2E 225<br>VKH 2E 225 | VKV 2E 250<br>VKH 2E 250 | VKV 2E 280<br>VKH 2E 280 | VKV 4E 310<br>VKH 4E 310 | VKV 4D 310<br>VKH 4D 310 | VKV 4E 355<br>VKH 4E 355 | VKV 4D 355<br>VKH 4D 355 | VKV 4E 400<br>VKH 4E 400 | VKV 4D 400<br>VKH 4D 400 | VKV 4E 450<br>VKH 4E 450 | VKV 4D 450<br>VKH 4D 450 | VKV 6E 500<br>VKH 6E 500 | VKV 250 EC<br>VKH 250 EC | VKV 280 EC<br>VKH 280 EC | VKV 310 EC<br>VKH 310 EC | VKV 355 EC<br>VKH 355 EC | VKV 400 EC<br>VKH 400 EC | VKV 450 EC<br>VKH 450 EC | VKV 500 EC<br>VKH 500 EC | VKV 560 EC<br>VKH 560 EC |
| Thyristor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | speed controllers           |                          | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       | >>                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-300                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-400                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1 N (V)<br>RS-1,5 N (V)  | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-2 N (V)                  | •                        | •                        | •                        | ٠                        | ٠                        |                          | •                        |                          |                          |                          |                          |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-2,5 N (V)<br>RS-0,5-PS   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-PS                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-2,5-PS                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-4,0-PS<br>RS-1,5-T       | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-3,0-T                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| A COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS-5,0-T<br>RS-10,0-T       |                          | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1,5-TA                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-3,0-TA                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | ٠                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS-5,0-TA<br>RS-10,0-TA     |                          | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mer speed control           | lers                     |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-2-P                   | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-2-M                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-3-M                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RSA5E-4-M                   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-12-M<br>RSA5E-1,5-T   | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5E-3,5-T                 | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| Not the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RSA5E-5,0-T<br>RSA5E-8,0-T  | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-10,0-T                | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RSA5D-1,5-T                 |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-3,5-T                 |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5D-5-M<br>RSA5D-8-M      |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-10-M                  |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Froquono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RSA5D-12-M                  | re                       |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VFED-200-TA                 | 15                       |                          |                          |                          |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VFED-400-TA                 |                          |                          |                          |                          |                          | •                        |                          | •                        |                          |                          |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| tores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VFED-750-TA<br>VFED-1100-TA |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-1500-TA                |                          |                          |                          |                          |                          | •                        |                          | •                        |                          | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ture regulators             |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 1968 - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RTS-1-400<br>RTSD-1-400     |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT-10                       | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |
| Multi-spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed fan switches             |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-5,0                      |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P3-5,0<br>P5-5,0            |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P2-1-300                    |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| EQ. mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P3-1-300                    |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| EC-motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs controllers              |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Contraction of the local division of the loc | R-1/010                     |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          | •                        | •                        | •                        | •                        | •                        | •                        | •                        | •                        |
| Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-1,5 N                     | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TH-1,5 N                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TF-1,5 N                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP-1,5 N                    | •                        | •                        | •                        | •                        | •                        |                          | •                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |

• recommended

suitable

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                       | E.C.                  |                       |                       |            |            | E          | 2          |            |            | <u></u> |          |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|------------|------------|------------|------------|------------|---------|----------|----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 20                    | 0 0                   | 20                    | 5                     | 500        | 50         | 250        | 00         | 00         | 350        | 0       | 0        | ß        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | VKMK 150<br>VKMKp 150 | VKMK 200<br>VKMKp 200 | VKMK 250<br>VKMKp 250 | VKMK 315<br>VKMKp 315 | VOK 2E 200 | VOK 2E 250 | VOK 4E 250 | VOK 2E 300 | VOK 4E 300 | VOK 4E 350 | 1 200   | VOK1 250 | VOK1 315 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | X W                   | MX/<br>MX/            | /KM<br>/KM            | XX<br>WX              | /OK        | /OK        | /ok        | /oK        | /oK        | /OK        | VOK1    | Yo/      | )<br>Ş   |  |
| Thvristor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | speed controllers          |                       |                       |                       |                       | -          | -          | -          | -          | -          | -          | -       | -        | -        |  |
| in the second se |                            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-1-300                   | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1-400                   | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1 N (V)                 | •                     | •                     | •                     |                       | •          | •          | •          | •          | •          | •          | •       | •        | ٠        |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5 N (V)               | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS-2 N (V)                 | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-2,5 N (V)               | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-0,5-PS                  | •                     |                       |                       |                       | •          | •          | •          |            | •          |            | •       | •        |          |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-PS                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-2,5-PS                  | •                     | •                     | •                     | •                     |            | •          |            | •          | •          | •          |         | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-4,0-PS                  | •                     | •                     | •                     | •                     | •          |            | •          | •          | •          | •          | -       | •        | •        |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-1,5-T                   | •                     | •                     | •                     | •                     | •          | •          |            | •          |            | •          | •       | •        |          |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-3,0-T<br>RS-5,0-T       |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| den.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS-10,0-T                  |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-1,5-TA                  | •                     | •                     | •                     |                       | •          | •          | •          | •          | •          | •          | •       | •        |          |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS-3,0-TA                  | •                     | •                     | •                     | •                     |            | •          |            | •          | •          | •          |         | •        |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-5,0-TA                  |                       | •                     | •                     | •                     |            |            |            | •          |            | •          |         |          | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-10,0-TA                 |                       |                       |                       | •                     |            |            |            |            |            |            |         |          |          |  |
| ransform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mer speed control          | lers                  |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-2-P                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        |          |  |
| -14/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RSA5E-2-M                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-3-M                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-4-M                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-12-M                 | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-1,5-T                | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-3,5-T                | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5E-5,0-T                | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-8,0-T                | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5E-10,0-T               | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RSA5D-1,5-T                |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-3,5-T                |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5D-5-M                  |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSA5D-8-M                  |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSA5D-10-M                 |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSA5D-12-M                 |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| requent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y speed controlle          | rs                    |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-200-TA                |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VFED-400-TA<br>VFED-750-TA |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VFED-1100-TA               |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFED-1500-TA               |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| empera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ture regulators            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTS-1-400                  |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| and : H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTSD-1-400                 |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT-10                      | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| /lulti-spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed fan switches            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-5,0                     |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P3-5,0                     |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| 1 mmmm11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P5-5,0                     |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2-1-300<br>P3-1-300       |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| C-moto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rs controllers             | · · · · ·             |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| C-moto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R-1/010                    |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| Contraction of the local division of the loc |                            |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
| Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAEN                       |                       |                       |                       |                       |            |            |            |            |            |            |         |          |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-1,5 N                    | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TH-1,5 N                   | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
| Lam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TF-1,5 N<br>TP-1,5 N       | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 P-1 5 N                  | •                     | •                     | •                     | •                     | •          | •          | •          | •          | •          | •          | •       | •        | •        |  |

• recommended

suitable



# SUPPLY UNITS EXHAUST UNITS

VENTS VPA Series



Sound- and heat-insulated fan units with the air capacity up to 1520 m<sup>3</sup>/h are designed to supply fresh filtered air to premises. For operation of the units during low outside temperatures electrical heating coils are installed. Compatible with  $\emptyset$  100, 125, 150, 200, 250, 315 mm round air ducts.





Sound- and heat-insulated fan units with the air capacity up to 3500 m<sup>3</sup>/h are designed to provide fresh filtered air to premises. For operation of the units during low outside temperatures the electrical heating coils are installed. Compatible with 400x200, 500x250, 500x300, 600x300, 600x350 mm rectangular air ducts.

#### VENTS MPA...W Series



Sound- and heat-insulated fan units with the air capacity up to 6500 m<sup>3</sup>/h are designed to provide fresh filtered air to premises. For operation of the units during low outside temperatures water heating coils are installed. Compatible with 400x200, 500x250, 500x300, 600x300, 600x350 and 800x500 mm rectangular air ducts.



• Compact suspended sound-insulated fan units with the air capacity up to 3350 m<sup>3</sup>/h are designed to provide fresh filtered air to premises. For operation of the units during low outside temperatures electrical heating coils are installed. Compatible with 400x200, 500x300, 600x350 mm rectangular air ducts.

#### VENTS PA...W Series



Compact suspended sound-insulated fan units with the air capacity up to 4100 m<sup>3</sup>/h are designed to provide fresh filtered air to premises. For operation of the units during low outside temperatures water heating coils are installed. Compatible with 400x200, 500x300, 600x350, 700x400 mm rectangular air ducts.

# VENTS VA Series



• Compact suspended sound-insulated fan units with the air capacity up to 4450 m<sup>3</sup>/h are designed to provide exhaust air removal from premises. Compatible with 400x200, 500x300, 600x350, 600x350, 700x400 mm rectangular air ducts.

WWW.VENTILATION-SYSTEM.COM







|     | VENTS VPA series supply units             | page |
|-----|-------------------------------------------|------|
|     | Air capacity up to 1520 m³/h              | 182  |
|     | VENTS MPAE series supply units            | page |
|     | Air capacity up to 3500 m³/h              | 186  |
|     | VENTS MPAW series supply units            | page |
|     | Air capacity up to 6500 m³/h              | 186  |
|     | VENTS PAE series supply units             | page |
|     | Air capacity up to 3350 m³/h              | 196  |
| 'A1 | VENTS PAW series supply units of          | page |
|     | Air capacity up to 4100 m³/h              | 196  |
|     | VENTS VA series exhaust units             | page |
|     | Air capacity up to 4450 m <sup>3</sup> /h | 204  |

# Series VENTS VPA



LCD control panel

Supply units with the air capacity up to **1520 m<sup>3</sup>/h** in the compact sound- and heat-insulated casing with electric heating battery.

# Description

The fan unit provides filtration, heating and supply of fresh air to premises with the air capacity from 200 up to 1500 m<sup>3</sup>/h. All the models are compatible with 100, 125, 150, 200, 250, 315 mm round air ducts.

#### Casing

The casing is made of aluzink with internal heat- and sound-insulating 25 mm layer of mineral wool.

# Filter

Integrated panel G4 filter ensures sufficient supply air purification.

#### Heater

Electric heating battery is designed for supply air heating during winter and off-season time.

# Fan

Centrifugal fan with backward-curved blades and built-in overheating thermostat with automatic restart. Some size ranges are equipped with a highpowered fan (VPA-1). The fan motor and impeller are dynamically balanced in two planes. The motor ball bearings are maintenance-free and are designed for at least 40 000 hours service life.

# Control and automation

The supply unit is available in two modifications: 1. No control and automation system supplied. Customer-defined and customer-selected control automation system.

2. Integrated control and automation system for air capacity control and setting supply air temperature. The unit may be controlled from the external control panel fixed on 10 m wire delivered as a standard.

#### Control and protection functions

switching the unit on/off

• maintaining supply air temperature set from the control panel by means of triac heating capacity regulation

 fan speed control by means of the control panel (3 speed modes)

• working-out of the required patterns during the unit switching on and off

- the unit daily or week timer operation
- active overheating protection of heating elements
  disabling electric air heating battery operation when the motor is not running
- electric heater overheating protection by means of two thermostats
- ▶ filter clogging control though the differential pressure sensor
- actuating the air damper (refer KRA)

 relay input from an external sensor (humidistat, CO<sub>2</sub> sensor, motion sensor) to switch the fan to maximum speed

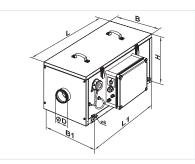
• input for alarm fire fighting signal

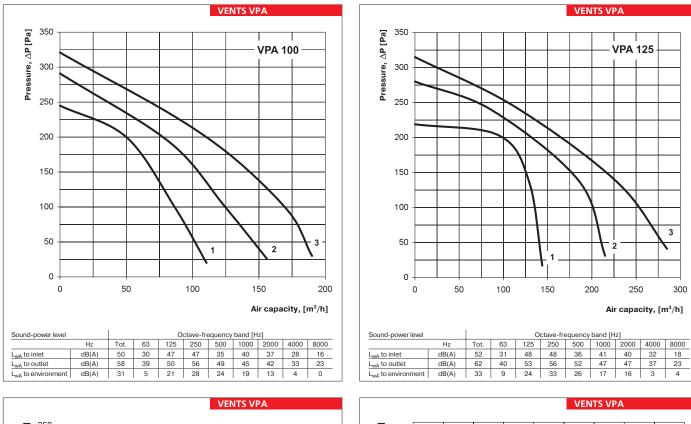
#### Mounting

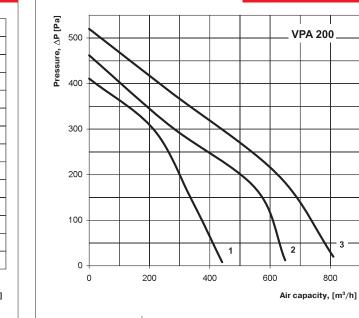
Air supply unit can be mounted on the floor, attached to a ceiling with a seat angle with anti-vibration mounts or attached to a wall by means of the brackets. The unit can be mounted either in service spaces (balcony, storage room, underground floor, roof space etc.) or in the main space by placing the unit above the suspended ceiling or in the pocket. The unit can be mounted in any position except for the vertical one with vertical air downstream because tubular heating elements are not allowed under the fan. Free access to the unit shall be provided for maintenance and filter cleaning. The service panel is placed on the top. The control block is on the right.



# Technical data:


|                                       | VPA<br>100-<br>1,8-1 | VPA<br>125-<br>2,4-1 | VPA<br>150-<br>2,4-1 | VPA<br>150-<br>3,4-1 | VPA<br>150-<br>5,1-3 | VPA<br>150-<br>6,0-3 | VPA<br>200-<br>3,4-1 | VPA<br>200-<br>5,1-3 | VPA<br>200-<br>6,0-3 |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Unit supply voltage [V / 50 Hz]       | 1~ 230               |                      | 1~3                  | 230                  | 3~ -                 | 400                  | 1~230                | 3~ -                 | 400                  |
| Maximum fan power [W]                 | 73                   | 75                   |                      | 9                    | 8                    |                      |                      | 193                  |                      |
| Fan current [A]                       | 0,32                 | 0,33                 |                      | 0,                   | 43                   |                      |                      | 0,84                 |                      |
| Electric heater capacity [kW]         | 1,8                  | 2,4                  | 2,4                  | 3,4                  | 5,1                  | 6,0                  | 3,4                  | 5,1                  | 6,0                  |
| Electric heater current [A]           | 7,8                  | 10,4                 | 10,4                 | 14,8                 | 7,4                  | 8,7                  | 14,8                 | 7,4                  | 8,7                  |
| Number of electrical heating elements | 3                    | 3                    | 2                    | 2                    | 3                    | 3                    | 2                    | 3                    | 3                    |
| Total power of the unit [kW]          | 1,873                | 2,475                | 2,498                | 3,498                | 5,198                | 6,098                | 3,593                | 5,293                | 6,193                |
| Total current of the unit [A]         | 8,12                 | 10,73                | 10,83                | 15,23                | 7,83                 | 9,13                 | 15,64                | 8,24                 | 9,54                 |
| Air capacity [m <sup>3</sup> /h]      | 190                  | 285                  | 425                  |                      |                      |                      | 810                  |                      |                      |
| RPM                                   | 2830                 | 2800                 | 2705                 |                      |                      |                      | 2780                 |                      |                      |
| Noise level at 3m [dB[A]]             | 27                   | 28                   |                      | 2                    | 9                    |                      |                      | 30                   |                      |
| Operating temperature [°C]            | -25 up               | to +55               |                      | -25 up               | to +55               |                      | -2                   | 5 up to +            | 45                   |
| Casing material                       | aluz                 | zink                 |                      | alu                  | zink                 |                      |                      | aluzink              |                      |
| Insulation                            | 25 mm mineral wool   |                      | 2                    | 25 mm mi             | neral woo            | ol                   | 25 m                 | n minera             | l wool               |
| Filter                                | G4                   |                      | G4                   |                      |                      |                      | G4                   |                      |                      |
| Connected air duct size [mm]          | 100                  | 125                  | 150                  |                      |                      |                      | 200                  |                      |                      |
| Weight, [kg]                          | 5                    | 0                    |                      | 5                    | 0                    |                      | 52                   |                      |                      |

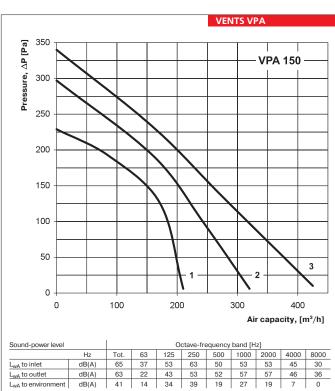

# Technical data:

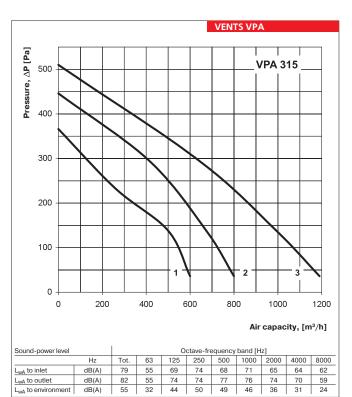

|                                       | VPA<br>250-<br>3,6-3 | VPA<br>250-<br>6,0-3 | VPA<br>250-<br>9,0-3 | VPA<br>315-<br>6,0-3 | VPA<br>315-<br>9,0-3 | VPA-1<br>315-<br>6,0-3 | VPA-1<br>315-<br>9,0-3 |  |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|--|
| Unit supply voltage [V / 50 Hz]       |                      | 3~ 400               |                      |                      | 3~ -                 | 400                    |                        |  |
| Maximum fan power [W]                 | 194                  |                      |                      | 17                   | 71                   | 29                     | 96                     |  |
| Fan current [A]                       | 0,85 0,77            |                      |                      | 1,:                  | 34                   |                        |                        |  |
| Electric heater capacity [kW]         | 3,6                  | 6,0                  | 9,0                  | 6,0                  | 9,0                  | 6,0                    | 9,0                    |  |
| Electric heater current [A]           | 5,3                  | 8,7                  | 13,0                 | 8,7                  | 13,0                 | 8,7                    | 13,0                   |  |
| Number of electrical heating elements | 3                    | 3                    | 3                    | 3                    | 3                    | 3                      | 3                      |  |
| Total power of the unit [kW]          | 3,794                | 6,194                | 9,194                | 6,171                | 9,171                | 6,296                  | 9,296                  |  |
| Total current of the unit [A]         | 6,15                 | 9,55                 | 13,85                | 9,47                 | 13,77                | 10,04                  | 14,34                  |  |
| Air capacity [m <sup>3</sup> /h]      |                      | 990                  |                      | 11                   | 90                   | 1520                   |                        |  |
| RPM                                   |                      | 2790                 |                      | 26                   | 00                   | 2720                   |                        |  |
| Noise level at 3m [dB[A]]             |                      | 30                   |                      | 3                    | 0                    | 3                      | 0                      |  |
| Operating temperature [°C]            | -                    | 25 up to +50         | )                    | -25 up               | to +50               | -25 up                 | to +45                 |  |
| Casing material                       |                      | aluzink              |                      |                      | alu                  | zink                   |                        |  |
| Insulation                            | 25 r                 | nm mineral v         | vool                 |                      | 25 mm mi             | neral wool             |                        |  |
| Filter                                | G4                   |                      |                      |                      | G                    | 4                      |                        |  |
| Connected air duct size [mm]          |                      | 250                  |                      | 315                  |                      |                        |                        |  |
| Weight, [kg]                          |                      | 52                   |                      |                      | 6                    | 2                      |                        |  |

# Unit overall dimensions:

| Turpo   | Dimensions, [mm] |     |       |     |     |     |  |  |  |  |
|---------|------------------|-----|-------|-----|-----|-----|--|--|--|--|
| Туре    | ØD               | В   | B1    | Н   | L   | L1  |  |  |  |  |
| VPA 100 | 99               | 382 | 421,5 | 408 | 800 | 647 |  |  |  |  |
| VPA 125 | 124              | 382 | 421,5 | 408 | 800 | 647 |  |  |  |  |
| VPA 150 | 149              | 455 | 496,5 | 438 | 800 | 647 |  |  |  |  |
| VPA 200 | 199              | 487 | 526,5 | 513 | 835 | 684 |  |  |  |  |
| VPA 250 | 249              | 487 | 526,5 | 513 | 835 | 684 |  |  |  |  |
| VPA 315 | 314              | 527 | 566,5 | 548 | 900 | 750 |  |  |  |  |





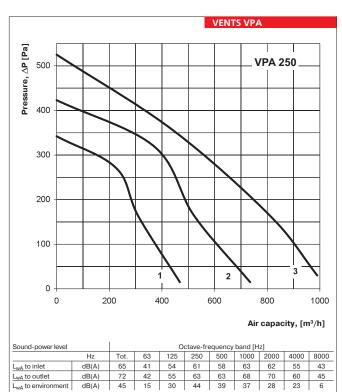




| Sound-power level              |       |    |     | 0   | ctave-fre | equency | band [H | z]   |      |    |
|--------------------------------|-------|----|-----|-----|-----------|---------|---------|------|------|----|
|                                | Tot.  | 63 | 125 | 250 | 500       | 1000    | 2000    | 4000 | 8000 |    |
| L <sub>wA</sub> to inlet       | dB(A) | 65 | 41  | 58  | 59        | 56      | 60      | 62   | 56   | 41 |
| L <sub>wA</sub> to outlet      | dB(A) | 71 | 46  | 57  | 63        | 64      | 66      | 66   | 58   | 45 |
| L <sub>wA</sub> to environment | dB(A) | 46 | 15  | 31  | 43        | 40      | 34      | 30   | 22   | 8  |

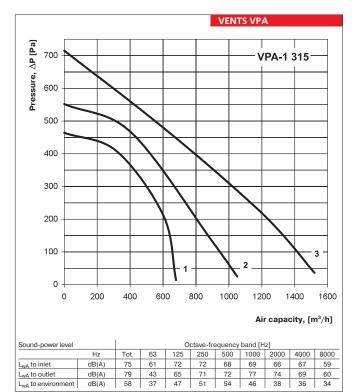
300

3









dB(A)

dB(A)

| Туре                                                                                                                                                                                                                                                            | Replaceable filter | Filter type     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| VPA 100-1,8-1                                                                                                                                                                                                                                                   | SEVDA 100/125 C4   | nonal filtar    |
| VPA 125-2,4-1                                                                                                                                                                                                                                                   | SF VPA 100/125 G4  | panel filter    |
| VPA 150-2,4-1                                                                                                                                                                                                                                                   |                    |                 |
| VPA 150-3,4-1                                                                                                                                                                                                                                                   |                    |                 |
| VPA 150-5,1-3                                                                                                                                                                                                                                                   | SF VPA 150 G4      | panel filter    |
| VPA 150-6,0-3                                                                                                                                                                                                                                                   |                    |                 |
| VPA 200-3,4-1                                                                                                                                                                                                                                                   |                    |                 |
| VPA 200-5,1-3                                                                                                                                                                                                                                                   |                    |                 |
| /PA 125-2,4-1         /PA 150-2,4-1         /PA 150-3,4-1         /PA 150-5,1-3         /PA 150-6,0-3         /PA 200-3,4-1         /PA 200-5,1-3         /PA 200-6,0-3         /PA 250-3,6-3         /PA 250-9,0-3         /PA 315-6,0-3         /PA 315-9,0-3 |                    | a carol filtera |
| VPA 250-3,6-3                                                                                                                                                                                                                                                   | SF VPA 200/250 G4  | panel filter    |
| VPA 250-6,0-3                                                                                                                                                                                                                                                   |                    |                 |
| VPA 250-9,0-3                                                                                                                                                                                                                                                   |                    |                 |
| VPA 315-6,0-3                                                                                                                                                                                                                                                   |                    |                 |
| VPA 315-9,0-3                                                                                                                                                                                                                                                   |                    | and filter      |
| VPA-1 315-6,0-3                                                                                                                                                                                                                                                 | SF VPA 315 G4      | panel filter    |
| VPA-1 315-9,0-3                                                                                                                                                                                                                                                 |                    |                 |



dB(A)



# Series VENTS MPA E



LCD control panel

Supply units with the air capacity up to **3500 m<sup>3</sup>/h** in the compact sound- and heat-insulated casing with electric heater

# Description

Air supply MPA unit is a complete ventilation unit for air filtration, air heating and supply to premises. Compatible with 400x200, 500x250, 500x300, 600x300, 600x350 and 800x500 mm rectangular air ducts.

#### Casing

Steel casing covered with aluzink coating internally filled with 25 mm heat- and sound-insulating layer made of mineral wool.

#### Filter

Integrated panel G4 filter ensures sufficient supply air purification.

# Series VENTS MPA W



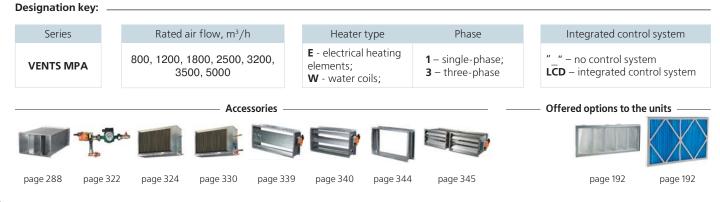
Supply units with the air capacity up to **6500 m<sup>3</sup>/h** in the compact sound- and heat-insulated casing with water heater

#### Heater

Both electric heater (MPA E models) and water/glycol heating coils (MPA W models) are used for heating of supply air during winter and off-season period. Tubular heating elements of the electric fan heater are ribbed to increase the heat exchange surface area and heat transfer to supply air. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. operating temperature 95 °C of the heat medium.

#### 📕 Fan

Centrifugal double-inlet fan with forward-curved blades and built-in overheating protection with automatic restart. The fan motor and impeller are dynamically balanced in two planes. The ball bearings in the electric motor are maintenance free and designed for at least 40000 hours operation.


#### Control and automation

Two options for supply unit modifications are possible: 1. No control. Customer-defined and customerselected automation system.

2. Integrated control and automation system for three-speed (air capacity) control and setting supply air temperature. The unit may be controlled from the external control panel fixed on 10 m wire delivered as a standard.

# MPA E control and protection functions

- switching the unit on/off from the control panel;
- setting the supply air temperature from the remote



186

control panel and maintaining it by the triac heater control;

fan speed control from the control panel;

 tracking the set operating control logic while turning the unit on and off;

 unit operation according to daily and week schedule;

• overheating protection of the electric heating elements;

• disabling electric heater operation when the fans are not running;

 electric heater overheating protection by two overheating thermostats, one thermostat activated at 50°C with automatic reset and another thermostat activated at 90°C with automatic reset;

- actuating the air damper (refer RRVA);
- input for alarm fire fighting signal;

 input from external humidity sensor, CO<sub>2</sub> sensor, etc (normally opened dry contact). On sensor's output signal the unit switches to the maximum speed.

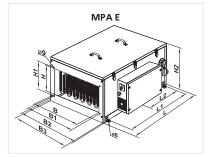
- MPA W control and protection functions
- switching the unit motor on/off;
- three-speed fan selection;
- maintaining set supply air temperature by means of controlling the circulating pump and heat medium regulating valve;

• water heater freezing protection by the temperature sensor at outlet from the heating coils and the return heat medium temperature sensor;

 control and regulation of the external circulation pump installed at the heat medium supply line to the water heater (mixing unit pump);

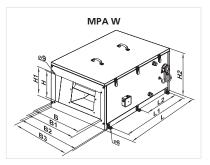
 control of the compressor and condensing unit of the water cooler by the room temperature sensor (for the models equipped with a duct air cooler);

- supply fan control and regulation;
- filter clogging control;
- actuating the external air damper with a return spring;
- unit shut down at signal from the fire alarm system.


The mixing units USWK are recommended for smooth supply air temperature regulation in the units equipped with water heaters. The mixing unit USWK with three-way heat medium regulating valve and circulation pump provides smooth heating capacity regulation and minimizes the water heater freezing danger.

### Mounting

The supply unit can be mounted on the floor, suspended to the ceiling by means of a seat angle with a flexible connector or fixed to the wall using brackets. The unit can be installed either in such service spaces as balcony, storeroom, basement, roof space or in main premises above the suspended ceiling, in the pocket or placed directly in the room. The unit can be mounted in any position but the vertical one with air downstream because the heating elements are not allowed under the fan. Access for the unit maintenance and filter cleaning shall be provided.


# Unit overall dimensions:

| Turpo       |     |     |     | D   | imensic | ons, [mr | n]  |      |     |     |
|-------------|-----|-----|-----|-----|---------|----------|-----|------|-----|-----|
| Туре        | В   | B1  | B2  | B3  | Н       | H1       | H2  | L    | L1  | L2  |
| MPA 800 E1  | 400 | 420 | 549 | 500 | 200     | 220      | 352 | 650  | 530 | -   |
| MPA 1200 E3 | 400 | 420 | 549 | 500 | 200     | 220      | 352 | 650  | 530 | -   |
| MPA 1800 E3 | 500 | 520 | 649 | 600 | 250     | 270      | 480 | 800  | 680 | -   |
| MPA 2500 E3 | 500 | 520 | 649 | 600 | 300     | 320      | 480 | 800  | 680 | -   |
| MPA 3200 E3 | 600 | 620 | 759 | 710 | 300     | 320      | 530 | 1000 | 880 | 440 |
| MPA 3500 E3 | 600 | 620 | 759 | 710 | 350     | 370      | 530 | 1000 | 880 | 440 |



# Unit overall dimensions:

| Turpo      | Dimensions, [mm] |     |     |     |     |     |     |      |     |     |  |
|------------|------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|--|
| Туре       | В                | B1  | B2  | B3  | Н   | H1  | H2  | L    | L1  | L2  |  |
| MPA 800 W  | 400              | 420 | 549 | 500 | 200 | 220 | 352 | 650  | 530 | -   |  |
| MPA 1200 W | 400              | 420 | 549 | 500 | 200 | 220 | 352 | 650  | 530 | -   |  |
| MPA 1800 W | 500              | 520 | 649 | 600 | 250 | 270 | 480 | 800  | 680 | -   |  |
| MPA 2500 W | 500              | 520 | 649 | 600 | 300 | 320 | 480 | 800  | 680 | -   |  |
| MPA 3200 W | 600              | 620 | 759 | 710 | 300 | 320 | 530 | 1000 | 880 | 440 |  |
| MPA 3500 W | 600              | 620 | 759 | 710 | 350 | 370 | 530 | 1000 | 880 | 440 |  |
| MPA 5000 W | 800              | 820 | 971 | 925 | 500 | 520 | 670 | 1299 | 720 | 360 |  |

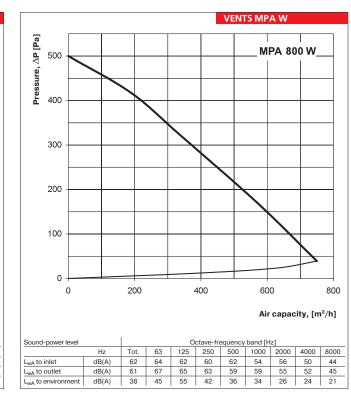


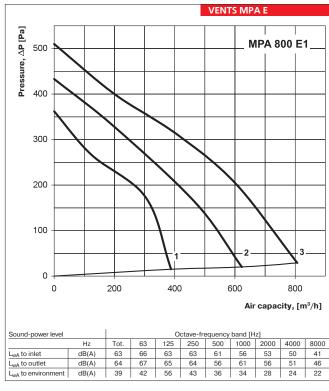
# Technical data:

|                                    | MPA 800 E1    | MPA 800 W     | MPA 1200 E3   | MPA 1200 W    |  |
|------------------------------------|---------------|---------------|---------------|---------------|--|
| Unit supply voltage [V / 50 Hz]    | 1~ 230        | D             | 3~ 400        | 1~ 230        |  |
| Maximum fan power [W]              | 245           |               | 410           |               |  |
| Fan current [A]                    | 1,08          |               | 1             | ,8            |  |
| Electric heater capacity [kW]      | 3,3           | -             | 9,9           | -             |  |
| Electric heater current [A]        | 14,3          | -             | 14,3          | -             |  |
| Number of water (glycol) coil rows | -             | 4             | -             | 4             |  |
| Total power of the unit [kW]       | 3,55          | 0,245         | 9,94          | 0,410         |  |
| Total current of the unit [A]      | 15,38         | 1,08          | 16,1          | 1,8           |  |
| Air capacity [m <sup>3</sup> /h]   | 800 750       |               | 1200          | 1200          |  |
| RPM                                | 1650          |               | 18            | 50            |  |
| Noise level at 3m [dB[A]]          | 35            |               | З             | 8             |  |
| Operating temperature [°C]         | -25 up to +45 | -40 up to +45 | -25 up to +45 | -40 up to +45 |  |
| Casing material                    | aluzin        | k             | alu           | zink          |  |
| Insulation                         | 25 mm mine    | ral wool      | 25 mm mi      | neral wool    |  |
| Filter                             | G4            |               | G             | 64            |  |
| Connected air duct size [mm]       | 400×20        | 00            | 400x200       |               |  |
| Weight, [kg]                       | 36,2          | 41,3          | 38,9          | 42,8          |  |

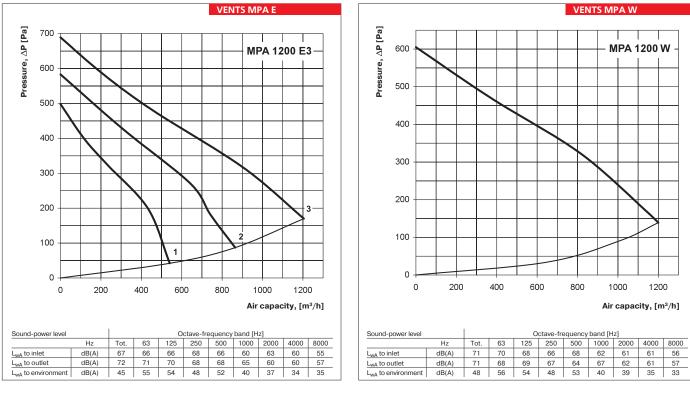
 $^{\star}$  no control box (with the control box for MPA...E +130 mm)

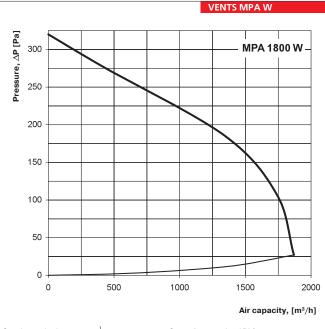
# Technical data:


|                                    | MPA 1800 E3   | MPA 1800 W    | MPA 2500 E3   | MPA 2500 W    |  |
|------------------------------------|---------------|---------------|---------------|---------------|--|
| Unit supply voltage [V / 50 Hz]    | 3~ 400        | 1~ 230        | 3~ 400        | 1~ 230        |  |
| Maximum fan power [W]              | 49            | 90            | 65            | 50            |  |
| Fan current [A]                    | 2,            | 15            | 2,            | 84            |  |
| Electric heater capacity [kW]      | 18,0 -        |               | 18,0          | -             |  |
| Electric heater current [A]        | 26,0          | -             | 26,0          | -             |  |
| Number of water (glycol) coil rows | -             | 4             | -             | 4             |  |
| Total power of the unit [kW]       | 18,49         | 0,490         | 18,65         | 0,650         |  |
| Total current of the unit [A]      | 28,15         | 2,15          | 28,84         | 2,84          |  |
| Air capacity [m³/h]                | 2000 1870     |               | 2500          | 2150          |  |
| RPM                                | 11            | 00            | 10            | 00            |  |
| Noise level at 3m [dB[A]]          | 4             | 0             | 4             | .5            |  |
| Operating temperature [°C]         | -25 up to +45 | -40 up to +45 | -25 up to +45 | -40 up to +45 |  |
| Casing material                    | alu           | zink          | alu           | zink          |  |
| Insulation                         | 25 mm mi      | neral wool    | 25 mm mi      | neral wool    |  |
| Filter                             | G             | 64            | G             | i4            |  |
| Connected air duct size [mm]       | 500           | x250          | 500x300       |               |  |
| Weight, [kg]                       | 61,5          | 62,5          | 62            | 63            |  |

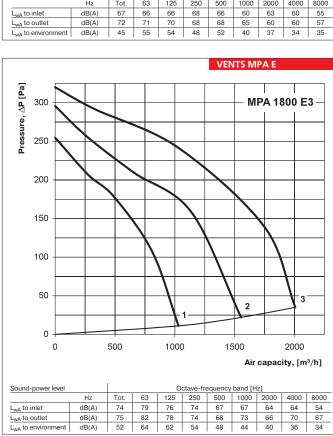

 $^{\star}$  no control box (with the control box for MPA...E +130 mm)

|                                    | MPA 3200 E3        | MPA 3200 W | MPA 3500 E3 | MPA 3500 W      | MPA 5000 W    |
|------------------------------------|--------------------|------------|-------------|-----------------|---------------|
| Unit supply voltage [V / 50 Hz]    | 3~ 4               | 400Y       | 3~ 4        | 00Y             | 3~ 400        |
| Maximum fan power [W]              | 12                 | .70        | 12          | 70              | 1800          |
| Fan current [A]                    | 2                  | ,3         | 2,          | 3               | 4,5           |
| Electric heater capacity [kW]      | 25,2               | -          | 25,2        | -               | -             |
| Electric heater current [A]        | 36,4               | -          | 36,4        | -               | -             |
| Number of water (glycol) coil rows | -                  | 4          | -           | 4               | 4             |
| Total power of the unit [kW]       | 26,47              | 1,270      | 26,47       | 1,270           | 1,80          |
| Total current of the unit [A]      | 38,7               | 2,3        | 38,7        | 2,3             | 4,5           |
| Air capacity [m <sup>3</sup> /h]   | 3200               | 3000       | 3500        | 3250            | 6500          |
| RPM                                | 12                 | 200        | 12          | 00              | 1400          |
| Noise level at 3m [dB[A]]          | 5                  | 3          | 5           | 3               | 55            |
| Operating temperature [°C]         | -40 up             | to +45     | -40 up      | to +45          | -40 up to +45 |
| Casing material                    | alu                | zink       | aluz        | zink            | aluzink       |
| Insulation                         | 25 mm mineral wool |            | 2           | 5 mm mineral wo | lool          |
| Filter                             | G4                 |            | G           | G4              |               |
| Connected air duct size [mm]       | 600                | ×300       | 600>        | 800x500         |               |
| Weight, [kg]                       | 69,4               | 73,2       | 69,3        | 73,1            | 136           |

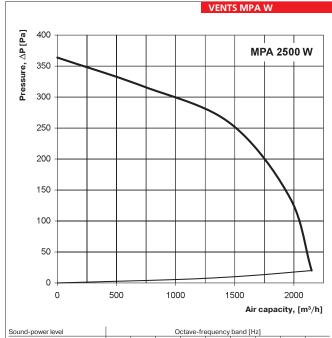

#### **Technical data:**


\* no control box (with the control box for MPA...E+130 mm)

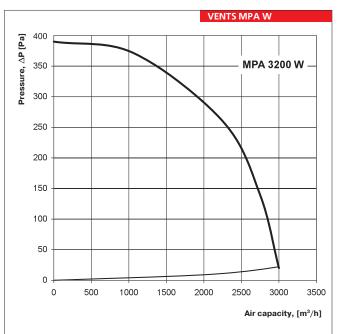




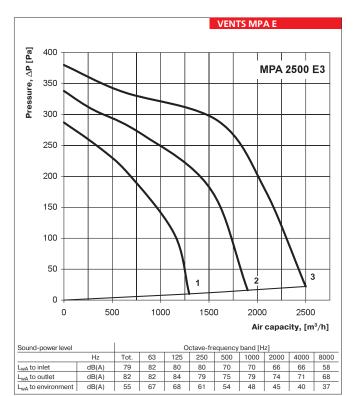

SUPPLY UNIT SERIES MPA E MPA W

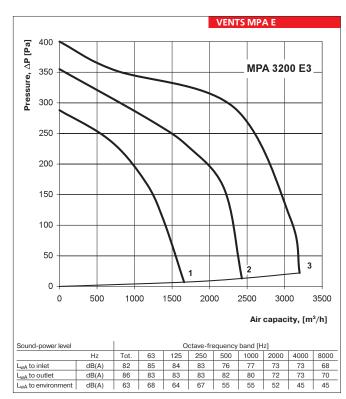


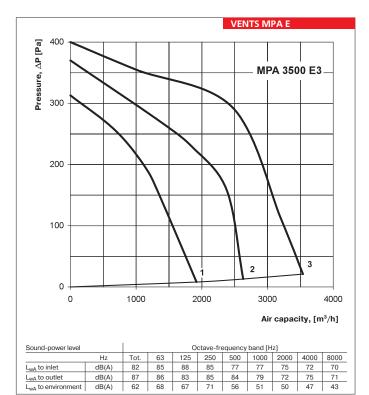


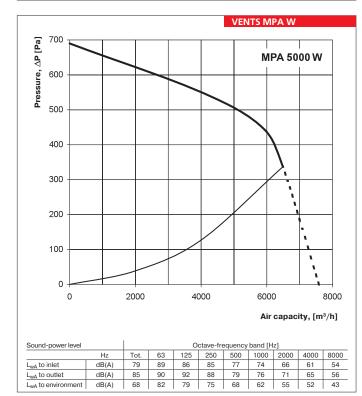


| Sound-power level              | d-power level |      |    |     |     | Octave-frequency band [Hz] |      |      |      |      |  |
|--------------------------------|---------------|------|----|-----|-----|----------------------------|------|------|------|------|--|
|                                | Hz            | Tot. | 63 | 125 | 250 | 500                        | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dB(A)         | 73   | 78 | 77  | 77  | 67                         | 68   | 62   | 63   | 57   |  |
| L <sub>wA</sub> to outlet      | dB(A)         | 75   | 79 | 78  | 74  | 68                         | 73   | 66   | 69   | 66   |  |
| L <sub>wA</sub> to environment | dB(A)         | 51   | 63 | 61  | 54  | 47                         | 44   | 40   | 37   | 33   |  |

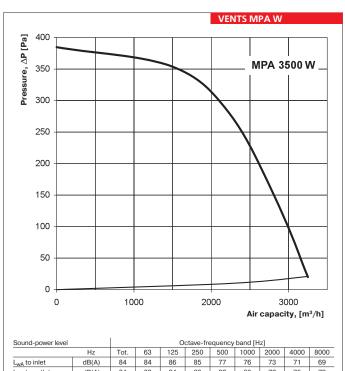



L<sub>wA</sub> to environment





| Sound-power level              |       | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-------|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot.                       | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 83                         | 86 | 86  | 81  | 76  | 75   | 75   | 72   | 68   |
| L <sub>wA</sub> to outlet      | dB(A) | 86                         | 86 | 83  | 85  | 81  | 77   | 74   | 75   | 72   |
| L <sub>wA</sub> to environment | dB(A) | 63                         | 66 | 68  | 71  | 58  | 51   | 50   | 45   | 44   |











#### Accessories to supply units:

dB(A)

dB(A)

L<sub>wA</sub> to outlet

L<sub>wA</sub> to environment

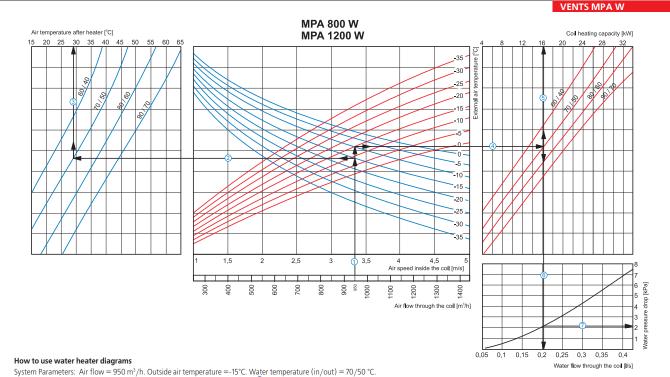
 84
 83

 60
 67

| Туре                       | Replaceable filter  | Filter type   |
|----------------------------|---------------------|---------------|
| MPA 800 E1<br>MPA 1200 E3  | SF MPA 800/1200 G4  | panel filter  |
| MPA 1800 E3<br>MPA 2500 E3 | SF MPA 1800/2500 G4 | panel filter  |
| MPA 3200 E3<br>MPA 3500 E3 | SF MPA 3200/3500 G4 | panel filter  |
| MPA 800 W<br>MPA 1200 W    | SF MPA 800/1200 G4  | panel filter  |
| MPA 1800 W<br>MPA 2500 W   | SF MPA 1800/2500 G4 | panel filter  |
| MPA 3200 W<br>MPA 3500 W   | SF MPA 3200/3500 G4 | panel filter  |
| MPA 5000 W                 | SFK MPA 5000 G4     | pocket filter |

 84
 83
 82
 80

 66
 71
 54
 55

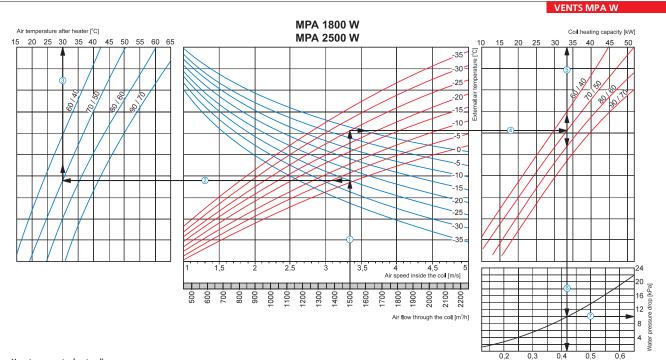

72 50 75 73 45 45

#### Office ventilation example

Air supply and exhaust ventilation in the modern office can be arranged as follows. Air handing MPA unit, exhaust fan complying with MPA unit characteristics, intake and exhaust main air ducts are mounted in the hall behind the suspended ceiling. The branchings are laid into the office premises and air distribution units. Intake air from outside flows through the external grille, is filtered in the air handling unit, heated to the required temperature and supplied to the office rooms through the branch duct system. Exhaust air is extracted outside through the external grille by means of the exhaust fan. Thus the office has the permanent fresh air supply, controllable air exchange, no draughts when opened windows, no dust and no noise.



# Hot water coil parameters:




Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.
Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+29 °C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature -15°C (red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (70/50 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (16 kW).

• Water flow. Prolong the line 5 down to water flow axis at the bottom of the graphic 6 (0.2 l/s).

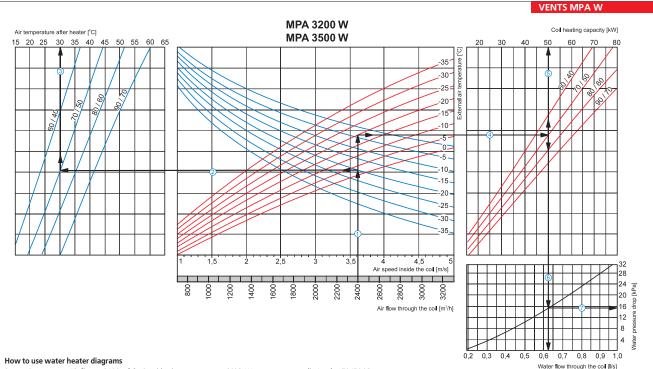
■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (2.1 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 1500 m<sup>3</sup>/h. Outside air temperature =-25°C. Water temperature (in/out) = 70/50 °C.

Air Speed. Starting from 1500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about (3.3 m/s). Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -25°C, then draw a horizontal line 🕲 from this point to the left till crossing water

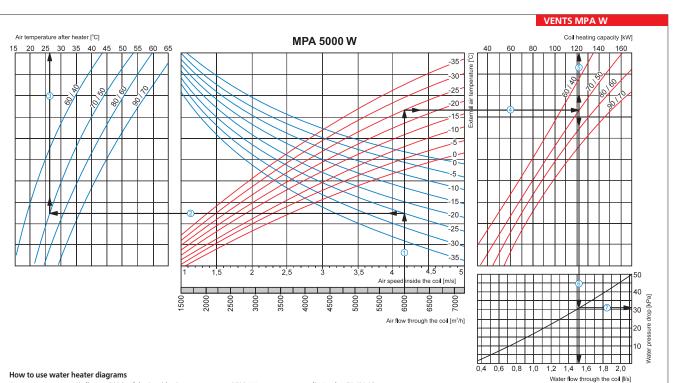

in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+30 °C).

Water flow through the coil [I/s]

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature -25°C (red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (70/50 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (33.0 kW). • Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.42 l/s).

Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (10.0 kPa).

#### Hot water coil parameters:




System Parameters: Air flow = 2400 m<sup>3</sup>/h. Outside air temperature = -20°C. Water temperature (in/out) = 70/50 °C. Air Speed. Starting from 2400 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.61 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line @ from this point to the left till crossing water injout temperature (70/50 °C). From this point draw a vertical line ③ to the supply air temperature (action of the graphic (+30 °C).
 Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the

intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (50.0 kW). Water flow. Prolong the line (6) down to water flow axis at the bottom of the graphic (0.621/s).

• Water pressure drop. Draw the line 🕖 from the point where line 🌀 crosses the black curve to the pressure drop axis. (15.0 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 6000 m<sup>3</sup>/h. Outside air temperature =-25°C. Water temperature (in/out) = 70/50 °C.

• Air Speed. Starting from 6000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.15 m/s.

Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -25°C, then draw a horizontal line 🕲 from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+27 °C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature -25°C (red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (70/50°C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (121 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic (6) (1.52 l/s).
Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (31.0 kPa).

SUPPLY UNIT SERIES

# Series



SAS908 control panel

Suspended air supply units with the air capacity up to **3350 m<sup>3</sup>/h** in the sound- and heat-insulated casing with the electric heater

# Series VENTS PA...W



Suspended air supply units with the air capacity up to  $4100 \text{ m}^3/\text{h}$  in the

air capacity up to **4100 m<sup>3</sup>/h** in the sound- and heat-insulated casing with the water heater

#### Description

The PA unit is a ready to use ventilation unit for air filtration, warming and supply to the room.

#### Casing

Steel casing covered with aluzink coating internally filled with 50 mm heat- and sound-insulating layer made of mineral wool.

# Filter

Integrated panel G4 filter ensures sufficient supply air purification (optionally F7).

#### Heater

The PA units are equipped with electric (PA...E model) or water (PA...W model) heating coils. Depending on the required heating capacity the water heaters are available in two-, three- or four-row modifications. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. operating temperature 95°C of the heat medium.

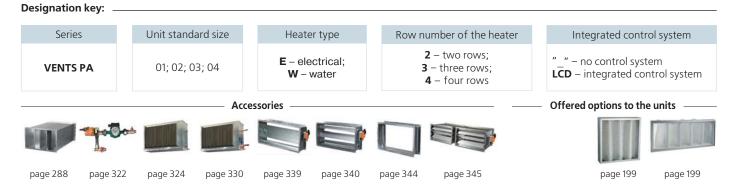
#### Fan

The unit is equipped with a direct-driven centrifugal fan with backward curved blades and external rotor motor. The fan configuration ensures the best operating characteristics: high air capacity and efficiency combined with low noise level.

#### Mounting

The unit is designed for indoor installation either on the floor, on the wall or under the ceiling by means of a seat angle with inserted vibration-damping element or attached to a wall with brackets. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or the unit can be placed directly in the room. All the electrical connections are performed through the terminal box placed in the connection box. PA supply units are supplied with the fastening brackets to facilitate mounting. The unit can be mounted in any position but the vertical one with vertical air downstream because the electrical heating elements are not allowed under the fan. Access for the unit maintenance and filter cleaning shall be provided. The PA...W unit design enables to lead the water heater pipes to the right or to the left while mounting. The pipes are directed on the right on supply air side by default.

# Control and automation


The supply units are available in two modifications: 1. No control and automation system supplied. Customer-defined and customer-selected control automation system.

2. Integrated control and automation system for speed (air capacity) control and setting supply air temperature. The unit may be remotely controlled from the external control panel fixed on wire.

# PA...E control and protection functions

control from the control panel: switching the unit on/off, fan speed selection (low/medium/ high speed), selecting heating/cooling modes (if connected to duct heater);

- maintaining supply air temperature set from the control panel by smooth heating capacity control;
- smooth frequency speed control of the fan;



#### INTS

safe start-up/shutdown of the fans;

▶ active overheating protection of the electric heating elements by the temperature sensor and by the thermostats activated at 50°C with automatic reset and at 90°C with manual reset. Blowing of the electric heating elements for heat removal at the end of the heating cycle;

• Filter clogging control with differential pressure sensor;

actuating the external air damper (refer RRVA);

• input from the fire alarm system;

 control of the compressor and condensing block of the water cooler by the room temperature sensor (for models with external duct air cooler);

 maintaining of set supply air temperature set from the control panel by smooth heating capacity control;

smooth frequency fan speed control.

# PA...W control and protection functions

▶ control from the control panel: switching the unit on/off, fan speed selection (low/medium/ high speed), selecting heating/cooling modes (if connected to duct cooler);

 maintaining supply air temperature set from the control panel by controlling the circulation pump and actuating the heat medium regulating valve; input from the heat medium flow switch (pump alarm);

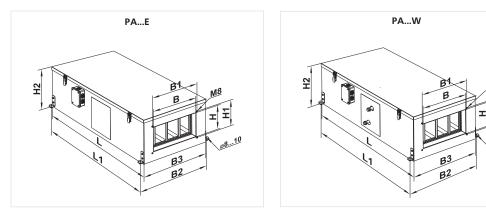
 safe start-up/ shutdown of the fans, warming up of the water heater before start-up; return heat medium temperature control when the fan is off;

 freezing protection of the water heating coils by the exhaust temperature sensor and the return heat medium temperature sensor;

 control of the compressor and condensing unit of the water cooler by the room temperature sensor (for the models equipped with a duct air cooler);

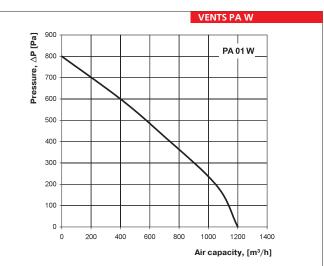
 filter clogging degree with differential pressure sensor;

actuating the external air damper with a return spring;

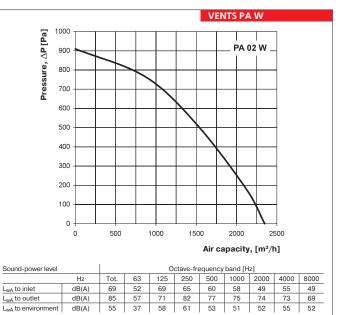

• unit shut down at signal from the fire alarm system.

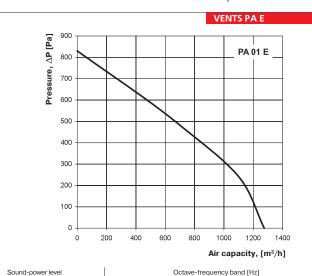
#### Supplementary equipment

The mixing units USWK are recommended for smooth supply air temperature regulation in the units equipped with water heaters. The mixing unit USWK with three-way heat medium regulating valve and circulation pump provides smooth heating capacity regulation and minimizes the water heater freezing danger. To disable uncontrollable air flow when the fan is off it is recommended to install the air damper with servo actuator (refer RRVA) from outside at the unit inlet. To protect the water heater against cold intake air in case of power failure for the units with water heaters (PA...W) it is recommended to install the air damper with a return spring (refer RRVAF). For attenuation of sound generated by the fan it is recommended to install the duct silencer (refer SR). For vibration absorbing it is recommended to install the flexible anti-vibration connectors (refer VVG) on both sides of the unit.

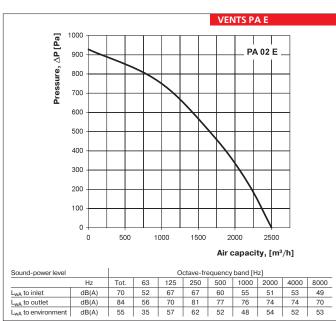

Unit overall dimensions:

|        | Dimensions, [mm]                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| B B1   | B2                                                                                                                                          | B3                                                                                                                                                                             | Н                                                                                                                                                                                                                                          | H1                                                                                                                                                                                                                                                                                                                                                                  | H2                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L1                                                                                                                       |  |  |  |
| 00 420 | 624                                                                                                                                         | 582                                                                                                                                                                            | 200                                                                                                                                                                                                                                        | 220                                                                                                                                                                                                                                                                                                                                                                 | 374                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1106                                                                                                                     |  |  |  |
| 520    | 689                                                                                                                                         | 646                                                                                                                                                                            | 300                                                                                                                                                                                                                                        | 320                                                                                                                                                                                                                                                                                                                                                                 | 447                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1212                                                                                                                     |  |  |  |
| 620    | 888                                                                                                                                         | 744                                                                                                                                                                            | 350                                                                                                                                                                                                                                        | 370                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1212                                                                                                                     |  |  |  |
| 00 420 | 624                                                                                                                                         | 582                                                                                                                                                                            | 200                                                                                                                                                                                                                                        | 220                                                                                                                                                                                                                                                                                                                                                                 | 374                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1106                                                                                                                     |  |  |  |
| 520    | 689                                                                                                                                         | 646                                                                                                                                                                            | 300                                                                                                                                                                                                                                        | 320                                                                                                                                                                                                                                                                                                                                                                 | 447                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1212                                                                                                                     |  |  |  |
| 620    | 787                                                                                                                                         | 744                                                                                                                                                                            | 350                                                                                                                                                                                                                                        | 370                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1212                                                                                                                     |  |  |  |
| 00 720 | 888                                                                                                                                         | 844                                                                                                                                                                            | 400                                                                                                                                                                                                                                        | 420                                                                                                                                                                                                                                                                                                                                                                 | 546                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1262                                                                                                                     |  |  |  |
|        | 00         520           00         620           00         420           00         520           00         620           00         620 | 00         520         689           00         620         888           00         420         624           00         520         689           00         620         787 | 00         520         689         646           00         620         888         744           00         420         624         582           00         520         689         646           00         620         787         744 | 00         520         689         646         300           00         620         888         744         350           00         420         624         582         200           00         520         689         646         300           00         520         689         646         300           00         520         689         744         350 | 00         520         689         646         300         320           00         620         888         744         350         370           00         420         624         582         200         220           00         520         689         646         300         320           00         520         689         646         300         320           00         620         787         744         350         370 | 00         520         689         646         300         320         447           00         620         888         744         350         370         500           00         420         624         582         200         220         374           00         520         689         646         300         320         447           00         520         689         646         300         320         447           00         620         787         744         350         370         500 | 005206896463003204471250006208887443503705001252004206245822002203741145005206896463003204471250006207877443503705001252 |  |  |  |





### **Technical data:**

|                                    | PA 01 E         | PA 01 W2      | PA 01 W4   | PA 02 E         | PA 02 W2      | PA 02 W4   |  |
|------------------------------------|-----------------|---------------|------------|-----------------|---------------|------------|--|
| Unit supply voltage [V / 50 Hz]    | 3~ 400          |               | 3~ 400     |                 |               |            |  |
| Maximum fan power [W]              |                 | 320           |            |                 | 620           |            |  |
| Fan current [A]                    |                 | 0,55          |            |                 | 1,05          |            |  |
| Electric heater capacity [kW]      | 12,0            | -             |            | 18,0            | -             |            |  |
| Electric heater current [A]        | 17,4            | -             |            | 26,0            |               |            |  |
| Number of water (glycol) coil rows | -               | 2             | 4          | -               | 2             | 4          |  |
| Total power of the unit [kW]       | 12,32           | 0,32          |            | 18,62           | 0,62          |            |  |
| Total current of the unit [A]      | 17,95           | 0,55          |            | 27,05           | 1,            | )5         |  |
| Air capacity [m <sup>3</sup> /h]   | 1275 1200       |               | 2500       | 23              | 50            |            |  |
| RPM                                |                 | 2700          |            | 2690            |               |            |  |
| Noise level at 3m [dB[A]]          |                 | 51            |            | 54              |               |            |  |
| Operating temperature [°C]         |                 | -25 up to +55 |            |                 | -25 up to +45 |            |  |
| Casing material                    |                 | aluzink       |            |                 | aluzink       |            |  |
| Insulation                         | 50              | mm, mineral w | loc        | 50              | mm, mineral w | loc        |  |
| Filter                             | panel filter G4 | G4 (F7) po    | cket type* | panel filter G4 | G4 (F7) po    | cket type* |  |
| Connected air duct size [mm]       |                 | 400x200       |            |                 | 500x300       |            |  |
| Weight, [kg]                       | 56              | 55            | 57         | 61              | 61            | 63         |  |
| *option                            |                 |               |            |                 |               |            |  |




| Sound-power level              |       | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-------|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot.                       | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 62                         | 47 | 62  | 58  | 54  | 43   | 45   | 44   | 37   |
| L <sub>wA</sub> to outlet      | dB(A) | 73                         | 49 | 61  | 70  | 70  | 62   | 63   | 61   | 57   |
| L <sub>wA</sub> to environment | dB(A) | 47                         | 24 | 39  | 44  | 46  | 33   | 35   | 27   | 19   |





| oound ponor lover              |       | Coluito Hoqueno) Sund [H2] |    |     |     |     |      |      |      |      |
|--------------------------------|-------|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot.                       | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 62                         | 45 | 62  | 60  | 55  | 45   | 45   | 47   | 35   |
| L <sub>wA</sub> to outlet      | dB(A) | 73                         | 48 | 60  | 66  | 71  | 62   | 64   | 62   | 56   |
| L <sub>wA</sub> to environment | dB(A) | 47                         | 22 | 40  | 47  | 44  | 30   | 32   | 29   | 19   |



#### **Technical data:**

Pressure, ∆P [Pa]

1200

1000

800

600

400

200

0

Sound-power level

0

Hz

dB(A)

dB(A)

dB(A)

62 47

500

1000

Tot. 63

58

58

72 77

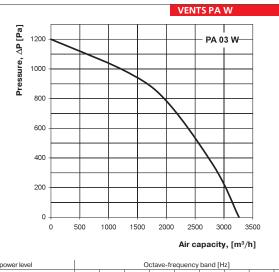
1500

2000

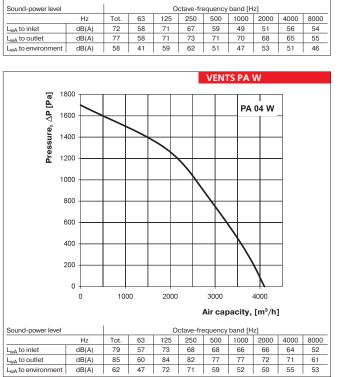
|                                    | PA 03 E         | PA 03 W2         | PA 03 W4   | PA 04 W2   | PA 04 W3   |
|------------------------------------|-----------------|------------------|------------|------------|------------|
| Unit supply voltage [V / 50 Hz]    | 3~ 400          |                  | 3~ 400     |            |            |
| Maximum fan power [W]              |                 | 1330             |            | 23         | 00         |
| Fan current [A]                    |                 | 2,4              |            | 4          | 3          |
| Electric heater capacity [kW]      | 21,0            | -                |            |            |            |
| Electric heater current [A]        | 30,0            | -                |            |            |            |
| Number of water (glycol) coil rows | -               | 2                | 4          | 2          | 3          |
| Total power of the unit [kW]       | 22,33           | 1,3              | 33         | 2,3        | 30         |
| Total current of the unit [A]      | 32,4            | 32,4 2,4         |            | 4          | 3          |
| Air capacity [m <sup>3</sup> /h]   | 3350 3260       |                  | 41         | 00         |            |
| RPM                                | 2730            |                  | 2840       |            |            |
| Noise level at 3m [dB[A]]          |                 | 57               |            | 5          | 8          |
| Operating temperature [°C]         |                 | -25 up to +45    |            | -25 up     | to +70     |
| Casing material                    |                 | aluzink          |            | aluz       | zink       |
| Insulation                         | 50              | 0 mm, mineral wo | ol         | 50 mm, mi  | neral wool |
| Filter                             | panel filter G4 | G4 (F7) po       | cket type* | G4 (F7) po | cket type* |
| Connected air duct size [mm]       |                 | 600x350          |            | 700>       | (400       |
| Weight, [kg]                       | 91              | 91               | 94         | 107        | 110        |
| *option                            |                 |                  |            |            |            |

VENTS PA E

2500


3000

Air capacity, [m<sup>3</sup>/h]

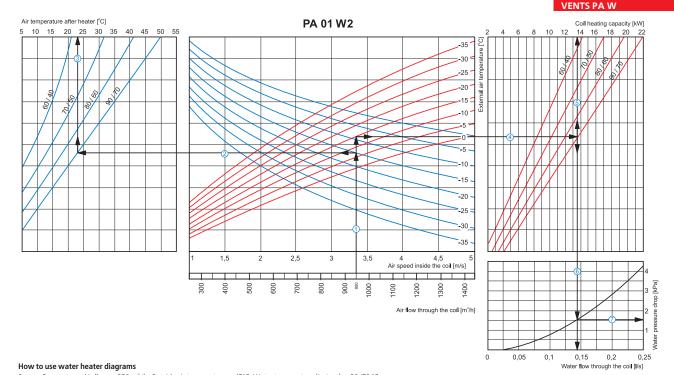

72 71 59 52 50 55 53

3500

PA 03 E



| Sound-power level              |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 71   | 57                         | 71  | 66  | 57  | 51   | 50   | 56   | 56   |
| L <sub>wA</sub> to outlet      | dB(A) | 78   | 57                         | 70  | 73  | 73  | 70   | 67   | 64   | 53   |
| L <sub>wA</sub> to environment | dB(A) | 59   | 39                         | 58  | 62  | 51  | 44   | 52   | 49   | 46   |
|                                |       |      |                            |     |     |     |      |      |      |      |

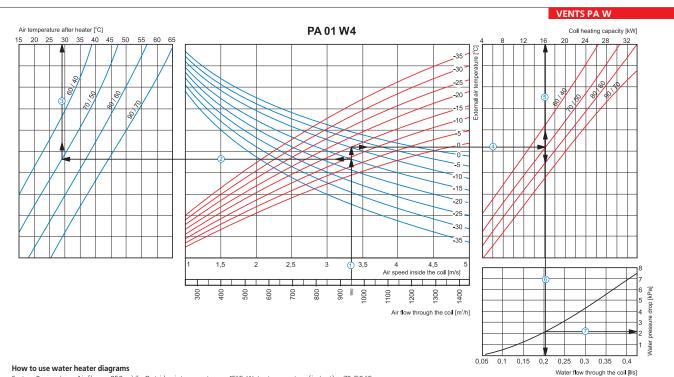



#### Accessories to supply units:

| Туре     | G4 replaceable filter | F7 replaceable<br>filter | Filter<br>type |  |
|----------|-----------------------|--------------------------|----------------|--|
| PA 01 E  | SF PA/VA 01 E G4      | -                        | panel filter   |  |
| PA 02 E  | SF PA/VA 02 E G4      | -                        | panel filter   |  |
| PA 03 E  | SF PA/VA 03 E G4      | -                        | panel filter   |  |
| PA 01 W2 | SFK PA 01 W G4        | SFK PA 01 W F7           | pocket filter  |  |
| PA 01 W4 | or ki A or w d+       | OR A OF WIT              | productime     |  |
| PA 02 W2 | SFK PA 02 W G4        | SFK PA 02 W F7           | pocket filter  |  |
| PA 02 W4 | 0                     | 0                        | poonormitor    |  |
| PA 03 W2 | SFK PA 03 W G4        | SFK PA 03 W F7           | pockot filtor  |  |
| PA 03 W4 | SFK PA 03 W G4        | SFK PA U3 W F7           | pocket filter  |  |
| PA 04 W2 | SFK PA 04 W G4        | SFK PA 04 W F7           | pockot filtor  |  |
| PA 04 W3 | 3FK FA 04 W 04        | SEK FA 04 W F7           | pocket filter  |  |
|          |                       |                          |                |  |



# Hot water coil parameters:



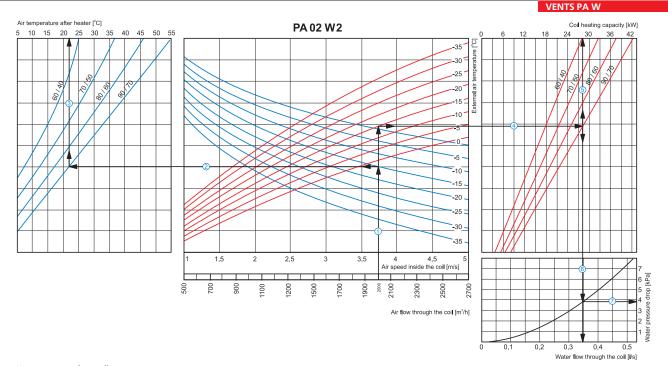

System Parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C. Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

All speed. Stalling from 950 mm from the air how scale braw a vertical line (2) on the air speed and wind makes about 3.3 mm/s.
 Supply air temperature, prolong the line (1) up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line (2) from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line (3) to the supply air temperature axis on top of the graphic (+23°C).

Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🕚 from this point to the right until it crosses water in/out temperature curve (90/70 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (13.5 kW).

Water flow. Prolong the line (\$) down to water flow axis at the bottom of the graphic (\$) (0.141/s).
Water pressure drop. Draw the line (\$) from the point where the line (\$) crosses the black curve to the pressure drop axis. (1.5 kPa).



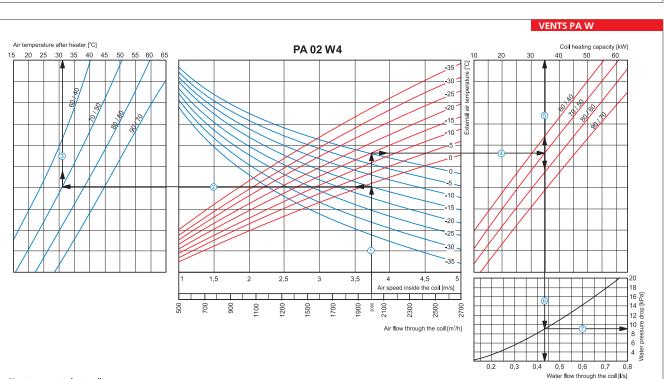

System Parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

A in Specific and intervention of the air former and the intervention of the air specific and the air specific and a six which makes about 3.35 m/s.
Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+29°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water

in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line <sup>(5)</sup> up to the scale representing the heating coil capacity (16.0 kW).
Water flow. Prolong the line <sup>(5)</sup> down to water flow axis at the bottom of the graphic <sup>(6)</sup> (0.2 l/s).
Water pressure drop. Draw the line <sup>(7)</sup> from the point where the line <sup>(6)</sup> crosses the black curve to the pressure drop axis. (2.1 kPa).

#### Hot water coil parameters:




#### How to use water heater diagrams

System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C.
 Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s.

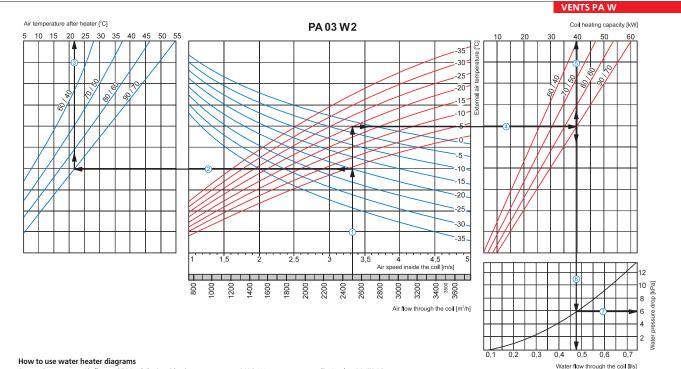
Supped. Starting from 2000 in / from the an how scale unaw avertical line ③ in the speed as which makes about 37.2 m/s.
Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line ③ from this point to the left till crossing water in/out temperature (e.g. 90,70°C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).
Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (28.0 kW).

- Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.35 l/s).
- Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (3.8 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

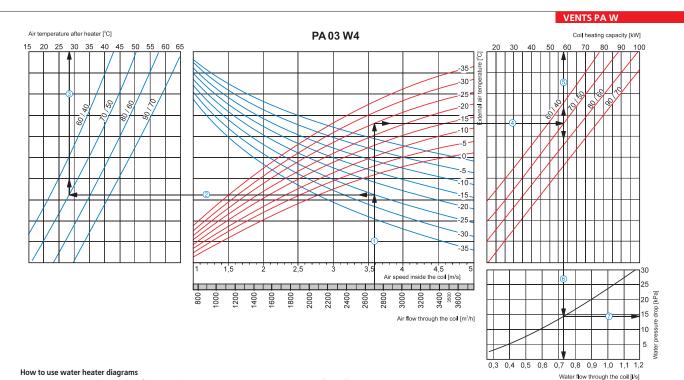

Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s. Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).

Heating coil capacity. Prolong the line <sup>(1)</sup> up to the point where draw a vertical line <sup>(2)</sup> up to the scale representing the heating coil capacity. Prolong the line <sup>(2)</sup> from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from here draw a vertical line <sup>(3)</sup> up to the scale representing the heating coil capacity (35.0 kW).
Water flow. Prolong the line <sup>(3)</sup> down to water flow axis at the bottom of the graphic <sup>(6)</sup> (0.431/s).

Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (9.0 kPa).

SUPPLY UNIT SERIES **VENTS** 

# Hot water coil parameters:



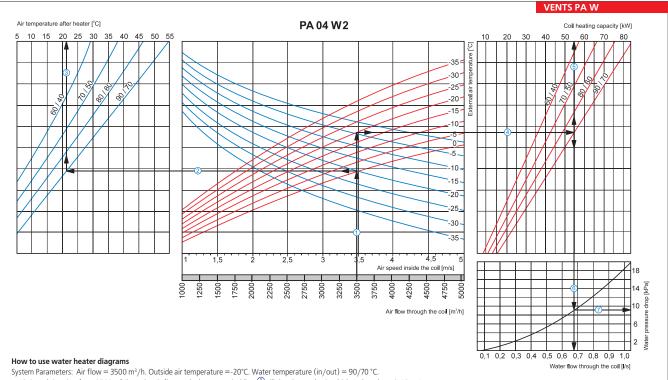

System Parameters: Air flow = 2500 m<sup>3</sup>/h. Outside air temperature =-20°C. Water temperature (in/out) = 90/70 °C.

Air Speed. Starting from 2500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.32 m/s.
 Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line ઉ up to the scale representing the heating coil capacity (40.0 kW).

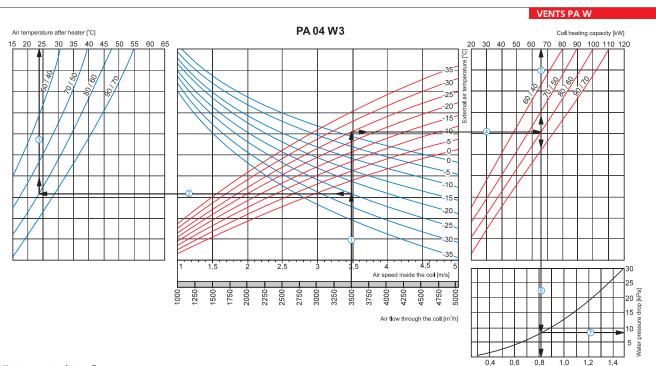
Water flow. Prolong the line () down to water flow axis at the bottom of the graphic () (0.471/s).
Water pressure drop. Draw the line () from the point where the line () crosses the black curve to the pressure drop axis. (6.0 kPa).




System Parameters: Air flow = 2700 m<sup>3</sup>/h. Outside air temperature =-25°C. Water temperature (in/out) = 70/50 °C.

System ratalities: All now – 200 m /n. Outside all comparation = -25 C. water emperature (m/our – 70/30 C. All rSpeed Starting from 2700 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.59 m/s. Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -25°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+28°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -25°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water


in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (58.0 kW). ■ Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.73 l/s). ■ Water pressure drop. Draw the line (7) from the point where the line (6) crosses the black curve to the pressure drop axis. (14.0 kPa).

#### Hot water coil parameters:



Air Speed Starting from 3500 m<sup>2</sup>/n on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.48 m/s.
Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).

• Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line 🕙 from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (55.0 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.68 l/s).
Water pressure drop. Draw the line (7) from the point where the line (6) crosses the black curve to the pressure drop axis. (9.2 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 3500 m<sup>3</sup>/h. Outside air temperature =-25°C. Water temperature (in/out) = 80/60 °C.

System Farailteters All flow = 3500 m /n: Outside an emperature = 25 C water temperature (m/out = 00/00 C)
Air Speed Starting from 3500 m<sup>2</sup>/h on the air flow scale draw a vertical line 0 till the air speed axis which makes about 3.48 m/s.
Supply air temperature, prolong the line 0 up to the point where it crosses the outside air temperature (blue curve, e.g. -25°C); then draw a horizontal line 0 from this point to the left till crossing water in/out temperature curve (e.g. 80/60 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+24°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -25°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 80/60 °C), from here draw a vertical line ③ up to the scale representing the heating coil capacity (65.0 kW). ■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.811/s). ■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (8.0 kPa).

Water flow through the coil [I/s]

SUPPLY UNIT SERIES PAE/PA

# **EXHAUST UNITS**

# Series **VENTS VA**



Compact suspended units with the air capacity up to 4450 m<sup>3</sup>/h in the sound-insulated casing

# Description

The unit VA is a fan-filter block enclosed in a compact sound-insulated casing. The VA unit provides high pressure combined with low energy demand due to the impeller with backward curved blades. The unit is suitable for supply and exhaust ventilation applications.

# Casing

Steel casing covered with aluzink coating internally filled with 50 mm heat- and sound-insulating layer made of mineral wool.

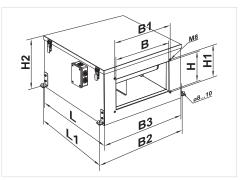
#### E Fan

The units are equipped with a high-pressure radial fan directly driven from the external rotor motor with backward curved blades. The fan motor has integrated thermal contacts for connection to an external protecting device.

# Filter

The unit is suitable for use both with and without filter as a simple fan. The replaceable filter block is an optional item and is not included into the unit delivery set. All the units may be equipped with a replaceable G4 panel filter, refer Accessories.

# Mounting


The unit is mounted to the air duct in any position. The unit is suitable for installation in utility and main premises behind the false ceiling, in the recess or directly in the room). The fan electric contacts are leaded to the terminal block located in the terminal box.

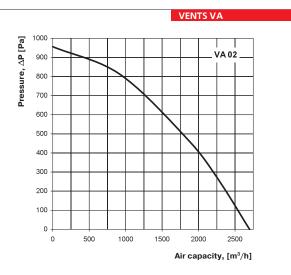
# Accessories

The fan speed is controlled by the external triac, autotransformer or frequency three-phase speed controller, refer RSA, VFED). To disable uncontrollable air flow when the fan is off and in case of power failure it is recommended to install the air damper with a return spring (refer RRVAF) from outside behind the unit. For attenuation of sound generated by the fan it is recommended to install the duct silencer (refer SR) from inside before the unit. For vibration absorbing it is recommended to install the flexible anti-vibration connectors (refer VVG) on both sides of the unit. For control of the filter clogging degree it is recommended to install the differential pressure switch (refer DTV 500).

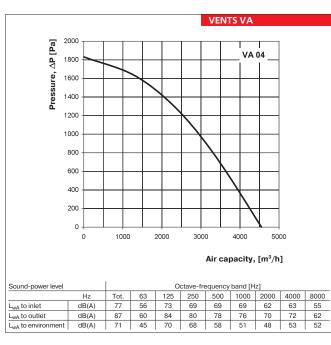
### Unit overall dimensions:

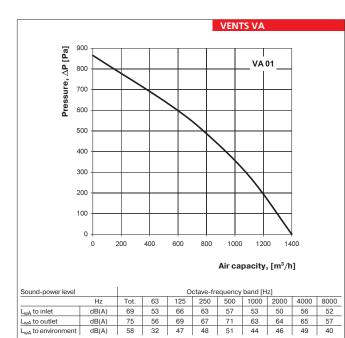
| Type  | Dimensions, [mm] |     |     |     |     |     |     |     |     |  |
|-------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Туре  | В                | B1  | B2  | B3  | Н   | H1  | H2  | L   | L1  |  |
| VA 01 | 400              | 420 | 624 | 585 | 200 | 220 | 375 | 660 | 621 |  |
| VA 02 | 500              | 520 | 689 | 646 | 300 | 320 | 450 | 665 | 627 |  |
| VA 03 | 600              | 620 | 787 | 745 | 350 | 370 | 500 | 696 | 657 |  |
| VA 04 | 700              | 720 | 888 | 844 | 400 | 420 | 546 | 805 | 766 |  |

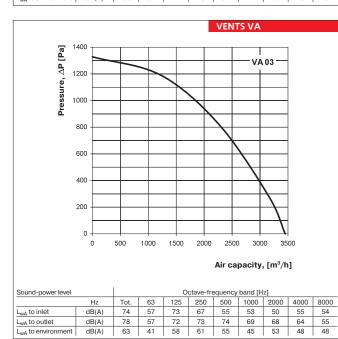



#### Accessories to supply units:

| Туре  | Replaceable filter | Filter type  |  |  |  |
|-------|--------------------|--------------|--|--|--|
| VA 01 | SF PA/VA 01 E G4   | panel filter |  |  |  |
| VA 02 | SF PA/VA 02 E G4   | panel filter |  |  |  |
| VA 03 | SF PA/VA 03 E G4   | panel filter |  |  |  |
| VA 04 | SF VA 04 E G4      | panel filter |  |  |  |


**Designation key:** 





|                                 | VA 01         | VA 02         | VA 03         | VA 04         |
|---------------------------------|---------------|---------------|---------------|---------------|
| Unit supply voltage [V / 50 Hz] | 3~ 400        | 3~ 400        | 3~ 400        | 3~ 400        |
| Maximum fan power [W]           | 320           | 620           | 1330          | 2300          |
| Fan current [A]                 | 0,55          | 1,05          | 2,4           | 4,3           |
| Air capacity [m³/h]             | 1400          | 2700          | 3450          | 4450          |
| RPM                             | 2700          | 2690          | 2730          | 2840          |
| Noise level at 3m [dB[A]]       | 51            | 54            | 57            | 58            |
| Operating temperature [°C]      | -25 up to +55 | -25 up to +45 | -25 up to +45 | -25 up to +70 |
| Casing material                 | aluzink       | aluzink       | aluzink       | aluzink       |
| Insulation                      | 50 mm, m      | ineral wool   | 50 mm, mi     | neral wool    |
| Connected air duct size [mm]    | 400x200       | 500x300       | 600x350       | 700x400       |
| Weight, [kg]                    | 35            | 38            | 59            | 71            |



| Sound-power level              |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 75   | 56                         | 68  | 72  | 57  | 55   | 58   | 61   | 57   |
| L <sub>wA</sub> to outlet      | dB(A) | 81   | 57                         | 71  | 80  | 74  | 70   | 69   | 69   | 62   |
| L <sub>wA</sub> to environment | dB(A) | 62   | 37                         | 51  | 62  | 52  | 39   | 36   | 39   | 34   |









# AIR HANDLING UNITS WITH HEAT RECOVERY

#### VENTS VUT mini Series



• Compact sound- and heat-insulated air handling units with the air capacity up to 345 m<sup>3</sup>/h and the heat exchanger efficiency up to 85%. Designed to provide supply of fresh filtered air and extract of exhaust air from the premises. Compatible with Ø 100 and 125 mm round air ducts.

VENTS VUT H Series



Sound- and heat-insulated ventilation units with the air capacity up to 2200 m<sup>3</sup>/h and the heat exchanger efficiency up to 88%. Designed to provide supply of fresh filtered air and removal of extract air from the premises. Compatible with  $\emptyset$  125, 150, 160, 200, 250, 315 mm round air ducts.

#### VENTS VUT EH and VUT WH Series



Sound- and heat-insulated ventilation units with the air capacity up to 2200 m<sup>3</sup>/h and the heat exchanger efficiency up to 88%. Designed to provide supply of fresh filtered air and removal of extract air from the premises. Water heating coils or electric heaters are designed for the unit operation at low outside temperatures. The units are compatible with Ø 125, 150, 160, 200, 250, 315 mm round air ducts.

#### VENTS VUT PE and VUT PV Series



Compact suspended sound-proof and heat-insulated ventilation units with the air capacity up to 4000 m<sup>3</sup>/h and heat exchanger efficiency up to 90%. Designed to provide supply of fresh filtered air and removal of extract air from the premises. Water heating coils or electric heaters are designed for the unit operation at low outside temperatures. The units are compatible with 150, 160, 200, 250, 315 and 400 mm round air ducts.

### VENTS VUT R EH und VUT R WH EC Series



Sound and heat-insulated air handling units with air capacity up to 900 m<sup>3</sup>/h and recuperating efficiency up to 85% due to rotary heat exchangers. The units provide supply of fresh filtered air to the room and extract of stale polluted air outside. The units are equipped with water or electric heaters for operation at low outside temperatures and are suitable for connection to round Ø160 and 250 mm air ducts.

WWW.VENTILATION-SYSTEM.COM







0

|          | VENTS VUT mini air handling units<br>with heat recovery                     | page |
|----------|-----------------------------------------------------------------------------|------|
|          | Air capacity – up to 300 m³/h                                               | 212  |
|          | VENTS VUT mini with EC motor air handling units with heat recovery          | page |
| ed with  | Air capacity – up to 345 m³/h                                               | 214  |
|          | VENTS VUE 100 P mini air handling units with heat recovery                  | page |
|          | Air capacity – up to 106 m³/h                                               | 216  |
|          | VENTS VUT H air handling units with heat recovery                           | page |
|          | Air capacity – up to 2200 m³/h                                              | 218  |
|          | VENTS VUT H with EC motor air handling units with heat recovery             | page |
| ed with  | Air capacity – up to 600 m³/h                                               | 222  |
|          | VENTS VUT EH and VUT WH air handling units with heat recovery               | page |
|          | Air capacity – up to 2200 m³/h                                              | 224  |
|          | VENTS VUT EH and VUT WH with EC motor air handling units with heat recovery | page |
| notor    | Air capacity – up to 600 m³/h                                               | 234  |
|          | VENTS VUT PE and VUT PW with EC motor air handling units with heat recovery | page |
| notor    | Air capacity – up to 4000 m³/h                                              | 240  |
|          | VENTS VUT R EH EC and VUT R WH EC air handling units with heat recovery     | page |
| and with | Air capacity – up to 900 m³/h                                               | 248  |

# **AIR HANDLING UNITS WITH HEAT RECOVERY**

#### Automation and control:

> VENTS air handling units supplied with incorporated automation system with control board.

Interface control board has multifunctional buttons, failure and emergency indicator. The standard set includes multifunctional control panel with graphic LCD indicator. Functions:

- Maintaining supply air temperature
- Maintaining set air temperature level in the premises
- Ventilation rate control
- Heat recovery by means of the plate heat exchanger
- Plate heat exchanger freezing protection
- Electric heater overheating protection
- Program of correct emergency shutdown of the air heaters
- Supply air filter clogging indication
- Setting unit operation mode
- > Setting week operation program with ventilation rate control
- Daily timer
- Seasonal operation mode setting
- Filter replacement timer
- Automatic detection of connected devices
- > Failure indication by means of text and light alarm messages
- Failure light alarm indication
- Interface language option

#### Heater:

• Electric heater is designed for air handling unit operation at low outside temperature and is supplied as a standard.

• Electric heater is made of heat-resisting stainless steel ribbed to increase the heat exchange surface area and equipped with two overheating protecting thermostats.

#### Heat exchanger (recuperator)

> Plate heat exchanger with a great surface area and high efficiency made of polystyrene. The extract air transfers heat to the plates and the plates transfer heat to supply air flow. The heat exchange efficiency is up to 95% which allows reducing heating costs. The supply and extract air flows do not get mixed which ensures no contamination, odours, microbes transfer. By-pass damper provides switching to no heat recovery mode if required.

#### Heat recovery



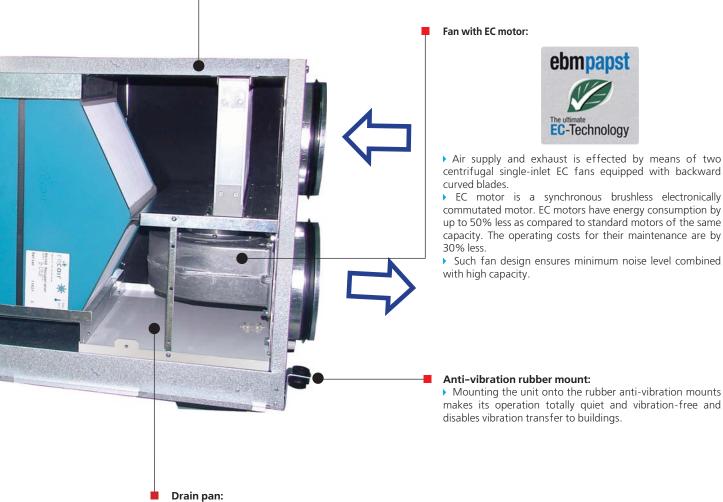
Control system



Effective insulation



# Filter


▶ High degree of air purification is achieved due to G4-F7 incorporated panel type filters on metal frames. Filter size match the European Norms and Standards. Filter clogging control by means of build-in automation system as well as filter easy removal and cleaning ensure their quality and durability.

# Casing

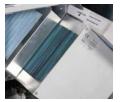
Photo:

**VUT 600 EH EC** 

> The casing is manufactured from two-layers aluminum-zinc compound internally filled with the mineral wool layer for heat and sound insulation. The internal sheet is made of aluminum-zinc steel plates with varnish coating to ensure long service life. The internal galvanized steel plate provides the surface hygienic purity of the unit and disables dirt accumulation on the panel. The side panels can be easily removed for inspection and service of all the unit elements.



> The unit is equipped with the drain pan of painted steel for condensate collection. Draining pipes for condensate drainage on the bottom are connected to the draining system.


#### Easy mounting



Energy-saving EC motors



Easy maintenance



# **AIR HANDLING UNITS WITH HEAT RECOVERY**

The issue of ventilation from the point of view of thermal energy saving (maintaining permanent temperature) is the most essential subject. The factors that influence the heat loss dynamics vary from wall thermal protection to heaters and heating system quality, density of wall panels joints and window joints as well as personal consumption habits.

In modern buildings ventilation demands up to 45% of the total heat energy consumption. The reasons are as follows:

a) One half of air volume is exchanged through the open window within 30-60 min. During this process the heat losses grow tremendously;

b) Energy saving houses are equipped with all available facilities for sealing and thermal isolation of the buildings. Such houses are so well insulated that the heat loss through the walls makes only 30 to 40% of the total amount.

Thus the heat losses caused by ventilation process remove 2/3 of the total heat. So we come to the point of providing air exchange with minimum heat losses. From 30% to 70% of heat loss is variously estimated for the traditional for residential houses exhaust ventilation. Controllable air exchange and heat recovery are the compulsory attributes in the modern construction that are ensured by means of air handling units. The forced ventilation allows recuperating up to 90% of the exhaust air heat. Such effect is attained due to installation of the heat exchanger (recuperator).

The heat exchanger allows saving heat in winter period and contributes to better operation of air conditioners jointly with ventilation system in summer period. In addition the heat exchangers have heat- and soundinsulated casing that reduces the noise level produced by equipment in the room. As of today the ventilation systems based on heat exchangers are the most state-of-the-art and progressive solution for air exchange arranging in the premises.

Due to recuperation of the unit its owner can save good money for operation costs. Use of the ventilation units with heat recovery jointly with the air conditioning systems is not only the most effective way to arrange the required microclimate in the room but to cut costs as well. In winter the heat exchanger saves heat and in summer it saves cool.

The plate heat exchanger of cross-flow or contercurrent type is the simplest one and contains no movable parts and electrical connections; it separates the air streams fully; maintenance-free and requires no additional energy consumption. Utilization of units with heat recovery in ventilation systems results in shortening of payback period and improving its ecological charactristics in view of low energy demand, low investment for heat energy generation and its distribution, careful attitude to environment.

New series of compact air handling units with EC (electronically commutated) motors provide energy consumption reducing up to 50% as compared to traditional asynchronous motors. Operating costs will be by 30% in general reduced.

Fans with EC motors have the following advantages:

 efficient operation at any rotation speed of fan impeller (up to zero) and significant winding electrical resistance;

 low heat generation that enables reducing performance losses of refrigeration equipment and compensate for heat generation of fan motors in case of utilization of EC-motor fans in conditioning systems;

fan overall dimensions can be reduced in case of the design with external rotor and EC-motor advantages. Consequently the disadvantages related to large-scale overall dimensions that are typical for fans with standard motors are minimized;

• the maximum motor speed does not depend upon frequency (operation both at 50 Hz and 60 Hz is possible);

- high efficiency at low speed;
- design with external rotor to make it compact.

Controllable air exchange and thermal energy recovery are the the must-have components in a modern house. Air handling units are the best solution for these targets. Forced ventilation allows recuperating up to 90% of extract air heat energy. This function is possible due to the heat exchanger (recuperator).

The plate heat exchanger of cross-flow or duct conter-flow type are used for heat recovery in ventilation units Vents VUT. The exhaust air in the heat exchanger transfers the heat energy to the supply air.

#### Structure and operating principle of the plate heat exchangers

The design of the plate heat exchangers is such as to exclude the transfer of contaminants, odours and microbes from the exhaust air flow to the supply air flow as both warm (exhaust) and cold (supply) air flows are divided by wall elements of heat exchanger plates made of aluminium or polystyrene. Thermal energy quantity that is transfered from the exhaust air to the supply air depends exclusively on the thermal conductivity of the applied materials and temperature difference between two flows. Concurrently the warm exhaust air is heated and the cold supply air is cooled.

Though there is no moisture exchange between the extract and supply air streams,

a part of latent wet extract air energy is used for heat recovery. In case of low outside temperature and high extract air temperature the exhaust air temperature can drop down to dew point. Thus condensate is generated and the latent evaporation heat is released. During condensate generation the temperature difference between the warm and cold air streams in the heat exchanger is higher as compared to the process with no condensate. Thus that means higher heat energy extraction and higher heat recovery efficiency.

For that reason free condensate drainage shall be provided.

Use of plate heat exchangers in ventilation system results in shorter payback

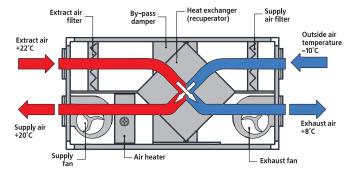
period and better ecological characteristics ensuring the further advantages:low energy consumption;

- iow energy consumption,
- low investment for thermal energy generation and its distribution;
- no removable parts which means durability and long service life at continuous operation;
- high-efficient heat recovery and little investment result in high selfrepayment;
- environmental protection.





Operating principle of plate heat recovery of cross-flow type


Operating principle of plate heat recovery of counter-flow type

# Design and operating principle of air handling units based on VUT-600 WH EC example.

VUT-600 WH EC unit operates as follows:

Fresh cold air from outside is supplied to VUT WH EC unit through the air ducts, gets filtered and passes further through the heat exchanger from where it is supplied to premises by means of the supply fan. Warm exhaust air from premises goes back to VUT WH EC unit through the ducts where it gets filtered, then passes again through the heat exchanger and is exhausted outside by means of the exhaust fan. The exchange of heat energy of the warm contaminated air from the premises with the fresh cold air from outside takes place in the heat exchanger. That reduces heat losses and consequently cuts the heating costs in winter time.

That reduces heat losses and consequently cuts the heating costs in winter time.



#### **Recuperation economic analysis:**

Air capacity: 500 m<sup>3</sup>/h t1 - temperature after heat exchanger; t2 - intake (-10 °C); t3 - indooe temperature (+22 °C). Recuperation efficiency is calculated as follows: Kef = 60% Supply air temperature after heat exchanger: t1= t2+ Cef (t3 -t2) = (-10) + 0,60 (22-(-10)) = 9,2 °C

To heat the air temperature up to the temperature 19,2 °C the following energy consumption is required:  $P(Wt) = L(m^3/h) \times 0.34 \times t(^{\circ}C) =$ =500 m<sup>3</sup>/h x 0.34 x 19,2 = 3264 W

# Marking of VENTS VUT models.

The following abbreviations for VUT units marking:

heater type (if provided in the model):E - electric heaterW - water (glycol) heating coils

#### Design:

- H horizontal duct connection (ducts at both sides)
- V vertical duct connection (ducts upwards)
- P ceiling suspended

**mini** - units with the maximum air capacity up to 300 m<sup>3</sup>/h, easy control system and minimized overall dimensions.

Motor type: **No designation** - AC motors. **EC** - electronically commutated motors (EC motors)

# Example:

# VUT 600 EH EC

Ventilation unit with Heat Recovery, air capacity up to 600 m<sup>3</sup>/h equipped with **E**lectric **H**eater that has horizontal duct connection and fan powered by **EC**-motor.

# **AIR HANDLING UNITS WITH HEAT RECOVERY**

# Series VENTS VUT V mini



Speed controller RS-1-400

Air handling units with the air capacity up to **300 m<sup>3</sup>/h** in the compact sound- and heat-insulated casing with vertical duct connections

# Description

VUT air handling units mini are the complete ventilation units designed for air filtration, heating and supply to the premises and removal of exhaust air. The heat of the exhausted air is transferred to the supply air through the plate heat exchanger. All the models are compatible with 100 and 125 mm round ducts.

# Modifications

**VUT V mini –** the models with vertical duct connections, fans with AC motors.

**VUT H mini** – the models with horizontal duct connections, fans with AC motors.

# Casing

The casing is made of aluzink with 20 mm mineral wool internal heat and sound insulation.

### Filter

Two G4 built-in filters ensure supply and exhaust air fiiltration.

# Series VENTS VUT H mini



speed controller RS-1-400

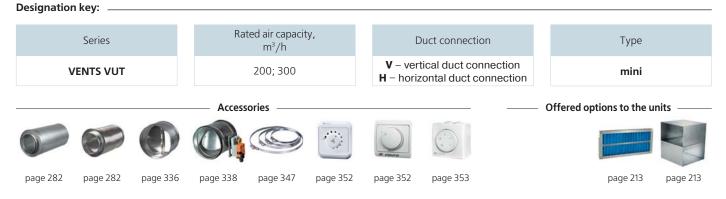
Air handling units with the air capacity up to **300 m<sup>3</sup>/h** in the compact sound- and heat-insulated casing with horizontal duct connections

#### Fans

The unit is equipped with supply and exhaust centrifugal fans with backward curved blades and built-in thermal overheating protection with automatic restart. The electric motors and the impellers are dynamically balanced in two planes.

# Heat exchanger

The plate heat exchanger is made of aluminium plates. Whenever heat recovery is not required for unit operation the heat exchanger block can be easily replaced by a "summer" block. The unit is also equipped with the drain pan for condensate drainage as well as with built-in icing protecting system. During operation of the heat exchanger in the winter time the heat from the warm exhaust air is transferred to the cold supply air. During extract air heat energy extraction some condsensate can be generated. If the temperature of the intake air is below -5°C the condensate can get frozen. To prevent the heat exchanger freezing electronic protection system is applied. It switches the supply fan off as


the temperature sensor requires. Warm extract air defrosts the heat exchanger, then the supply fan switches on and the unit continues operating under rated conditions.

#### Control

Switching the unit on and its capacity control is performed with thyristor speed controller (RS-1-400) which provides smooth motor speed control over the range of 0-100%.

#### Mounting

Air handling unit is mounted on the floor and suspended to the ceiling by means of a seat angle with inserted vibration-damping element or attached to a wall with brackets. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or the unit can be placed directly in the room. Mounting position shall provide correct condensate drainage. Access for maintenance and filter cleaning shall be reserved on the side of the removable side panel on the left from supply air side.



#### **Technical data:**

|                                  | VUT 200 H mini | VUT 200 V mini | VUT 300 H mini  | VUT 300 V mini |  |  |
|----------------------------------|----------------|----------------|-----------------|----------------|--|--|
| Unit supply voltage [V / 50 Hz]  | 1~             | 230            | 1~2             | 230            |  |  |
| Maximum fan power [W]            | 2pcs           | x 58           | 2pcs            | . x 58         |  |  |
| Fan current [A]                  | 2pcs.          | x 0,26         | 2pcs.           | x 0,26         |  |  |
| Total power of the unit [W]      | 1              | 16             | 11              | 16             |  |  |
| Total current of the unit [A]    | 0,             | 52             | 0,5             | 52             |  |  |
| Air capacity [m <sup>3</sup> /h] | 20             | 00             | 30              | 00             |  |  |
| RPM                              | 25             | 00             | 25              | 00             |  |  |
| Noise level at 3m [dB[A]]        | 24             | -45            | 28-             | -47            |  |  |
| Operating temperature [°C]       | -25 up         | to +50         | -25 up          | to +50         |  |  |
| Casing material                  | alu            | zink           | aluz            | zink           |  |  |
| Insulation                       | 20 mm mi       | neral wool     | 20 mm mi        | neral wool     |  |  |
| Filter: exhaust / supply         | panel f        | ilter G4       | panel filter G4 |                |  |  |
| Replaceable filter*              | SF VUT         | mini G4        | SF VUT mini G4  |                |  |  |
| Summer block*                    | VL VU          | T mini         | VL VU           | T mini         |  |  |
| Duct connection diameter, [mm]   | Ø1             | 00             | Ø1              | 25             |  |  |
| Weight, [kg]                     | 3              | 0              | 3               | 0              |  |  |
| Recuperation efficiency          | up to          | 85%            | up to           | 85%            |  |  |
| Heat exchanger type              | cross-fl       | ow type        | cross-fl        | ow type        |  |  |
| Heat exchanger material          | alum           | inum           | alum            | inum           |  |  |
| *option                          |                |                |                 |                |  |  |

**VENTS VUT mini** 

VUT 200 H mini

VUT 200 V mini

Т

200 Air capacity, [m<sup>3</sup>/h]

VUT 200 H mini

VUT 200 V mini

 Octave-frequency band [Hz]

 125
 250
 500
 1000
 2000
 4000
 8000

 47
 47
 34
 40
 38
 30
 20

 52
 54
 51
 44
 44
 31
 21

44

500 1000 2000

18 14 0

35 37 50 46

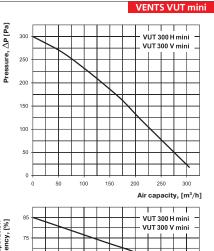
25

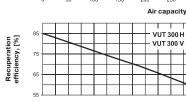
27

14

34 46 31 31

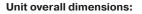
4


4


18

22 4

4000 8000


\_





VUT 300 H mini

| Sound-power level              |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |  |  |
|--------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|--|--|--|
|                                | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dB(A) | 53   | 29                         | 48  | 46  | 37  | 41   | 40   | 34   | 18   |  |  |  |
| L <sub>wA</sub> to outlet      | dB(A) | 60   | 41                         | 52  | 57  | 54  | 46   | 46   | 37   | 26   |  |  |  |
| $L_{\text{wA}}$ to environment | dB(A) | 33   | 5                          | 23  | 32  | 27  | 19   | 17   | 2    | 0    |  |  |  |
| VUT 300 V mini                 | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |  |
| L <sub>wA</sub> to inlet       | dB(A) | 49   | 31                         | 48  | 47  | 35  | 43   | 38   | 30   | 20   |  |  |  |
| L <sub>wA</sub> to outlet      | dB(A) | 62   | 37                         | 55  | 56  | 54  | 47   | 46   | 37   | 26   |  |  |  |
| $L_{\text{wA}}$ to environment | dB(A) | 34   | 7                          | 22  | 31  | 27  | 19   | 18   | 5    | 4    |  |  |  |



Pressure,  $\Delta P$  [Pa]

300

250

200

150

100

50

0

90

80

70

60

Hz

dB(A)

dB(A)

dB(A)

Hz

dB(A)

dB(A)

dB(A)

Tot. 63

51 59

29

35 30 5 19 29

63

26 37

5

Recuperation efficiency, [%]

VUT 200 H mini

Sound-power level

L<sub>wA</sub> to inlet L<sub>wA</sub> to outlet L<sub>wA</sub> to environment

VUT 200 V mini

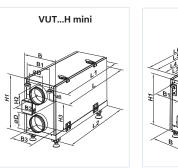
L<sub>wA</sub> to outlet L<sub>wA</sub> to environment

L<sub>wA</sub> to inlet

0

50

100


150

| Туре           |     |     |     | 0   | Dimen | sions | , [mm | ]   |     |     |     |
|----------------|-----|-----|-----|-----|-------|-------|-------|-----|-----|-----|-----|
| туре           | ØD  | В   | B1  | B2  | B3    | H1    | H2    | H3  | L   | L1  | L2  |
| VUT 200 H mini | 99  | 278 | 200 | 121 | 192   | 431   | 84    | 191 | 699 | 640 | 600 |
| VUT 300 H mini | 124 | 278 | 200 | 139 | 139   | 431   | 89    | 296 | 699 | 640 | 600 |

125 250

46 50 21 46 54 27

| Turne          |     | Dimensions, [mm] |     |     |     |     |     |     |     |      |     |     |       |
|----------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-------|
| Туре           | ØD  | В                | B1  | B2  | В3  | Н   | H1  | L1  | L2  | L3   | L4  | L5  | L6    |
| VUT 200 V mini | 99  | 278              | 200 | 109 | 169 | 481 | 431 | 640 | 600 | 73,5 | 204 | 396 | 526,5 |
| VUT 300 V mini | 124 | 278              | 200 | 100 | 178 | 481 | 431 | 640 | 600 | 74   | 210 | 390 | 526   |





VUT ...V mini

# **AIR HANDLING UNITS WITH HEAT RECOVERY**

# Series VENTS VUT V mini EC



Air handling units with the air capacity up to **345 m<sup>3</sup>/h** and the recuperation efficiency up to 85% in the compact sound- and heatinsulated casing with vertical duct connections.

#### Description

VUT mini air handling unit is a complete air handling unit designed for air filtration, heating and supply to the premises and removal of exhaust air. During the operating process the heat of the exhausted air is transferred to the supply air through the plate heat exchanger. Applied in ventilation and conditioning systems for various premises that require economic solution and controllable air exchange. EC-motors reduce energy consumption by 1.5-3 times and ensure high efficiency and low noise level at the same time. All the models are compatible with Ø 100 and 125 mm round ducts.

# Modifications

VUT V mini EC series is are energy saving Air Handling Units (AHU) equipped with intake and exhaust centrifugal fans powered by EC motors, cross-flow heat recovery elements and air filters. Vertical duct connections.

#### VUT H mini EC series are energy saving Air Handling

# Series VENTS VUT H mini EC



Air handling units with the air capacity up to **345 m<sup>3</sup>/h** and the recuperation efficiency up to 85% in the compact sound- and heatinsulated casing with horizontal duct connections.

Units (AHU) equipped with supply and exhaust centrifugal fans powered by EC motors, cross-flow heat recovery elements and air filters. Horizontal duct connections.

#### Casing

The casing is manufactured from aluminum-zinc compound with 20 mm thick mineral wool layer for heat and sound insulation.

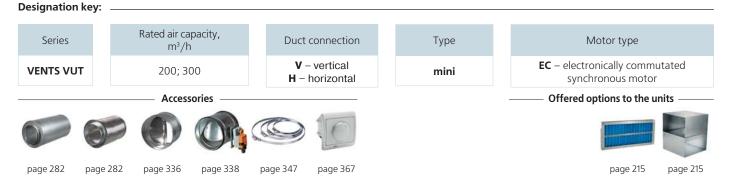
#### Filter

Two incorporated G4 panel filters for intake and supply air filtration are applied in the unit.

#### Motor

The impeller with backward curved blades is powered by high-efficient electronically commutated (EC) direct current motor. As of today the ventilation system based on heat exchangers is the most stateof-the-art and progressive solution for air exchange organization in the premises. EC motors are featured with the high efficiency and perfect control over the whole speed range. Premium efficiency (reaching 90%) is an absolute advantage of electronically commutated motors.

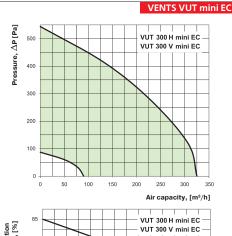
#### Heat exchanger

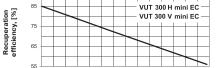

The cross-flow air-to-air plate heat exchanger block is manufactured from aluminum plates. Whenever heat recovery is not required the heat exchanger block can be easily replaced by a "summer" block. The unit is also equipped with the drain pan for condensate drainage as well as built-in icing protecting system. Its operating principle is based on switching the supply fan off as the temperature sensor requires. Warm exhaust air heats the heat exchanger. Then the supply fan switches on and the unit continues operating under normal rated conditions.

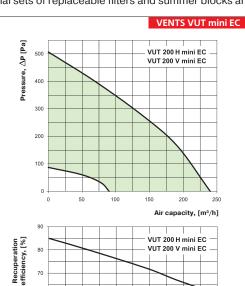
# Control

The unit is controlled by means of external control signal 0-10 V (e.g., R-1/010 controller for EC-motors). Air capacity as a function of temperature level, pressure and smoke conditions and other system parameters. Should the value of the control parameter get changed the EC-motor changes its speed and the fan boosts as much air flow to the ventilation system as required.

# Mounting


Air handling unit is mounted on the floor and suspended to the ceiling by means of a seat angle with inserted vibration-damping element or attached to a wall with brackets. The unit can be mounted either in service spaces as balcony, storeroom, basement, roof space or in main premises above the suspended ceiling, in the pocket or the unit can be placed directly in the room. Mounting in any position shall provide correct condensate drainage. Access for the maintenance shall be reserved at the side of the swing-out access door on the left from supply air side.





# **Technical data:**

|                                  | VUT<br>200 H mini EC | VUT<br>200 V mini EC | VUT<br>300 H mini EC | VUT<br>300 V mini EC |  |  |
|----------------------------------|----------------------|----------------------|----------------------|----------------------|--|--|
| Unit supply voltage [V / 50 Hz]  | 1~2                  | 230                  | 1~ 1                 | 230                  |  |  |
| Maximum fan power [W]            | 2pcs.                | x 105                | 2pcs.                | x 105                |  |  |
| Fan current [A]                  | 2pcs.                | x 0,9                | 2pcs.                | x 0,9                |  |  |
| Total power of the unit [W]      | 21                   | 0                    | 21                   | 10                   |  |  |
| Total current of the unit [A]    | 1,8                  | 30                   | 1,8                  | 80                   |  |  |
| Air capacity [m <sup>3</sup> /h] | 24                   | 10                   | 34                   | 15                   |  |  |
| RPM                              | 35                   | 50                   | 35                   | 70                   |  |  |
| Noise level at 3m [dB[A]]        | ] 24-45 28-47        |                      |                      |                      |  |  |
| Operating temperature [°C]       | -25 up               | to +60               | -25 up to +60        |                      |  |  |
| Casing material                  | aluz                 | link                 | aluz                 | zink                 |  |  |
| Insulation                       | 20 mm mii            | neral wool           | 20 mm mineral wool   |                      |  |  |
| Filter: exhaust / supply         | panel fi             | Iter G4              | panel f              | ilter G4             |  |  |
| Replaceable filter*              | SF VUT               | mini G4              | SF VUT               | mini G4              |  |  |
| Summer block*                    | VL VU                | T mini               | VL VU                | T mini               |  |  |
| Duct connection diameter, [mm]   | Ø1                   | 00                   | Ø1                   | 25                   |  |  |
| Weight, [kg]                     | 3                    | 0                    | 3                    | 0                    |  |  |
| Recuperation efficiency          | up to                | 85%                  | up to 85%            |                      |  |  |
| Heat exchanger type              | cross-fl             | ow type              | cross-fl             | ow type              |  |  |
| Heat exchanger material          | alum                 | inum                 | aluminum             |                      |  |  |

\*additional sets of replaceable filters and summer blocks are accessories and supplied separately



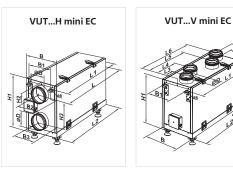




#### VUT 200 H mini EC

| Sound-power level              |       |      |    | 0   | ctave-fre | equency | band [H | z]   |      |      |
|--------------------------------|-------|------|----|-----|-----------|---------|---------|------|------|------|
|                                | Hz    | Tot. | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 49   | 30 | 46  | 44        | 35      | 41      | 35   | 32   | 19   |
| L <sub>wA</sub> to outlet      | dB(A) | 57   | 38 | 51  | 53        | 50      | 45      | 43   | 32   | 24   |
| L <sub>wA</sub> to environment | dB(A) | 33   | 3  | 21  | 29        | 25      | 19      | 16   | 4    | 0    |
| VUT 200 V mini EC              | Hz    | Tot. | 63 | 125 | 250       | 500     | 1000    | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 49   | 26 | 46  | 44        | 37      | 39      | 38   | 30   | 17   |
| L <sub>wA</sub> to outlet      | dB(A) | 60   | 35 | 53  | 52        | 51      | 44      | 43   | 31   | 24   |
| L <sub>wA</sub> to environment | dB(A) | 29   | 5  | 22  | 30        | 25      | 17      | 12   | 4    | 0    |

#### VUT 300 H mini EC Sound-nower level


| Sound-power level                 |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |  |
|-----------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|--|--|
|                                   | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet          | dB(A) | 52   | 31                         | 48  | 47  | 35  | 41   | 37   | 34   | 20   |  |  |
| L <sub>wA</sub> to outlet         | dB(A) | 59   | 39                         | 54  | 58  | 53  | 47   | 45   | 37   | 26   |  |  |
| $L_{\text{wA}}$ to environment    | dB(A) | 34   | 9                          | 24  | 31  | 29  | 17   | 16   | 2    | 0    |  |  |
| VUT 300 V mini EC                 | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| L <sub>wA</sub> to inlet          | dB(A) | 53   | 30                         | 50  | 48  | 37  | 41   | 39   | 32   | 20   |  |  |
| L <sub>wA</sub> to outlet         | dB(A) | 60   | 39                         | 54  | 55  | 54  | 45   | 45   | 33   | 25   |  |  |
| ${\rm L}_{\rm wA}$ to environment | dB(A) | 34   | 5                          | 25  | 30  | 29  | 21   | 14   | 6    | 2    |  |  |

# Unit overall dimensions:

60

| Туре              |     |     |     | [   | Dimen | sions | [mm] | ]   |     |     |     |
|-------------------|-----|-----|-----|-----|-------|-------|------|-----|-----|-----|-----|
| туре              | ØD  | В   | B1  | B2  | В3    | H1    | H2   | H3  | L   | L1  | L2  |
| VUT 200 H mini EC | 99  | 278 | 200 | 121 | 192   | 431   | 84   | 191 | 699 | 640 | 600 |
| VUT 300 H mini EC | 124 | 278 | 200 | 139 | 139   | 431   | 89   | 296 | 699 | 640 | 600 |

| Туре              |     |     |     |     | D   | imer | nsion | s, [m | m]  |      |     |     |       |
|-------------------|-----|-----|-----|-----|-----|------|-------|-------|-----|------|-----|-----|-------|
| туре              | ØD  | В   | B1  | B2  | В3  | Н    | H1    | L1    | L2  | L3   | L4  | L5  | L6    |
| VUT 200 V mini EC | 99  | 278 | 200 | 109 | 169 | 481  | 431   | 640   | 600 | 73,5 | 204 | 396 | 526,5 |
| VUT 300 V mini EC | 124 | 278 | 200 | 100 | 178 | 481  | 431   | 640   | 600 | 74   | 210 | 390 | 526   |



# Series VENTS VUE 100 P mini



Speed switch P3-1-300

Air handling units with heat recovery in the compact sound- and heat-insulated casing. Air capacity up to **106 m<sup>3</sup>/h.** 

#### Description

Compact air supply and exhaust ventilation unit VUE 100 P mini is a simple and effective energy-saving solution ventilation of apartments, cottages, singlefamily houses, workshops and trade premises.

The unit is a fully-featured ventilation unit that provides air cleaning, fresh air supply to the premise and removal of extract air from the premise. Extract air thermal energy is transferred to the paper recuperator plates and is used to warm up the supply air flow. Built-in recuperator prevents heat losses and saves energy costs for warming up of supply air during winter time.

Due to the compact casing and silent operation the VUE 100 P mini unit can be installed behind the false ceiling. The unit is designed for connection to Ø 125 mm round air ducts. A small air duct layout provides air ventilation in one or several rooms. Air capacity is regulated with P3-1-300 three speed switch.

#### Casing

The casing is made of corrosion-resistant alumozink and sound-insulated with 15 mm penophole layer. For easy mounting the casing is fitted with mounting brackets.

The detachable panel is swivel connected to the unit to provide fast and easy access to the casing internal components for servicing and maintenance.

#### Filter

Intake and extract air are purified by G4 supply and extract filter. The filters prevent dirt and dust ingress into the room and protect the unit components against contaminations.

#### Fans

The unit is equipped by reliable supply and exhaust fans with forward curved blades that are powered by motors with low energy demand. The motor has maintenance-free ball bearings that ensure long service life about 40 000 hrs and have enough grease for the entire operating period.

#### Heat exchanger

Paper cross-flow plate recuperator has recuperating efficiency up to 68%. It is used not only for extract air thermal energy utilization but also for moisture recuperation which results in indoor humidity balance. In summer season the recuperator serves for intake air cooling down and drying and in winter season for warming up and moisturizing. Extract stale air transfers its moisture to the heat exchanger plates where the water vapour is condensed and absorbed. The recovered heat and moisture are transferred to intake air and germs and smells are left behind.

#### Control

Air capacity (speed) is regulated with P3-1-300 three speed switch. Low speed - 57 m<sup>3</sup>/h, 24 dBA Medium speed - 78 m<sup>3</sup>/h, 32dBA Maximum speed - 106 m<sup>3</sup>/h, 41 dBA The external control board is comfortable to use at any place.

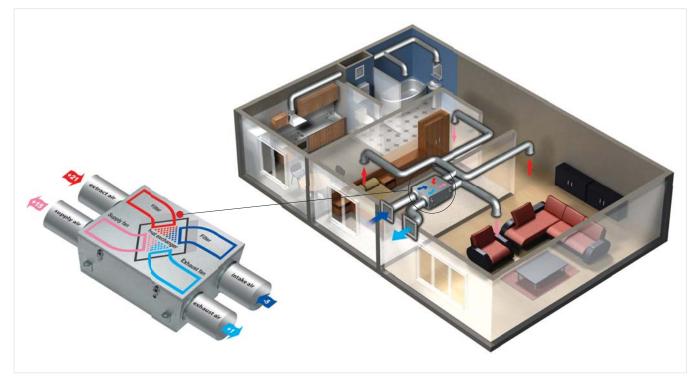
#### Heat exchanger protection

For freeze protection at low temperatures the unit is equipped with a thermostatic switch inside the casing that switches the supply fan off in case of need to warm up the recuperator with extract air thermal energy.

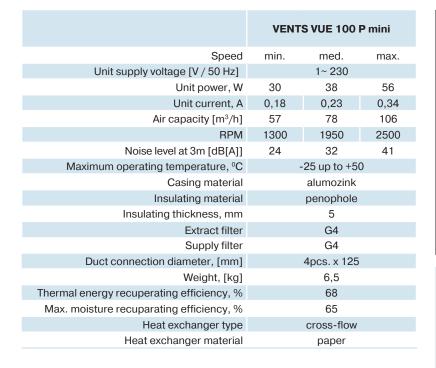
#### Mounting

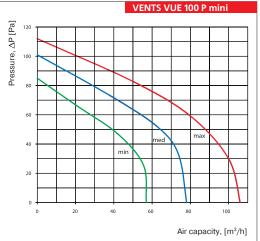
Due to the compact casing height the unit is designed for horizontal indoor installation behind the false ceilings and connection to Ø 125 mm round air ducts.

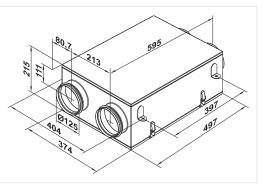
)) () () () ()


page 282

Accessories


page 347


#### Operating logic


• Warm extract air is moved by exhaust fan from the premise through the extract filter, enters the recuperator where it transfers thermal energy to its elements and then is exhausted outside.  Cold intake air from outside is moved by the supply fan first to the supply filter where it is purified, then to the recuperator where it absorbs a greater part of thermal energy from extract air and then supplied to the room. • The recuperator reduces thermal energy losses and saves operating costs for warming up of intake air during winter time.



#### **Technical data:**







AIR HANDLING UNIT WITH VENTS HEAT RECOVERY SERIES MINI

#### Series VENTS VUT H



Speed controller P3-1-300

Air handling units with the air capacity up to **2200 m<sup>3</sup>/h** and the recuperation efficiency up to 88% in the compact sound- and heat-insulated casing.

#### Description

Air handling unit VUT H is a complete ventilation units designed for air filtration and supply to the premises and exhaust air removal. During the operation process the extract air heat is transferred to the supply air through the plate heat exchanger. All the models are designed for connection with  $\emptyset$  125, 150, 160, 200, 250, 315 mm round ducts.

#### Casing

The casing is made of aluminium profile, double skinned with 20 mm mineral wool heat-and soundinsulating layer.

#### Filter

Two incorporated G4 panel filters for extract air ventilation and F7 filters for supply air ventilation are supplied with the unit.

#### Fans

The unit is equipped with supply and exhaust centrifugal double-inlet fans with forward curved blades and built-in thermal overheating protection with automatic restart. The electric motors and impellers are dynamically balanced in two planes. The ball-bearings used with motors are designed for at least 40 000 hours operation and are maintenancefree.

#### Heat exchanger

The cross-flow air-to-air heat exchanger block is manufactured from aluminum plates. Whenever heat recovery is not required the heat exchanger block can be easily replaced by a "summer" block. The unit is also equipped with the drain pan for condensate water drainage as well as built-in freezing protection system. Its operating principle is based on switching the supply fan off as the temperature sensor requires. Warm extract air heats the heat exchanger. Then the supply fan switches on and the unit continues operating under rated conditions.

#### Control

The motor speed is controlled by means of 4-step control switch by means of selecting the minimum, average or maximum speed or the unit shutdown.

#### Mounting

Air handling unit is mounted on the floor and suspended to the ceiling by means of a seat angle with anti-vibration mounts or attached to a wall with brackets. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or can be placed directly in the room. Mounting in any position shall provide correct condensate drainage. Access for the fan maintenance and filter cleaning shall be provided from outside of the side panels.

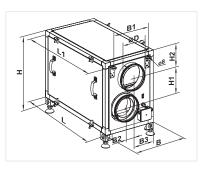
#### Accessories to air handling units:

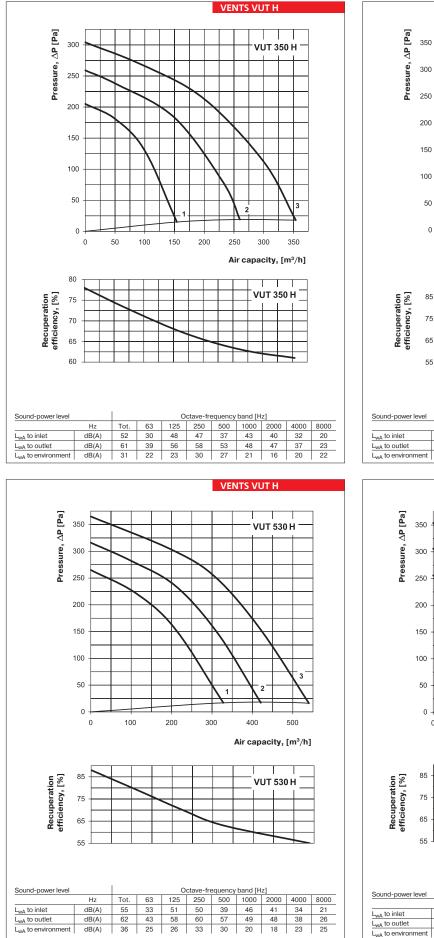
| Туре       | G4 replaceable filter | F7 replaceable filter | Summer block     |
|------------|-----------------------|-----------------------|------------------|
| VUT 350 H  |                       |                       | VL VUT 350 H     |
| VUT 500 H  | SF VUT 350-600 H G4   | SF VUT 350-600 H F7   | VL VUT 500-600 H |
| VUT 530 H  | SF V01 350-000 H G4   | SF VOT 350-000 H F7   | VL VUT 500-600 H |
| VUT 600 H  |                       |                       | VL VUT 500-600 H |
| VUT 1000 H | SF VUT 1000 H G4      | SF VUT 1000 H F7      | VL VUT 1000 H    |
| VUT 2000 H | SF VUT 2000 H G4      | SF VUT 2000 H F7      | VL VUT 2000 H    |

#### **Designation key:**



|                                  | VUT 350 H          | <b>VUT</b> 500 H   | VUT 530 H          |
|----------------------------------|--------------------|--------------------|--------------------|
| Unit supply voltage [V / 50 Hz]  | 1~ 230             | 1~ 230             | 1~ 230             |
| Maximum fan power [W]            | 2pcs. x 130        | 2pcs. x 150        | 2pcs. x 150        |
| Fan current [A]                  | 2pcs. x 0,60       | 2pcs. x 0,66       | 2pcs. x 0,66       |
| Total power of the unit [W]      | 260                | 300                | 300                |
| Total current of the unit [A]    | 1,2                | 1,32               | 1,32               |
| Air capacity [m <sup>3</sup> /h] | 350                | 500                | 530                |
| RPM                              | 1150               | 1100               | 1100               |
| Noise level at 3m [dB[A]]        | 24-45              | 28-47              | 28-47              |
| Operating temperature [°C]       | -25 up to +55      | -25 up to +50      | -25 up to +50      |
| Casing material                  | aluzink            | aluzink            | aluzink            |
| Insulation                       | 25 mm mineral wool | 25 mm mineral wool | 25 mm mineral wool |
| Filter: exhaust                  | G4                 | G4                 | G4                 |
| intake                           | F7 (EU7)           | F7 (EU7)           | F7 (EU7)           |
| Duct connection diameter, [mm]   | Ø125               | Ø 150              | Ø 160              |
| Weight, [kg]                     | 45                 | 49                 | 49                 |
| Recuperation efficiency          | up to 78%          | up to 88%          | up to 88%          |
| Heat exchanger type              | cross-flow type    | cross-flow type    | cross-flow type    |
| Heat exchanger material          | aluminum           | aluminum           | aluminum           |


#### **Technical data:**


|                                  | VUT 600 H          | VUT 1000 H         | VUT 2000 H         |
|----------------------------------|--------------------|--------------------|--------------------|
| Unit supply voltage [V / 50 Hz]  | 1~ 230             | 1~ 230             | 1~ 230             |
| Maximum fan power [W]            | 2pcs. x 195        | 2pcs. x 410        | 2pcs. x 650        |
| Fan current [A]                  | 2pcs. x 0,86       | 2pcs. x 1,8        | 2pcs. x 2,84       |
| Total power of the unit [W]      | 390                | 820                | 1300               |
| Total current of the unit [A]    | 1,72               | 3,6                | 5,68               |
| Air capacity [m <sup>3</sup> /h] | 600                | 1200               | 2200               |
| RPM                              | 1350               | 1850               | 1150               |
| Noise level at 3m [dB[A]]        | 32-48              | 60                 | 65                 |
| Operating temperature [°C]       | -25 up to +55      | -25 up to +40      | -25 up to +40      |
| Casing material                  | aluzink            | aluzink            | aluzink            |
| Insulation                       | 25 mm mineral wool | 50 mm mineral wool | 50 mm mineral wool |
| Filter: exhaust                  | G4                 | G4                 | G4                 |
| intake                           | F7 (EU7)           | G4 (F7)*           | G4 (F7)*           |
| Duct connection diameter, [mm]   | Ø200               | Ø250               | Ø315               |
| Weight, [kg]                     | 54                 | 85                 | 96                 |
| Recuperation efficiency          | up to 85%          | up to 88%          | up to <b>87</b> %  |
| Heat exchanger type              | cross-flow type    | cross-flow type    | cross-flow type    |
| Heat exchanger material          | aluminum           | aluminum           | aluminum           |
| *option                          |                    |                    |                    |

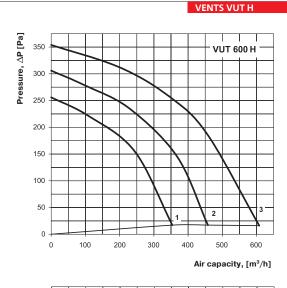
VENTS. Industrial and commercial ventilation | 02-2012

#### Unit overall dimensions:

| Turne      | Dimensions, [mm] |     |     |     |     |     |     |     |      |      |  |
|------------|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|--|
| Туре       | ØD               | В   | B1  | B2  | B3  | Н   | H1  | H2  | L    | L1   |  |
| VUT 350 H  | 124              | 416 | 300 | 54  | 207 | 603 | 230 | 148 | 722  | 768  |  |
| VUT 500 H  | 149              | 416 | 300 | 54  | 207 | 603 | 230 | 148 | 722  | 768  |  |
| VUT 530 H  | 159              | 416 | 300 | 54  | 207 | 603 | 230 | 148 | 722  | 768  |  |
| VUT 600 H  | 199              | 416 | 300 | 54  | 207 | 603 | 230 | 148 | 722  | 768  |  |
| VUT 1000 H | 248              | 548 | 496 | 60  | 213 | 794 | 290 | 200 | 802  | 850  |  |
| VUT 2000 H | 313              | 846 | 796 | 235 | 588 | 968 | 360 | 246 | 1000 | 1050 |  |





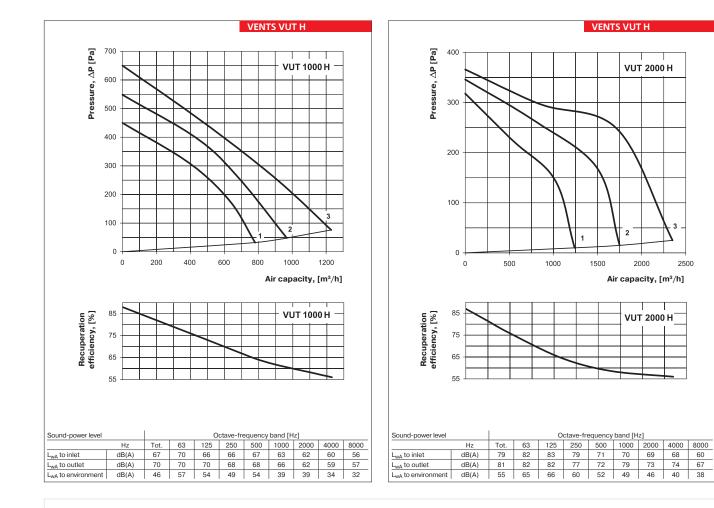

0 100 200 300 400 500 Air capacity, [m<sup>3</sup>/h] VUT 500 H

VENTS VUT H

Т

VUT 500 H

| Sound-power level              | Octave-frequency band [Hz] |      |    |     |     |     |      |      |      |      |
|--------------------------------|----------------------------|------|----|-----|-----|-----|------|------|------|------|
|                                | Hz                         | Tot. | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A)                      | 54   | 33 | 49  | 51  | 40  | 45   | 43   | 34   | 22   |
| L <sub>wA</sub> to outlet      | dB(A)                      | 65   | 41 | 58  | 59  | 55  | 48   | 48   | 39   | 27   |
| L <sub>wA</sub> to environment | dB(A)                      | 37   | 25 | 26  | 33  | 29  | 20   | 19   | 22   | 23   |
|                                |                            |      |    |     |     |     |      |      |      |      |






| Sound-power level              |       |      | 0  | ctave-fre | equency | band [H | z]   |      |      |      |
|--------------------------------|-------|------|----|-----------|---------|---------|------|------|------|------|
|                                | Hz    | Tot. | 63 | 125       | 250     | 500     | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 57   | 36 | 53        | 53      | 41      | 48   | 46   | 38   | 25   |
| L <sub>wA</sub> to outlet      | dB(A) | 66   | 44 | 61        | 63      | 59      | 50   | 50   | 39   | 29   |
| L <sub>wA</sub> to environment | dB(A) | 40   | 26 | 29        | 37      | 35      | 25   | 23   | 26   | 27   |

dB(A)

36





#### Series **VENTS VUT H EC**



Speed controller R-1/010

Air handling units with the air capacity up to 600 m<sup>3</sup>/h and recuperation efficiency up to 95% in compact sound-and heat-insulated casing.

#### Description

VUT H air handling unit is a complete air handling unit designed to provide both supply and exhaust ventilation with air filtering and heat recovery. The extract air energy is used to heat up the supply fresh air through the heat exchanger. Applied in ventilation and conditioning systems for various premises requiring economic solution and controllable air exchange. EC-motors reduce energy consumption by 1.5-3 times and ensure high efficiency combined with low noise level. All the models are designed for connection to 160 and 200 mm round ducts.

#### Casing

The casing is made from aluminium profile, doubleskinned with 20 mm mineral wool heat- and soundresistant insulating layer.

#### Filter

Two incorporated G4 panel filters for extract air ventilation and F7 filters for supply air ventilation are supplied with the unit.

#### Motor

The double-inlet impellers with forward curved blades are powered by high-efficient electronically commutated (EC) external rotor motors. As of today such motor type is the most state-of-theart and progressive solution for energy saving. EC motors are featured with high efficiency and the best control over the whole speed range. Premium efficiency (reaching 90%) is an absolute privilege of electronically commutated motor.

#### Heat exchanger

The counter-flow air-to-air heat exchanger is made of polystyrene plates. Whenever heat recovery is not required the heat exchanger block can be easily replaced by a "summer" block. The unit is also equipped with the drain pan for condensate drainage as well as built-in icing protecting system. Its operating principle is based on switching the supply fan off as the temperature sensor requires. Then the supply fan switches on and the unit operates under the rated conditions.

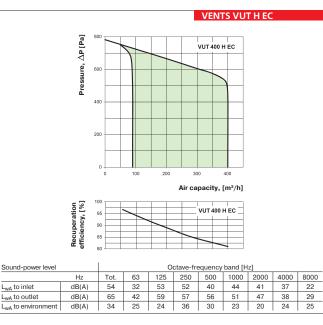
#### Control

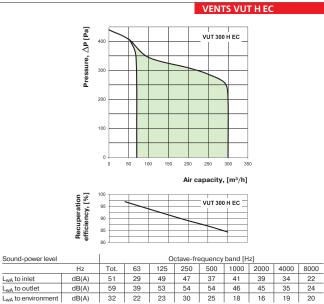
The unit is controlled by means of external control signal 0-10 V (e.g., R-1/010 speed controller for ECmotors). Air capacity control depends on temperature level, pressure and smoke conditions and other system parameters. Should the value of the control parameter get changed the EC-motor changes its rotation speed accordingly and boosts as much air flow as required for the ventilation system.

#### Mounting

Air handling unit is mounted on the floor, suspended to the ceiling by means of a seat angle with inserted vibration-damping element or attached to a wall with brackets. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or can be placed directly in the room. Mounting in any position shall provide correct condensation water drainage. Access for maintenance shall be provide through the side panels on the left from supply air side.

#### Accessories to air handling units:


| Туре           | G4 replaceable filter  | F7 replaceable filter   | Summer block         |
|----------------|------------------------|-------------------------|----------------------|
| VUT 300-1 H EC |                        |                         |                      |
| VUT 300-2 H EC | SF VUT 300-600 H EC G4 | SF VUT 300-600 H EC F7  | VL VUT 300-600 H EC  |
| VUT 400 H EC   | SF VUT 300-600 H EC G4 | 3F V01 300-000 TI EC F7 | VL VUT 300-000 TI EC |
| VUT 600 H EC   |                        |                         |                      |

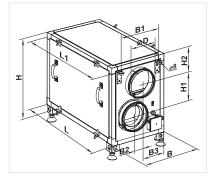

#### Designation key:

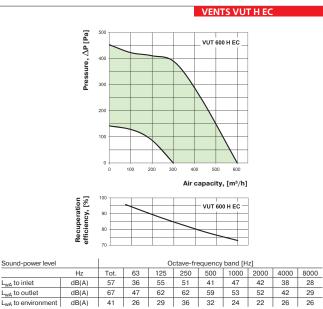


#### **Technical data:**

|                                  | VUT 300-1 H EC | VUT 300-2 H EC | <b>VUT 400 H EC</b> | <b>VUT 600 H EC</b> |
|----------------------------------|----------------|----------------|---------------------|---------------------|
| Unit supply voltage [V / 50 Hz]  | 1~ :           | 230            | 1~ 230              | 1~ 230              |
| Maximum fan power [W]            | 2pcs.          | . x 70         | 2pcs. x 175         | 2pcs. x 175         |
| Fan current [A]                  | 2pcs.          | x 0,60         | 2pcs. x 1,3         | 2pcs. x 1,3         |
| Total power of the unit [W]      | 14             | 40             | 350                 | 350                 |
| Total current of the unit [A]    | 1,             | ,2             | 2,6                 | 2,6                 |
| Air capacity [m <sup>3</sup> /h] | 30             | 00             | 400                 | 600                 |
| RPM                              | 13             | 80             | 1340                | 2150                |
| Noise level at 3m [dB[A]]        | 24-45          |                | 28-47               | 28-47               |
| Operating temperature [°C]       | -25 up to +60  |                | -25 up to +60       | -25 up to +60       |
| Casing material                  | aluz           | aluzink        |                     | aluzink             |
| Insulation                       | 25 mm mi       | neral wool     | 25 mm mineral wool  |                     |
| Filter: exhaust                  | G              | i4             | G4                  | G4                  |
| intake                           | F7 (E          | EU7)           | F7 (EU7)            | F7 (EU7)            |
| Duct connection diameter, [mm]   | Ø150           | Ø 160          | Ø200                | Ø200                |
| Weight, [kg]                     | 3              | 6              | 37                  | 37                  |
| Recuperation efficiency          | up to          | 95%            | up to 95%           | up to 95%           |
| Heat exchanger type              | counte         | er-flow        | counter-flow        | counter-flow        |
| Heat exchanger material          | polyst         | tyrene         | polystyrene         | polystyrene         |







#### Unit overall dimensions:

dB(A)

| Turno          |     | Dimensions, [mm] |     |     |     |     |     |     |     |     |  |  |
|----------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| Туре           | ØD  | В                | B1  | B2  | В3  | Н   | H1  | H2  | L   | L1  |  |  |
| VUT 300-1 H EC | 149 | 420              | 390 | 100 | 159 | 562 | 215 | 147 | 829 | 876 |  |  |
| VUT 300-2 H EC | 159 | 420              | 390 | 100 | 159 | 562 | 215 | 147 | 829 | 876 |  |  |
| VUT 400 H EC   | 199 | 420              | 390 | 100 | 159 | 562 | 215 | 147 | 829 | 876 |  |  |
| VUT 600 H EC   | 199 | 420              | 390 | 100 | 159 | 562 | 215 | 147 | 829 | 876 |  |  |

30 25 18 16 20





# Series VENTS VUT EH



LCD control panel

Air handling units with the air capacity up to **2200 m<sup>3</sup>/h** and recuperation efficiency up to 85% in sound-proof and heat-insulated casing with electric heater.

#### Description

Air handling units VUT EH with electric heater and VUT WH with water heater are the complete air handling units designed to provide both supply and exhaust ventilation with air filtering and heat recovery. The exhaust air energy is used to heat up the supply fresh air through the heat exchanger. All the models are designed for connection with Ø 125, 150, 160, 200, 250, 315 mm round ducts.

#### Modifications

**VUT EH** – a range of compact energy saving air handling units (AHU) equipped with supply and exhaust centrifugal fans, cross-flow heat recovery elements, electric heating coils and air filters.

**VUT WH** – a range of compact energy saving air handling units (AHU) equipped with supply and exhaust centrifugal fans, cross-flow heat recovery elements, water or glycol heating coils and air filters.

## Series VENTS VUT WH



SAS908 control panel

Air handling units with the air capacity up to **2100 m<sup>3</sup>/h** and recuperation efficiency up to 78% in sound-proof and heat-insulated casing with water heater.

#### Casing

The casing is manufactured from aluminum-zinc compound with 25 mm thick mineral wool heat- and sound-insulating layer.

#### Filter

Two incorporated G4 panel filters for extract air ventilation and F7 filters for supply air ventilation are supplied with the unit.

#### Fans

The units are equipped with supply and exhaust centrifugal double-inlet fans with forward curved blades and built-in thermostat with automatic restart. The electric motors and impellers are dynamically balanced in two planes. The ball-bearings used with motors are designed for at least 40 000 hours operation and are maintenance-free.

#### Heat exchanger

The heat exchangers have high efficiency and are manufactured from aluminium plates. The unit is also equipped with the drain pan for condensate drainage.

#### Heater

The electric heater (for the unit VUT EH) or the water heater (for the unit VUT WH) at outlet from the heat exchanger is designed for warming up of supply air up to the set level if heat recovery is not enough to attain the set supply air temperature. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. heat medium operating temperature 95°C.

#### Automation and control system

The unit incorporates an integrated automation and control system with a multi-functional control panel with LCD display. The standard delivery set includes 10 m connection cable for connection to the remote control panel. The unit has the freezing protection function to prevent the heat exchanger freezing by means of actuating the bypass damper and controlling water heater. As the temperature sensor warns of the freezing danger, the bypass air damper is opened and the intake air is directed through the air duct beside the heat exchanger. As the heat exchanger is warmed the supply air temperature rises up to the set level while passing through the heater. Meanwhile the warm extract air warms up the heat exchanger. After the freezing danger is no longer imminent, the bypass damper shuts the bypass duct and the unit reverts to the standard operation mode.

#### VUT EH control and protection functions

- control from the control panel: switching on/off, speed selection, timer, faults;
- maintaining the set room temperature by the sensor on the control panel – smooth heating capacity control;
- three-speed fan speed control (low-medium-high);
- unit operation according to daily and week schedule
- (timer adjustable from the control panel);
- safe start-up/shutdown of the fans;
- electric heater overheating protection by the temperature sensor installed in the supply air duct and by two overheating thermostats, one thermostat



activated at 50°C with automatic reset and another thermostat activated at 90°C with manual reset. Blowing of the heating elements for heat removing at the end of the heating cycle;

• filter clogging control by engine hours.

#### VUT WH control and protection functions

 control from the control panel: switching on/ off, three-speed fan selection, selecting heating/ cooling modes (if connected to duct heater); room temperature display;

maintaining supply air temperature set from the control panel by controlling the circulation pump and actuating the heat medium regulating valve; input from the heat medium flow switch (pump alarm);

▶ safe start-up/ shutdown of the fans, warming up of the water heater before start-up; return heat medium temperature control when the fan is off;
freezing protection of the water heating coils by the exhaust temperature sensor and the return heat medium temperature sensor;

 control of the compressor and condensing unit of the water cooler by the room temperature sensor (for the models equipped with a duct air cooler);

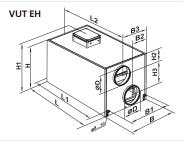
- actuating the external air dampers with a return spring;
- unit operation according to daily and week schedule (set at the system setup);
- unit shut down at signal from the fire alarm system:
- smooth bypass damper control in the bypassing mode to prevent the heat exchanger freezing.

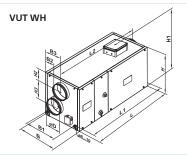
#### Mounting

The unit is designed for indoor mounting. While

mounting the unit provide the correct condensate collection and drainage. Access for the unit servicing and filter cleaning is from the side panels on the left from supply air side.

#### Options


For attenuation of sound generated by the fan it is recommended to install the duct silencer (refer SR) from inside before the unit. For vibration absorbing it is recommended to install the flexible antivibration connectors (refer VVG) on both sides of the unit. The mixing units USWK are recommended for smooth supply air temperature regulation in the units equipped with water heaters. The mixing unit USWK with three-way heat medium regulating valve and circulation pump provides smooth heating capacity regulation and minimizes the water heater freezing danger.


#### Unit overall dimensions:

| Turpo       |     | Dimensions, [mm] |     |     |     |     |     |     |     |      |      |      |
|-------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Туре        | ØD  | В                | B1  | B2  | B3  | Н   | H1  | H2  | H3  | L    | L1   | L2   |
| VUT 350 EH  | 124 | 497              | 403 | 248 | 348 | 554 | -   | 111 | 230 | 954  | 996  | 1054 |
| VUT 500 EH  | 149 | 497              | 403 | 248 | 348 | 554 | -   | 111 | 230 | 954  | 996  | 1054 |
| VUT 530 EH  | 159 | 497              | 403 | 248 | 348 | 554 | -   | 111 | 230 | 954  | 996  | 1054 |
| VUT 600 EH  | 199 | 497              | 403 | 248 | 348 | 554 | -   | 111 | 230 | 954  | 996  | 1054 |
| VUT 800 EH  | 249 | 613              | 460 | 306 | 386 | 698 | 832 | 154 | 280 | 1071 | 1117 | 1171 |
| VUT 800 WH  | 249 | 613              | 460 | 306 | 386 | 698 | 832 | 154 | 280 | 1071 | 1117 | 1171 |
| VUT 1000 EH | 249 | 613              | 460 | 306 | 386 | 698 | 832 | 154 | 280 | 1071 | 1117 | 1171 |
| VUT 1000 WH | 249 | 613              | 460 | 306 | 386 | 698 | 832 | 154 | 280 | 1071 | 1117 | 1171 |
| VUT 1500 EH | 314 | 842              | 581 | 320 | 520 | 814 | 947 | 201 | 595 | 1345 | 1388 | 1445 |
| VUT 1500 WH | 314 | 842              | 581 | 320 | 520 | 814 | 947 | 201 | 595 | 1345 | 1388 | 1445 |
| VUT 2000 EH | 314 | 842              | 581 | 320 | 520 | 814 | 947 | 201 | 595 | 1345 | 1388 | 1445 |
| VUT 2000 WH | 314 | 842              | 581 | 320 | 520 | 814 | 947 | 201 | 595 | 1345 | 1388 | 1445 |

#### Accessories for air handling units:

| Туре                                                             | Replaceable filter (panel filter) G4 | Replaceable filter (panel filter) F7 |
|------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| VUT 350 EH<br>VUT 500 EH<br>VUT 530 EH<br>VUT 600 EH             | SF VUT 300-600 EH/WH G4              | SF VUT 300-600 EH/WH F7              |
| VUT 800 EH<br>VUT 1000 EH                                        | SF VUT 1000 EH/WH G4                 | SF VUT 1000 EH/WH F7                 |
| VUT 1500 EH<br>VUT 2000 EH                                       | SF VUT 2000 EH/WH G4                 | SF VUT 2000 EH/WH F7                 |
| VUT 800 WH-2<br>VUT 800 WH-4<br>VUT 1000 WH-2<br>VUT 1000 WH-4   | SF VUT 1000 EH/WH G4                 | SF VUT 1000 EH/WH F7                 |
| VUT 1500 WH-2<br>VUT 1500 WH-4<br>VUT 2000 WH-2<br>VUT 2000 WH-4 | SF VUT 2000 EH/WH G4                 | SF VUT 2000 EH/WH F7                 |





Pressure,  $\Delta P$  [Pa]

Recuperation efficiency, [%]

Hz dB(A)

dB(A) dB(A)

Sound-power level

L<sub>wA</sub> to inlet L<sub>wA</sub> to outlet L<sub>wA</sub> to environment 300

25

200

100

50

75

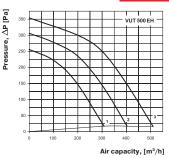
+++150 20 250

#### **Technical data:**

|                                    | VUT 350 EH         | <b>VUT 500 EH</b>  | VUT 530 EH         |
|------------------------------------|--------------------|--------------------|--------------------|
| Unit supply voltage [V / 50 Hz]    | 1~230              | 1~230              | 1~230              |
| Maximum fan power [W]              | 2pcs. x 130        | 2pcs. x 150        | 2pcs. x 150        |
| Fan current [A]                    | 2pcs. x 0,60       | 2pcs. x 0,66       | 2pcs. x 0,66       |
| Electric heater capacity [kW]      | 3                  | 3                  | 4                  |
| Electric heater current [A]        | 13                 | 13                 | 17,4               |
| Number of water (glycol) coil rows | -                  | -                  | -                  |
| Total power of the unit [kW]       | 3,26               | 3,3                | 4,3                |
| Total current of the unit [A]      | 14,2               | 14,32              | 18,72              |
| Air capacity [m <sup>3</sup> /h]   | 350                | 500                | 530                |
| RPM                                | 1150               | 1100               | 1100               |
| Noise level at 3m [dB[A]]          | 24-45              | 28-47              | 28-47              |
| Operating temperature [°C]         | -25 up to +55      | -25 up to +50      | -25 up to +50      |
| Casing material                    | aluzink            | aluzink            | aluzink            |
| Insulation                         | 25 mm mineral wool | 25 mm mineral wool | 25 mm mineral wool |
| Filter: exhaust                    | G4                 | G4                 | G4                 |
| intake                             | F7 (EU7)           | F7 (EU7)           | F7 (EU7)           |
| Duct connection diameter, [mm]     | Ø 125              | Ø 150              | Ø 160              |
| Weight, [kg]                       | 45                 | 49                 | 49                 |
| Recuperation efficiency            | up to 78%          | up to 88%          | up to 88%          |
| Heat exchanger type                | cross-flow type    | cross-flow type    | cross-flow type    |
| Heat exchanger material            | aluminum           | aluminum           | aluminum           |

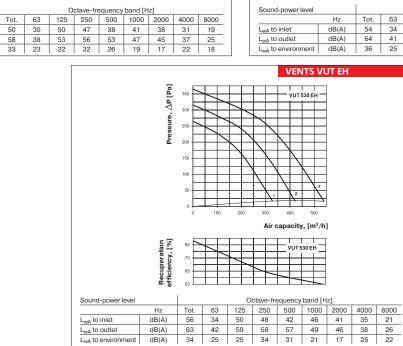
VENTS VUT EH

1


Air capacity, [m<sup>3</sup>/h]

VUT 350 EH \_

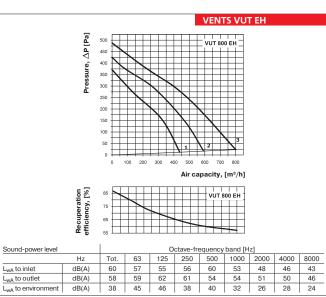
VUT 350 EH

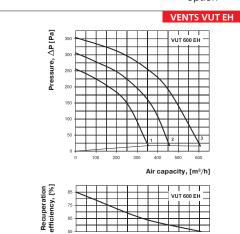

1

#### VENTS VUT EH

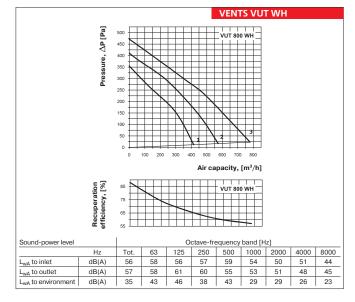


| 5           | 85 5 |               |   |   |   |   |   | I     |        |   |
|-------------|------|---------------|---|---|---|---|---|-------|--------|---|
| tio .       |      | $\rightarrow$ | _ |   |   |   | ' | VUT S | 500 EI | " |
| era<br>icy, | 76   |               |   | _ | - |   |   |       |        |   |
| ë n         | 65   |               |   |   |   |   |   |       |        |   |
| fic         |      | _             | _ |   |   | / |   |       |        |   |
| œ 4         | 55   |               |   |   |   |   |   |       |        |   |


| Sound-power level              |       |    | Octave-frequency band [Hz] |     |     |      |      |      |      |    |  |
|--------------------------------|-------|----|----------------------------|-----|-----|------|------|------|------|----|--|
|                                | Tot.  | 63 | 125                        | 250 | 500 | 1000 | 2000 | 4000 | 8000 |    |  |
| L <sub>wA</sub> to inlet       | dB(A) | 54 | 34                         | 52  | 49  | 40   | 46   | 42   | 33   | 22 |  |
| L <sub>wA</sub> to outlet      | dB(A) | 64 | 41                         | 57  | 57  | 56   | 51   | 50   | 40   | 26 |  |
| L <sub>wA</sub> to environment | dB(A) | 36 | 25                         | 26  | 36  | 30   | 22   | 21   | 24   | 21 |  |



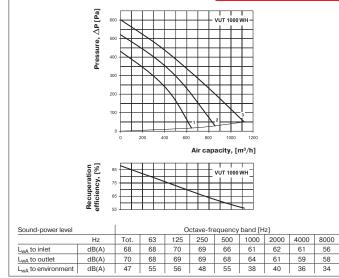

#### VENTS. Industrial and commercial ventilation | 02-2012

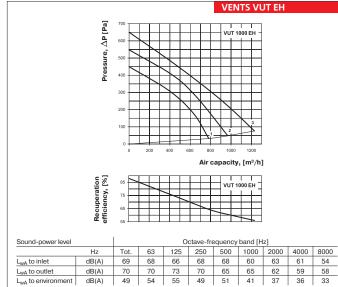

#### **Technical data:**

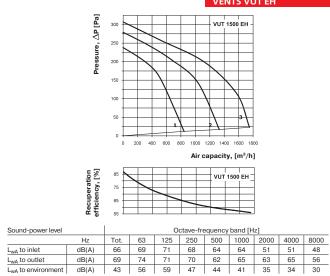
|                                    | VUT 600 EH         | <b>VUT 800 EH</b> | VUT 800 WH-2<br>VUT 800 WH-4 |  |
|------------------------------------|--------------------|-------------------|------------------------------|--|
| Unit supply voltage [V / 50 Hz]    | 1~230              | 3~ 400            | 1~ 230                       |  |
| Maximum fan power [W]              | 2pcs. x 195        | 2pcs.             | x 245                        |  |
| Fan current [A]                    | 2pcs. x 0,86       | 2pcs.             | x 1,08                       |  |
| Electric heater capacity [kW]      | 4                  | 9,0               | -                            |  |
| Electric heater current [A]        | 17,4               | 13,0              | -                            |  |
| Number of water (glycol) coil rows | -                  | -                 | 2 or 4                       |  |
| Total power of the unit [kW]       | 4,39               | 9,49              | 0,49                         |  |
| Total current of the unit [A]      | 19,1               | 15,16             | 2,16                         |  |
| Air capacity [m³/h]                | 600                | 800               | 780                          |  |
| RPM                                | 1350               | 16                | 50                           |  |
| Noise level at 3m [dB[A]]          | 32-48              | 48                |                              |  |
| Operating temperature [°C]         | -25 up to +55      | -25 up            | to +45                       |  |
| Casing material                    | aluzink            | aluz              | zink                         |  |
| Insulation                         | 25 mm mineral wool | 50 mm mi          | neral wool                   |  |
| Filter: exhaust                    | G4                 | G                 | 4                            |  |
| intake                             | F7 (EU7)           | G4 (              | F7)*                         |  |
| Duct connection diameter, [mm]     | Ø200               | Ø2                | 50                           |  |
| Weight, [kg]                       | 54                 | 85                | 88                           |  |
| Recuperation efficiency            | up to 85%          | up to             | 78%                          |  |
| Heat exchanger type                | cross-flow type    | cross-fl          | ow type                      |  |
| Heat exchanger material            | aluminum           | alum              | inum                         |  |
| *option                            |                    |                   |                              |  |






|                                | •                                          | 33 |                            |    |    |    |    |    |    |    |  |
|--------------------------------|--------------------------------------------|----|----------------------------|----|----|----|----|----|----|----|--|
| Sound-power level              |                                            |    | Octave-frequency band [Hz] |    |    |    |    |    |    |    |  |
|                                | Hz Tot. 63 125 250 500 1000 2000 4000 8000 |    |                            |    |    |    |    |    |    |    |  |
| L <sub>wA</sub> to inlet       | dB(A)                                      | 55 | 36                         | 52 | 52 | 43 | 46 | 42 | 37 | 27 |  |
| L <sub>wA</sub> to outlet      | dB(A)                                      | 67 | 45                         | 60 | 62 | 59 | 52 | 53 | 43 | 32 |  |
| L <sub>wA</sub> to environment | dB(A)                                      | 39 | 28                         | 29 | 38 | 34 | 25 | 20 | 25 | 26 |  |

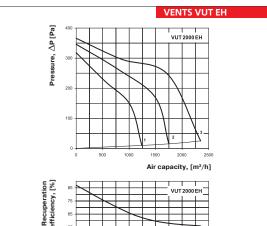




#### **Technical data:**

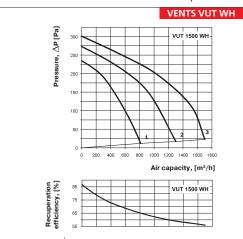
|                                    | VUT 1000 EH | VUT 1000 WH-2<br>VUT 1000 WH-4 | VUT 1500 EH        |
|------------------------------------|-------------|--------------------------------|--------------------|
| Unit supply voltage [V / 50 Hz]    | 3~400       | 1~230                          | 3~ 400             |
| Maximum fan power [W]              | 2pcs.       | x 410                          | 2pcs. x 490        |
| Fan current [A]                    | 2pcs        | . x 1,8                        | 2pcs. x 2,15       |
| Electric heater capacity [kW]      | 9,0         | -                              | 18,0               |
| Electric heater current [A]        | 13,0        | -                              | 26,0               |
| Number of water (glycol) coil rows | -           | 2 or 4                         | -                  |
| Total power of the unit [kW]       | 9,80        | 0,82                           | 18,98              |
| Total current of the unit [A]      | 16,6        | 3,6                            | 30,3               |
| Air capacity [m <sup>3</sup> /h]   | 1200        | 1100                           | 1750               |
| RPM                                | 18          | 50                             | 1100               |
| Noise level at 3m [dB[A]]          | 6           | 0                              | 49                 |
| Operating temperature [°C]         | -25 up      | to +40                         | -25 up to +45      |
| Casing material                    | alu         | zink                           | aluzink            |
| Insulation                         | 50 mm mi    | neral wool                     | 50 mm mineral wool |
| Filter: exhaust                    | G           | à4                             | G4                 |
| intake                             | G4 (        | F7)*                           | G4 (F7)*           |
| Duct connection diameter, [mm]     | ØZ          | 250                            | Ø315               |
| Weight, [kg]                       | 85          | 88                             | 96                 |
| Recuperation efficiency            | up to       | 78%                            | up to 77%          |
| Heat exchanger type                | cross-f     | ow type                        | cross-flow type    |
| Heat exchanger material            | alum        | inum                           | aluminum           |
| *option                            |             |                                |                    |

#### VENTS VUT WH

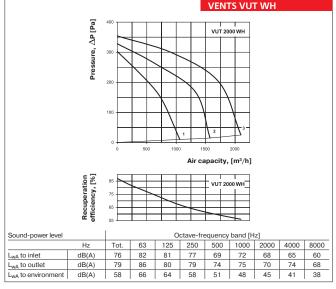






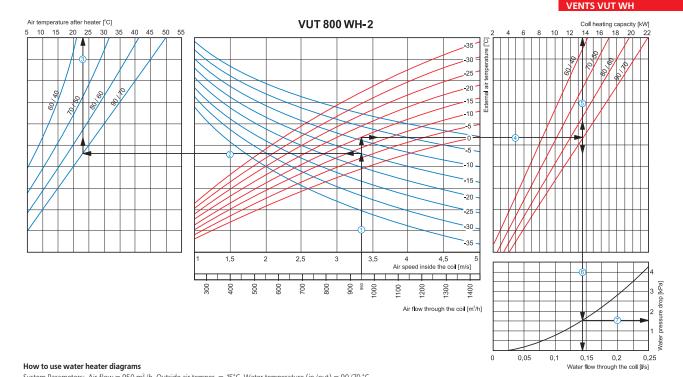


#### VENTS VUT EH

#### **Technical data:**


|                                    | VUT 1500 WH-2<br>VUT 1500 WH-4 | VUT 2000 EH   | VUT 2000 WH-2<br>VUT 2000 WH-4 |  |
|------------------------------------|--------------------------------|---------------|--------------------------------|--|
| Unit supply voltage [V / 50 Hz]    | 1~ 230                         | 3~400         | 1~230                          |  |
| Maximum fan power [W]              | 2pcs. x 490                    | 2pcs.         | x 650                          |  |
| Fan current [A]                    | 2pcs. x 2,15                   | 2pcs.         | x 2,84                         |  |
| Electric heater capacity [kW]      | -                              | 18,0          | -                              |  |
| Electric heater current [A]        | -                              | 26,0          | -                              |  |
| Number of water (glycol) coil rows | 2 or 4                         | -             | 2 or 4                         |  |
| Total power of the unit [kW]       | 0,98                           | 19,30         | 1,30                           |  |
| Total current of the unit [A]      | 4,3                            | 31,7          | 5,68                           |  |
| Air capacity [m³/h]                | 1700                           | 2200          | 2100                           |  |
| RPM                                | 1100                           | 1150          |                                |  |
| Noise level at 3m [dB[A]]          | 49                             | 65            |                                |  |
| Operating temperature [°C]         | -25 up to +45                  | -25 up to +40 |                                |  |
| Casing material                    | aluzink                        | aluz          | zink                           |  |
| Insulation                         | 50 mm mineral wool             | 50 mm mi      | neral wool                     |  |
| Filter: exhaust                    | G4                             | G             | 4                              |  |
| intake                             | G4 (F7)*                       | G4 (          | F7)*                           |  |
| Duct connection diameter, [mm]     | Ø315                           | Ø3            | 15                             |  |
| Weight, [kg]                       | 99                             | 96 99         |                                |  |
| Recuperation efficiency            | up to 77%                      | up to 77%     |                                |  |
| Heat exchanger type                | cross-flow type                | cross-fl      | ow type                        |  |
| Heat exchanger material            | aluminum                       | alum          | inum                           |  |
| *option                            |                                |               |                                |  |



|                                | •     | DD   |                            |     |     |     |      |      |      |      |  |
|--------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|--|
| Sound-power level              |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |  |
|                                | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |
| L <sub>wA</sub> to inlet       | dB(A) | 75   | 80                         | 82  | 80  | 72  | 71   | 66   | 66   | 59   |  |
| L <sub>wA</sub> to outlet      | dB(A) | 81   | 85                         | 82  | 79  | 73  | 76   | 74   | 74   | 68   |  |
| L <sub>wA</sub> to environment | dB(A) | 54   | 65                         | 68  | 58  | 55  | 50   | 46   | 42   | 39   |  |

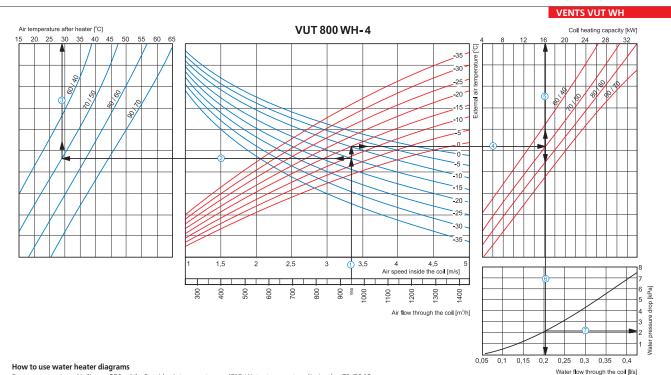



| Sound-power level              |       | Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |
|--------------------------------|-------|----------------------------|----|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot.                       | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 64                         | 72 | 67  | 65  | 62  | 65   | 56   | 55   | 48   |
| L <sub>wA</sub> to outlet      | dB(A) | 66                         | 76 | 72  | 70  | 61  | 64   | 60   | 63   | 55   |
| L <sub>wA</sub> to environment | dB(A) | 46                         | 54 | 54  | 48  | 39  | 39   | 34   | 31   | 27   |



#### VENTS VUT WH

#### Hot water coil parameters:



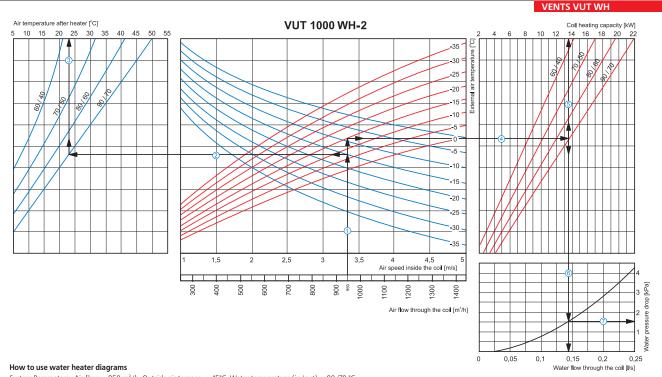

System Parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temper. =-15°C. Water temperature (in/out) = 90/70 °C Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

All speed. Stalling from 950 mm from the air how scale braw a vertical line (2) on the air speed and wind makes about 3.3 mm/s.
 Supply air temperature, prolong the line (1) up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line (2) from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line (3) to the supply air temperature axis on top of the graphic (+23°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g., -15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., -90/70 °C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (13.5 kW).

Water flow. Prolong the line (D) down to water flow axis at the bottom of the graphic (D) (0.141/s).
Water pressure drop. Draw the line (D) from the point where the line (D) crosses the black curve to the pressure drop axis. (1.5 kPa).

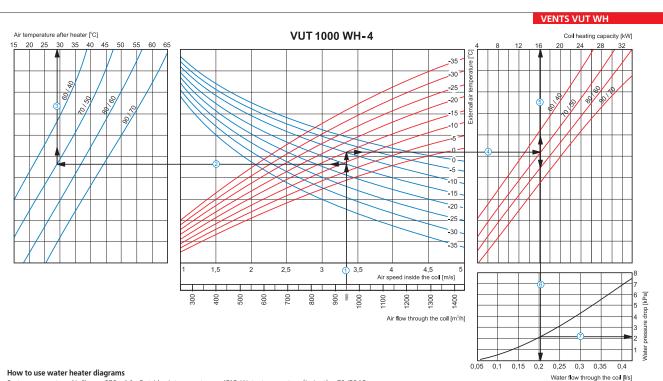



System parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

 Air Speed Starting from 950 m<sup>2</sup>/h to the air flow a vertical line (0) till the air speed axis which makes about 3.35 m/s.
 Supply air temperature, prolong the line (1) up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line (2) from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+29°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (16.0 kW).
 Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.21/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (2.1 kPa).


#### Hot water coil parameters:



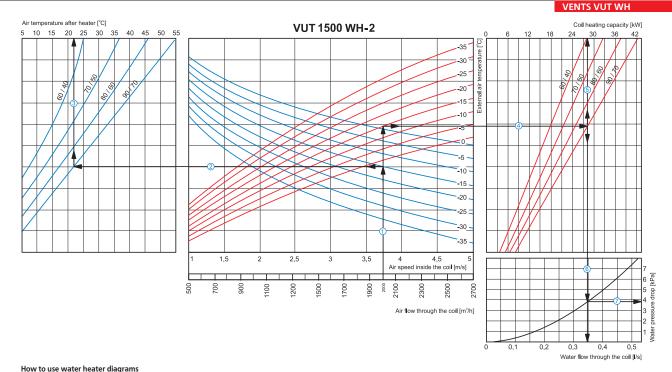
System Parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temper. =-15°C. Water temperature (in/out) = 90/70 °C Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

All speed. Staffing from soon provide an how scale or aw a vertical line Q on the an speed ass wind makes about 3.5 mps.
 Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line Q from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

• Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🕘 from this point to the right until it crosses water Induit representing the intervention of the provide the provide the provide the provided th



System parameters: Air flow = 950 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.


Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line 0<sup>0</sup> till the air speed axis which makes about 3.35 m/s.
 Supply air temperature. prolong the line 0<sup>0</sup> up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 2<sup>0</sup> from this point to the left till crossing water

Supply an emperature proof the me of up to the point where it closses the outside an temperature (bug cut e, g, -15 C), then take a horizontal ine of the intervent in clossing water in/out temperature (e.g., 70/50 °C). From this point draw a vertical line of to the supply air temperature (e.g., -15°C, item take a horizontal line of the intervent in clossing water in/out temperature (e.g., 70/50 °C). From this point draw a vertical line of to the supply air temperature (e.g., -15°C, item take a horizontal line of the intervent in clossing water in/out temperature (e.g., 70/50 °C). From this point draw a vertical line of to the supply air temperature (e.g., -15°C, red curve) and draw a horizontal line of from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from here draw a vertical line of up to the scale representing the heating coil capacity (16.0 kW).
 Water flow. Prolong the line of down to water flow axis at the bottom of the graphic (6 (0.2 1/s).

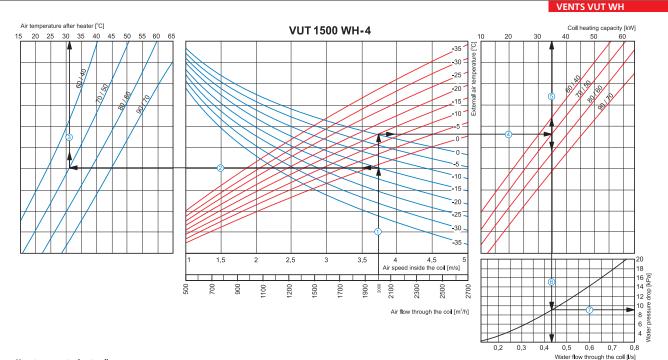
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (2.1 kPa).

AIR HANDLING UNIT WITH HEAT RECOVERY SERIES

#### Hot water coil parameters:



System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C.


• Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\bigcirc$  till the air speed axis. (3.75 m/s).

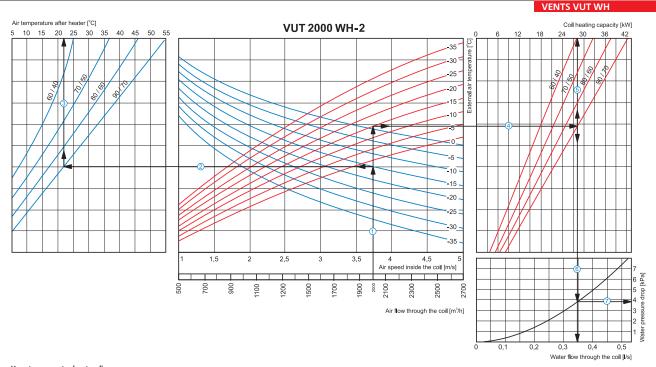
Supplex. Starting for 2000 in 7 in the air how scale draw a vertical line ③ in the spece axis. (3/3 in 3):
Supplex. Starting for 2000 in 7 in the intermediation of the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line ③ from this point to the left till crossing water in/out temperature (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).
Heating coil capacity. Prolong the line ④ up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water

in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line ઉ up to the scale representing the heating coil capacity (28.0 kW).

■ Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.35 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (3.8 kPa).




#### How to use water heater diagrams

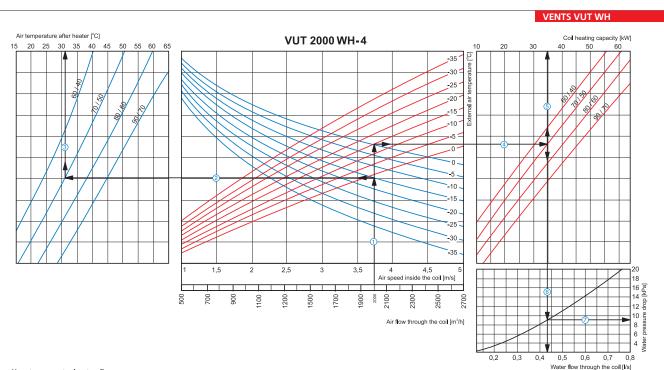
System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature = -15 °C. Water temperature (in/out) = 70/50 °C.

Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s. Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).

Heating coil capacity. Prolong the line <sup>①</sup> up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line <sup>④</sup> from this point to the right until it crosses water in/out temperature (e.g., 70/50°C), from here draw a vertical line <sup>⑤</sup> up to the scale representing the heating coil capacity (35.0 kW).
Water flow. Prolong the line <sup>⑤</sup> down to water flow axis at the bottom of the graphic <sup>⑥</sup> (0.431/s).
Water pressure drop. Draw the line <sup>⑦</sup> from the point where the line <sup>⑤</sup> crosses the black curve to the pressure drop axis. (9.0 kPa).

#### Hot water coil parameters:




#### How to use water heater diagrams

System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C.

Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. (3.75 m/s).

Suppred. Stating from 2000 m/ from the an how scale utaw a vertical line ③ to the supply air temperature (blue curve, e.g. -15°C); then draw a horizontal line ③ from this point to the left till crossing water in/out temperature (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).
 Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water

- in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line 🕥 up to the scale representing the heating coil capacity (28.0 kW).
- Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.35 l/s).
- Water pressure drop. Draw the line  $\bigcirc$  from the point where the line  $\bigcirc$  crosses the black curve to the pressure drop axis. (3.8 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 2000 m<sup>3</sup>/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C. Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s.

- Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🕲 from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).
- Heating coil capacity. Prolong the line ① up to the point wave retical nine ② to the spipping and endage state access on top of the graphic (1310).
  Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g., 15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 70/50 °C), from there draw a vertical line ⑤ up to the scale representing the heating coil capacity (35.0 kW).
  Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.431/s).
- Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (9.0 kPa).

# Series VENTS VUT EH EC

Series
VENTS VUT WH EC



Air handling units with the air capacity up to **600 m<sup>3</sup>/h** and recuperation efficiency up to 95% in the sound- and heat-insulated casing.



Air handling units with the air capacity up to **550 m<sup>3</sup>/h** and the recuperation efficiency up to 95% in the sound- and heat-insulated casing with the water heating coils.

#### Description

VUT EH EC air handling units with the electric heating battery and VUT WH EC with water heating coils are the complete ventilation units designed to provide both supply and exhaust ventilation, air filtration and cleaning as well as removal of contaminated exhaust air. The exhaust air energy is transferred to supply air through the plate heat exchanger. Applied in ventilation and conditioning systems for various premises requiring economic solution and controllable air exchange. EC-motors reduce energy consumption by 1.5-3 times and ensure high efficiency and low noise level at the same time. All the models are compatible with Ø 150, 160 and 200 mm round ducts.

#### Modifications

**VUT EH EC** – a range of compact Energy saving Air Handling Units (AHU) equipped with intake and exhaust centrifugal fans with EC motors, counter-

### flow heat recovery elements, electric heater and air filters.

**VUT WH EC** – a range of compact Energy saving Air Handling Units (AHU) equipped with supply and exhaust centrifugal fans with EC motors, counterflow heat recovery elements, water or glycol heating coils and air filters.

#### Casing

The casing is manufactured from aluminum-zinc compound with internal 25 mm mineral wool heatand sound- insulating layer.

#### Filter

Two incorporated G4 panel filters for extract air ventilation and F7 filters for supply air ventilation are supplied with the unit.

#### Fans

The double inlet impellers with forward curved blades are powered by high efficient electronically commutated (EC) direct current motors with external rotor. As of today, such motor type is the most advanced solution for energy saving. EC-motors are featured with high efficiency and the best control over the whole fan speed range. Premium efficiency (reaching 90%) is an absolute advantage of the electronically commutated motors.

#### Heat recovery

The units are equipped with the high efficient heat exchangers reaching up to 95%. VUT EH EC and VUT WH EC models are fitted with the counterflow heat exchangers made of polystyrene. The unit is equipped with the drain pan at the bottom of the heat exchanger for condensate drainage.



#### Heater

The electric heater (for the unit VUT EH) or the water heater (for the unit VUT WH) at outlet from the heat exchanger is designed for warming up of supply air up to the set level if heat recovery is not enough to attain the set supply air temperature. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. heat medium operating temperature 95°C.

#### Control and automation

The unit incorporates an integrated automation and control system with a multi-functional control panel with LCD display. The standard delivery set includes 10 m connection cable for connection to the remote control panel. The unit has the freezing protection function to prevent the heat exchanger freezing by means of actuating the bypass damper and controlling water heater. As the temperature sensor warns of the freezing danger, the bypass air damper is opened and the intake air is directed through the air duct beside the heat exchanger. As the heat exchanger is warmed the supply air temperature rises up to the set level while passing through the heater. Meanwhile the warm extract air warms up the heat exchanger. After the freezing danger is no longer imminent, the bypass damper shuts the bypass duct and the unit reverts to the standard operation mode.

#### VUT EH EC control and protection functions

 control from the control panel: switching on/off, speed selection, timer, faults;

- maintaining the set room temperature by the sensor on the control panel – smooth heating capacity control;
- three-speed fan speed control (low-mediumhigh);
- unit operation according to daily and week schedule (timer adjustable from the control panel);
   safe start-up/shutdown of the fans;

electric heater overheating protection by the temperature sensor installed in the supply air duct and by two overheating thermostats, one thermostat activated at 50°C with automatic reset and another thermostat activated at 90°C with manual reset. Blowing of the heating elements for heat removing at the end of the heating cycle;

filter clogging control by engine hours.

#### VUT WH EC control and protection functions

- control from the control panel: switching the unit on/off, room temperature display, fan speed selection (low/medium/high speed);
- each fan speed is 100% adjustable both for supply and exhaust fan during the system setup;

 maintaining supply air temperature set from the control panel by controlling the circulation pump and actuating the heat medium regulating valve;

 freezing protection of the water heating coils by the exhaust temperature sensor and the return heat medium temperature sensor;

safe start-up/ shutdown of the fans, warming up of the water heater before start-up; maintaining the set return heat medium temperature when the fan is off;

- actuating the external air dampers with a return spring;
- unit shut down at signal from the fire alarm system;

smooth bypass damper control in the bypassing mode to prevent the heat exchanger freezing.

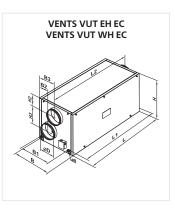
#### Mounting

The unit is designed for indoor mounting. While mounting the unit provide the correct condensate collection and drainage. Access for the unit servicing and filter cleaning is from the side panels.

#### Accessories

For attenuation of sound generated by the fan it is recommended to install the duct silencer (refer SR) from inside before the unit. For vibration absorbing it is recommended to install the flexible anti-vibration connectors (refer VVG) on both sides of the unit.

The VUT WH units are recommended to be equipped with automatic air dampers for the water heater freezing protection when the fans are off.

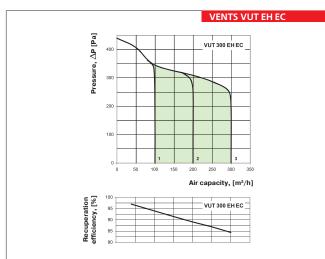

The mixing units USWK are recommended for smooth supply air temperature regulation in the units equipped with water heaters. The mixing unit USWK with three-way heat medium regulating valve and circulation pump provides smooth heating capacity regulation and minimizes the water heater freezing danger.

| Туре            | G4 replaceable filter (panel filter) | F7 replaceable filter (panel filter) |  |  |  |  |  |  |  |  |  |
|-----------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|
| VUT 300-1 EH EC |                                      |                                      |  |  |  |  |  |  |  |  |  |
| VUT 300-2 EH EC |                                      |                                      |  |  |  |  |  |  |  |  |  |
| VUT 400 EH EC   |                                      |                                      |  |  |  |  |  |  |  |  |  |
| VUT 600 EH EC   | SF VUT 300-600 EH/WH G4              | SF VUT 300-600 EH/WH F7              |  |  |  |  |  |  |  |  |  |
| VUT 300-1 WH EC | SF V01 300-000 En/WH G4              | SF VOT 300-600 EH/WH F7              |  |  |  |  |  |  |  |  |  |
| VUT 300-2 WH EC |                                      |                                      |  |  |  |  |  |  |  |  |  |
| VUT 400 WH EC   |                                      |                                      |  |  |  |  |  |  |  |  |  |
| VUT 600 WH EC   |                                      |                                      |  |  |  |  |  |  |  |  |  |

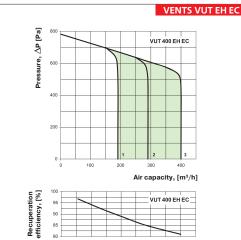
#### Accessories for air handling units:

#### Unit overall dimensions:

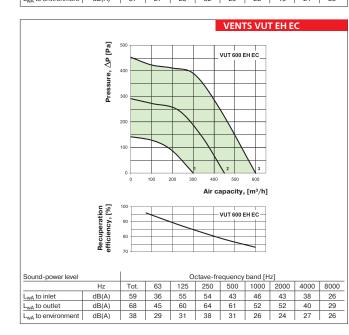
| Turpo           |     | Dimensions, [mm] |     |     |     |     |     |     |      |      |      |
|-----------------|-----|------------------|-----|-----|-----|-----|-----|-----|------|------|------|
| Туре            | ØD  | В                | B1  | B2  | B3  | Н   | H2  | H3  | L    | L1   | L2   |
| VUT 300-1 EH EC | 149 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 300-2 EH EC | 159 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 400 EH EC   | 199 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 600 EH EC   | 199 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 300-1 WH EC | 149 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 300-2 WH EC | 159 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 400 WH EC   | 199 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |
| VUT 600 WH EC   | 199 | 500              | 403 | 161 | 249 | 555 | 127 | 231 | 1092 | 1137 | 1198 |

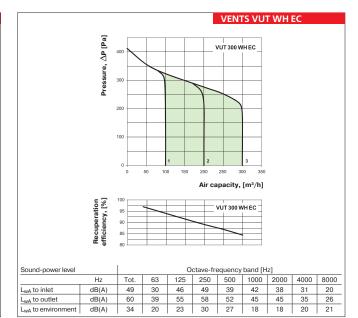


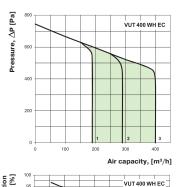

#### **Technical data:**


|                                    | VUT 300-1 EH EC | VUT 300-2 EH EC | VUT 300-1 WH EC | VUT 300-2 WH EC |  |  |  |
|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| Unit supply voltage [V / 50 Hz]    |                 | 1~              | 230             |                 |  |  |  |
| Maximum fan power [W]              |                 | 2pcs            | . x 70          |                 |  |  |  |
| Fan current [A]                    |                 | 2pcs. x 0,60    |                 |                 |  |  |  |
| Electric heater capacity [kW]      | 3,0 -           |                 |                 |                 |  |  |  |
| Electric heater current [A]        | 13,0 -          |                 |                 |                 |  |  |  |
| Number of water (glycol) coil rows | - 2             |                 |                 |                 |  |  |  |
| Total power of the unit [kW]       | 3,              | 14              | 0,              | 14              |  |  |  |
| Total current of the unit [A]      | 14              | ,2              | 1               | ,2              |  |  |  |
| Air capacity [m <sup>3</sup> /h]   | 300             |                 |                 |                 |  |  |  |
| RPM                                | 1 1380          |                 |                 |                 |  |  |  |
| Noise level at 3m [dB[A]]          | ] 24-45 24-45   |                 |                 |                 |  |  |  |
| Operating temperature [°C]         |                 | -25 up          | to +60          |                 |  |  |  |
| Casing material                    |                 | alu             | zink            |                 |  |  |  |
| Insulation                         |                 | 25 mm mi        | neral wool      |                 |  |  |  |
| Filter: exhaust                    |                 | G               | i4              |                 |  |  |  |
| intake                             |                 | F7 (1           | EU7)            |                 |  |  |  |
| Duct connection diameter, [mm]     | Ø150            | Ø160            | Ø150            | Ø 160           |  |  |  |
| Weight, [kg]                       | 3               | 8               | 4               | -0              |  |  |  |
| Recuperation efficiency            | ncy up to 90%   |                 |                 |                 |  |  |  |
| Heat exchanger type                |                 | counte          | er-flow         |                 |  |  |  |
| Heat exchanger material            |                 | polys           | tyrene          |                 |  |  |  |

#### **Technical data:**


|                                    | VUT 400 EH EC | VUT 400 WH EC | VUT 600 EH EC | VUT 600 WH EC |  |
|------------------------------------|---------------|---------------|---------------|---------------|--|
| Unit supply voltage [V / 50 Hz]    | 1~            | 230           | 1~ 230        |               |  |
| Maximum fan power [W]              | 2pcs.         | x 175         | 2pcs. x 175   |               |  |
| Fan current [A]                    | 2pcs          | . x 1,3       | 2pcs.         | x 1,3         |  |
| Electric heater capacity [kW]      | 4,0           | -             | 4,0           | -             |  |
| Electric heater current [A]        | 17,4          | -             | 17,4          | -             |  |
| Number of water (glycol) coil rows | -             | 2             | -             | 2             |  |
| Total power of the unit [kW]       | 4,35          | 0,35          | 4,35          | 0,35          |  |
| Total current of the unit [A]      | 20,0          | 2,6           | 20,0          | 2,6           |  |
| Air capacity [m <sup>3</sup> /h]   | 400           |               | 600           | 550           |  |
| RPM                                | 1340          |               | 21            | 50            |  |
| Noise level at 3m [dB[A]]          | 28-47         | 28-47         | 28-47         | 28-47         |  |
| Operating temperature [°C]         | -25 up        | to +60        | -25 up to +60 |               |  |
| Casing material                    | alu           | zink          | aluz          | zink          |  |
| Insulation                         | 25 mm mi      | ineral wool   | 25 mm mi      | neral wool    |  |
| Filter: exhaust                    | G             | <b>3</b> 4    | G             | i4            |  |
| intake                             | F7 (          | EU7)          | F7 (I         | EU7)          |  |
| Duct connection diameter, [mm]     | Ø2            | 200           | Ø2            | 200           |  |
| Weight, [kg]                       | 38            | 40            | 38            | 40            |  |
| Recuperation efficiency            | up to         | 90%           | up to         | 90%           |  |
| Heat exchanger type                | count         | er-flow       | counter-flow  |               |  |
| Heat exchanger material            | polys         | tyrene        | polystyrene   |               |  |

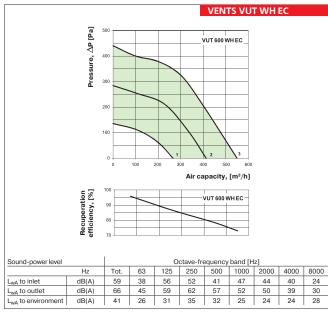




| Sound-power level              | ound-power level Octave-frequency band [Hz] |    |     |     |     |      |      |      |      |    |
|--------------------------------|---------------------------------------------|----|-----|-----|-----|------|------|------|------|----|
|                                | Tot.                                        | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |    |
| L <sub>wA</sub> to inlet       | dB(A)                                       | 51 | 30  | 48  | 46  | 37   | 42   | 36   | 32   | 21 |
| L <sub>wA</sub> to outlet      | dB(A)                                       | 60 | 41  | 54  | 57  | 55   | 44   | 46   | 35   | 24 |
| L <sub>wA</sub> to environment | dB(A)                                       | 33 | 23  | 23  | 32  | 27   | 19   | 15   | 19   | 18 |

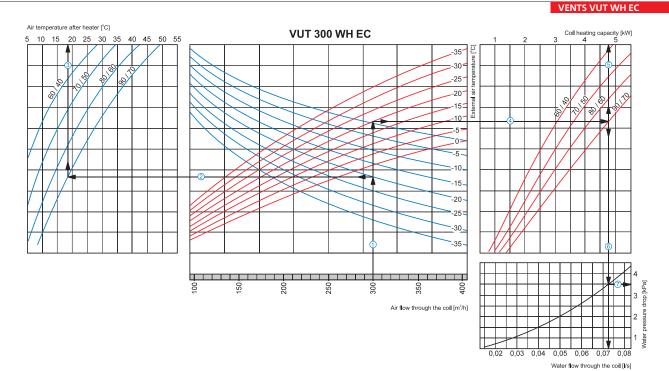


| Sound-power level Octave-frequency band [Hz] |       |      |    |     |     |     |      |      |      |      |
|----------------------------------------------|-------|------|----|-----|-----|-----|------|------|------|------|
|                                              | Hz    | Tot. | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet                     | dB(A) | 54   | 32 | 50  | 51  | 40  | 43   | 40   | 37   | 25   |
| L <sub>wA</sub> to outlet                    | dB(A) | 65   | 44 | 57  | 58  | 54  | 51   | 48   | 38   | 27   |
| L <sub>wA</sub> to environment               | dB(A) | 37   | 27 | 28  | 32  | 29  | 22   | 19   | 21   | 23   |









VENTS VUT WH EC

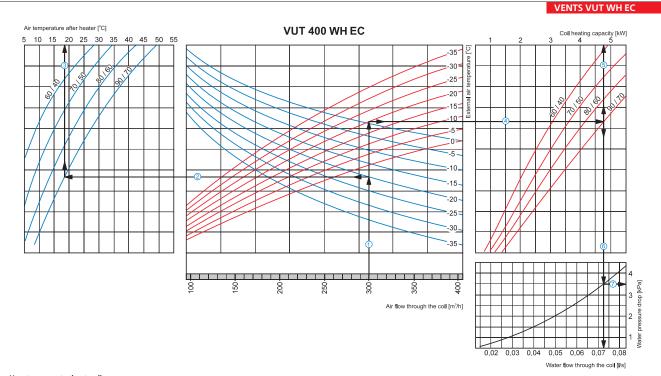
| 9 C. | 95 - | ~     |        |        |   | <br>VUT 400 WH |  |  |  |  |
|------|------|-------|--------|--------|---|----------------|--|--|--|--|
| S is |      |       | $\sim$ | -      |   |                |  |  |  |  |
| a s  | 90 - |       |        | $\sim$ | - |                |  |  |  |  |
| icie | 85   |       |        |        |   |                |  |  |  |  |
| å ii | 80   | <br>- | -      |        |   | <br>_          |  |  |  |  |

| Sound-power level              |       |      | Octave-frequency band [Hz] |     |     |     |      |      |      |      |
|--------------------------------|-------|------|----------------------------|-----|-----|-----|------|------|------|------|
|                                | Hz    | Tot. | 63                         | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| L <sub>wA</sub> to inlet       | dB(A) | 56   | 33                         | 51  | 50  | 40  | 44   | 41   | 37   | 22   |
| L <sub>wA</sub> to outlet      | dB(A) | 62   | 42                         | 57  | 58  | 58  | 48   | 49   | 36   | 26   |
| L <sub>wA</sub> to environment | dB(A) | 36   | 25                         | 27  | 34  | 29  | 20   | 19   | 25   | 23   |



#### Hot water coil parameters:



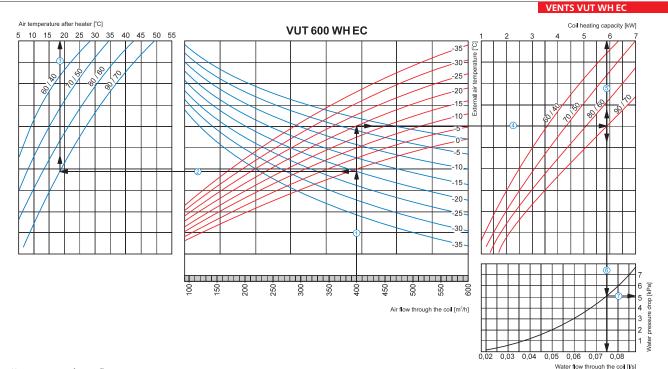

#### How to use water heater diagrams

System Parameters: Air flow = 300 m<sup>3</sup>/h. Outside air temperature =-20°C. Water temperature (in/out) = 90/70 °C.

Supply air temperature. prolong the line of air flow (e.g., 300 m<sup>3</sup>/h) 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line <sup>3</sup> to the supply air temperature axis on top of the graphic (+18°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 90/70 °C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (4.75 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.072 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (3.5 kPa)




#### How to use water heater diagrams

System Parameters: Air flow = 300 m<sup>3</sup>/h. Outside air temperature =-20°C. Water temperature (in/out) = 90/70 °C.

- Supply air temperature. prolong the line of air flow (e.g., 300 m<sup>3</sup>/h) 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line 🖉 from this point to
- Supply an emperature proofing the me of an how (e.g., 500 m/m) or proof the point draw a vertical line <sup>(3)</sup> to the supply an emperature (bue curve (e.g., 20°C), then draw a horizontal line <sup>(3)</sup> to the point draw a vertical line <sup>(3)</sup> to the supply are temperature to the supply are temperature with an horizontal line <sup>(3)</sup> to the right until it crosses water in/out temperature (e.g., 20°C), then draw a horizontal line <sup>(3)</sup> to the point draw a vertical line <sup>(3)</sup> to the supply are temperature was on top of the graphic (+18°C).
  Heating coil capacity. Prolong the line <sup>(1)</sup> up to the point where it crosses the outside air temperature (e.g., -20°C), red curve) and draw a horizontal line <sup>(4)</sup> from this point to the right until it crosses water in/out temperature (e.g., 90/70 °C), from here draw a vertical line <sup>(5)</sup> up to the scale representing the heating coil capacity (4.75 kW).
  Water flow. Prolong the line <sup>(5)</sup> down to water flow axis at the bottom of the graphic <sup>(6)</sup> (0.072 l/s).
- Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (3.5 kPa)

#### Hot water coil parameters:



#### How to use water heater diagrams

System Parameters: Air flow = 400 m<sup>3</sup>/h. Outside air temperature =-20°C. Water temperature (in/out) = 90/70 °C Supply air temperature. prolong the line of air flow (e.g., 400 m<sup>3</sup>/h) ① up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+18°C). Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water

in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (5.9 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.075 l/s).
Water pressure drop. Draw the line (7) from the point where the line (6) crosses the black curve to the pressure drop axis. (5.1 kPa).



AIR HANDLING UNIT WITH HEAT RECOVERY SERIES

# Series VENTS VUT PE EC



Ceiling mounted energy saving Air Handling Units (AHU) with the air capacity up to **4000 m<sup>3</sup>/h** and the heat exchanger efficiency up to 90% in the sound- and heat-insulated casing with the electric heater.

# SAS908 control panel

Series

VENTS VUT PW EC

Ceiling mounted Energy saving Air Handling Units (AHU) with the air capacity up to **3800 m<sup>3</sup>/h** and the heat exchanger efficiency up to 90% in the sound- and heat-insulated casing with the water heater.

#### Description

Air handling unit VUT PE EC with the electric heater and VUT PW EC with the water heating coils are the complete ventilation units designed to provide both both supply and exhaust ventilation with air filtration and extract air removal. The exhaust air energy is used to heat up the supply fresh air through the plate heat exchanger.

Designed for ventilation and conditioning systems for various premises requiring economic solution and controllable air exchange. EC-motors reduce energy consumption by 1.5-3 times and ensure high efficiency and low noise level at the same time. All the models are compatible with 160 (150), 200, 250, 315  $\mu$  400 mm round ducts.

#### Modifications

**VUT PE EC** – models with the electric heater. **VUT PW EC** – models with water heating coils.

#### Casing

The casing is made of aluzink with 20 mm mineral

wool internal heat and sound-insulating layer for VUT PE/PW 350, 600, 1000 units and 25 mm for VUT PE/PW 200, 3000 units.

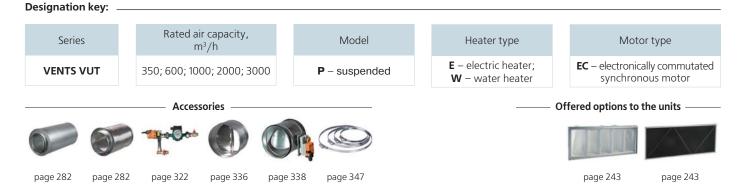
#### Filter

Two incorporated G4 panel filters for supply and extract air ventilation are supplied with the unit.

#### Motor

VUT PE/PW EC units are equipped with exhaust and supply fans with backward curved blades powered by energy-saving direct current Electronically Commutated (EC) motors. These motors give up to 50% energy consumption economy as compared to standard AC motors. EC motors have built-in thermal overheating protection with automatic restart and enable smooth speed regulation from 0 to 100%. The ball bearings used with the EC motors are designed for at least 40 000 hours operation and are maintenance-free. Premium efficiency reaching 90% is an absolute privilege of the electronically commutated motor.

#### Heat exchanger


VUT 350, 600 and 1000 models are fitted with the counter-flow heat recovery element made of polystyrene. VUT 2000 and 3000 models are manufactured with the cross-flow air-to-air plate heat exchanger made of aluminum. All the units are equipped with the drain pan for condensate drainage.

#### Heater

The electric heater (for the unit VUT EH) or the water heater (for the unit VUT WH) at outlet from the heat exchanger is designed for warming up of supply air up to the set level if heat recovery is not enough to attain the set supply air temperature. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. heat medium operating temperature 95°C.

#### Automation

The unit incorporates an integrated automation and control system with a multi-functional control panel with LCD display.



The standard delivery set includes 10 m connection

cable for connection to the remote control panel. The unit has the freezing protection function to prevent the heat exchanger freezing by means of actuating the bypass damper and controlling water heater. As the temperature sensor warns of the freezing danger, the bypass air damper is opened and the intake air is directed through the air duct beside the heat exchanger. As the heat exchanger is warmed the supply air temperature rises up to the set level while passing through the heater. Meanwhile the warm extract air warms up the heat exchanger. After the freezing danger is no longer imminent, the bypass damper shuts the bypass duct and the unit reverts to the standard operation mode

#### VUT PE EC control and protection functions

• control from the control panel: switching the unit on/off, room temperature display, fan speed selection (low/medium/high speed);

• each fan speed is 100% adjustable both for supply and exhaust fan during the system setup;

• maintaining the set room temperature by the sensor on the control panel - smooth heating capacity control;

safe start-up/shutdown of the fans;

Unit overall dimensions:

• electric heater overheating protection by the temperature sensor installed in the supply air duct and by two overheating thermostats, one thermostat activated at 50°C with automatic reset and another thermostat activated at 90°C with manual reset. Blowing of the heating elements for heat removing at the end of the heating cycle.

#### General description of VUT PW EC control system

control from the control panel: switching the unit on/off, room temperature display, fan speed selection (low/medium/high speed);

each fan speed is 100% adjustable both for supply and exhaust fan during the system setup;

maintaining supply air temperature set from the control panel by controlling the circulation pump and actuating the heat medium regulating valve;

freezing protection of the water heating coils by the exhaust temperature sensor and the return heat medium temperature sensor;

> safe start-up/ shutdown of the fans, warming up of the water heater before start-up; maintaining the set return heat medium temperature when the fan is off;

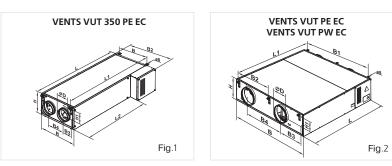
• actuating the external air dampers with a return spring;

• unit shut down at signal from the fire alarm system:

smooth bypass damper control in the bypassing mode to prevent the heat exchanger freezing.

#### Mounting

The unit is designed for indoor mounting. While mounting the unit ensure its correct position to enable condensate collection and drainage. Access for servicing and cleaning of the filter is from the right or left side panel for the dimension types 350, 600 and 1000 and from the bottom for the dimension types 2000 and 3000.


#### Accessories

For attenuation of sound generated by the fan it is recommended to install the duct silencer (refer SR) from inside before the unit. For vibration absorbing it is recommended to install the flexible anti-vibration connectors (refer VVG) on both sides of the unit.

To disable uncontrollable air flow when the fans are off and to prevent the water heater freezing the units are recommended to be equipped with automatic air dampers.

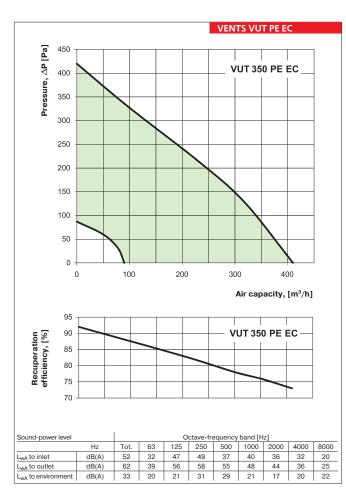
The mixing units USWK are recommended for smooth supply air temperature regulation in the units equipped with water heaters. The mixing unit USWK with three-way heat medium regulating valve and circulation pump provides smooth heating capacity regulation and minimizes the water heater freezing danger.

| Turne          |     |      |      |       | Dim   | ensions, [ | mm] |     |      |      |     | Figure |
|----------------|-----|------|------|-------|-------|------------|-----|-----|------|------|-----|--------|
| Туре           | ØD  | В    | B1   | B2    | B3    | B4         | Н   | H1  | L    | L1   | L2  | Nº     |
| VUT 350 PE EC  | 160 | 485  | 415  | 596   | 132,5 | 220        | 285 | 130 | 1238 | 1286 | 948 | 1      |
| VUT 600 PE EC  | 199 | 827  | 711  | -     | 294   | 345        | 283 | 120 | 1238 | 1286 | -   | 2      |
| VUT 1000 PE EC | 249 | 1350 | 1215 | 607,5 | 430   | 655        | 317 | 143 | 1346 | 1395 | -   | 2      |
| VUT 2000 PE EC | 314 | 1050 | 915  | 457,5 | 247   | 575        | 750 | 375 | 1360 | 1408 | -   | 2      |
| VUT 3000 PE EC | 399 | 1265 | 1130 | 565   | 297   | 632,5      | 830 | 415 | 1595 | 1643 | -   | 2      |
| VUT 600 PW EC  | 199 | 827  | 711  | -     | 294   | 345        | 283 | 120 | 1238 | 1286 | -   | 2      |
| VUT 1000 PW EC | 249 | 1350 | 1215 | 607,5 | 430   | 655        | 317 | 143 | 1346 | 1395 | -   | 2      |
| VUT 2000 PW EC | 314 | 1050 | 915  | 457,5 | 247   | 575        | 750 | 375 | 1360 | 1408 | -   | 2      |
| VUT 3000 PW EC | 399 | 1265 | 1130 | 565   | 297   | 632,5      | 830 | 415 | 1595 | 1643 | -   | 2      |



#### Technical data:

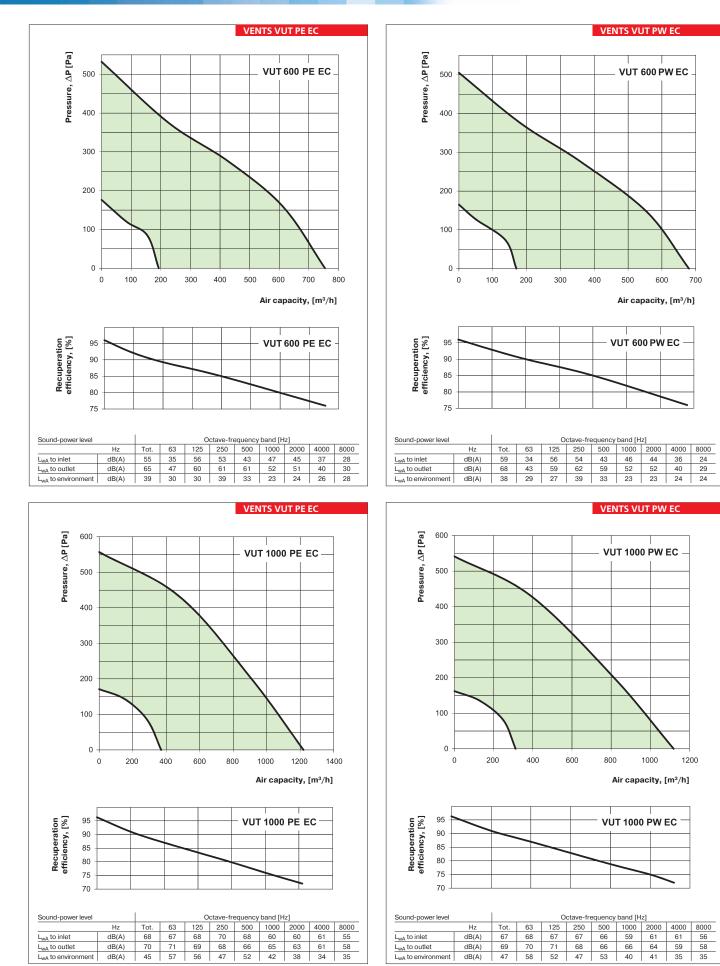
|                                                              | <b>VUT 350 PE EC</b> | <b>VUT 600 PE EC</b> | VUT 600 PW EC |  |  |
|--------------------------------------------------------------|----------------------|----------------------|---------------|--|--|
| Unit supply voltage [V / 50 Hz]                              | 1~ 230               | 1~2                  | 230           |  |  |
| Maximum fan power [W]                                        | 2pcs. x 51           | 2pcs. x 100          |               |  |  |
| Fan current [A]<br>(Supply voltage of the fan with EC motor) | 2pcs. x 1,2 (48V)    | 2,4 (48V)            |               |  |  |
| Electric heater capacity [kW]                                | 1,5                  | 2,0                  | -             |  |  |
| Electric heater current [A]                                  | 6,5                  | 8,7                  | -             |  |  |
| Number of water (glycol) coil rows                           | -                    | -                    | 2             |  |  |
| Total power of the unit [kW]                                 | 1,502                | 2,20                 | 0,20          |  |  |
| Total current of the unit [A]                                | 7,05                 | 9,76                 | 1,06          |  |  |
| Air capacity [m³/h]                                          | 400                  | 700                  | 600           |  |  |
| RPM                                                          | 2950                 | 3150                 |               |  |  |
| Noise level at 3m [dB[A]]                                    | 48                   | 53                   |               |  |  |
| Operating temperature [°C]                                   | -25 up to +40        | -25 up to +60        |               |  |  |
| Casing material                                              | aluzink              | aluz                 | zink          |  |  |
| Insulation                                                   | 20 mm mineral wool   | 20 mm mi             | neral wool    |  |  |
| Filter: exhaust                                              | G4                   | G                    | 4             |  |  |
| intake                                                       | G4                   | G                    | 4             |  |  |
| Duct connection diameter, [mm]                               | Ø160 (150)*          | Ø2                   | 00            |  |  |
| Weight, [kg]                                                 | 65                   | 75                   | 77            |  |  |
| Recuperation efficiency                                      | up to 90%            | up to                | 90%           |  |  |
| Heat exchanger type                                          | counter-flow         | counte               | er-flow       |  |  |
| Heat exchanger material                                      | polystyrene          | polyst               | yrene         |  |  |

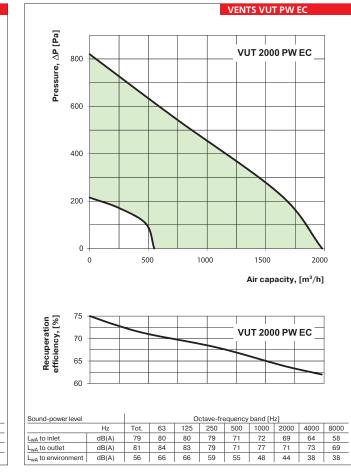

\* in case of reducer Ø 160/150 mm.

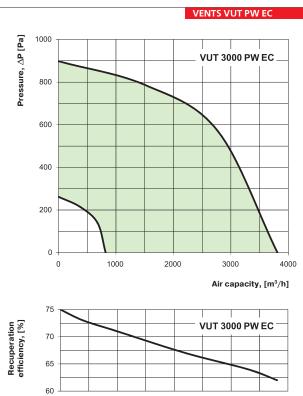
#### Technical data:

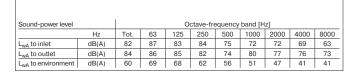
|                                                              | <b>VUT 1000 PE EC</b> | <b>VUT 1000 PW EC</b> | <b>VUT 2000 PE EC</b> | <b>VUT 2000 PW EC</b> |  |
|--------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Unit supply voltage [V / 50 Hz]                              | 1~                    | 230                   | 3~ 400                | 1~ 230                |  |
| Maximum fan power [W]                                        | 2pcs.                 | x 135                 | 2pcs. x 420           |                       |  |
| Fan current [A]<br>(Supply voltage of the fan with EC motor) | 2pcs. x 2             | 2,8 (48V)             | 2pcs. x 2,5 (230V)    |                       |  |
| Electric heater capacity [kW]                                | 3,3                   | -                     | 12,0                  | -                     |  |
| Electric heater current [A]                                  | 14,3                  | -                     | 17,4                  | -                     |  |
| Number of water (glycol) coil rows                           | -                     | 4                     | -                     | 2                     |  |
| Total power of the unit [kW]                                 | 3,57                  | 0,27                  | 12,84                 | 0,84                  |  |
| Total current of the unit [A]                                | 15,53                 | 1,23                  | 22,4                  | 5                     |  |
| Air capacity [m³/h]                                          | 1100                  | 1000                  | 2000                  | 1950                  |  |
| RPM                                                          | 26                    | 45                    | 2920                  |                       |  |
| Noise level at 3m [dB[A]]                                    | 5                     | 2                     | 58                    |                       |  |
| Operating temperature [°C]                                   | -25 up                | to +60                | -25 up to +40         |                       |  |
| Casing material                                              | alu                   | zink                  | aluzink               |                       |  |
| Insulation                                                   | 20 mm mi              | neral wool            | 25 mm mi              | neral wool            |  |
| Filter: exhaust                                              | G                     | 64                    | G                     | i4                    |  |
| intake                                                       | G                     | 4                     | G                     | i4                    |  |
| Duct connection diameter, [mm]                               | Ø2                    | 250                   | ØЗ                    | 15                    |  |
| Weight, [kg]                                                 | 95                    | 98                    | 190                   | 194                   |  |
| Recuperation efficiency                                      | up to                 | 90%                   | up to                 | 75%                   |  |
| Heat exchanger type                                          | counte                | er-flow               | cross-flow            |                       |  |
| Heat exchanger material                                      | polyst                | tyrene                | alum                  | inum                  |  |

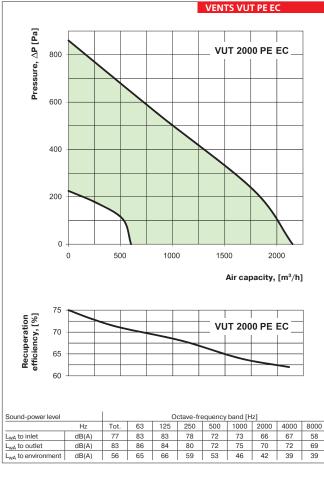
#### **Technical data:**

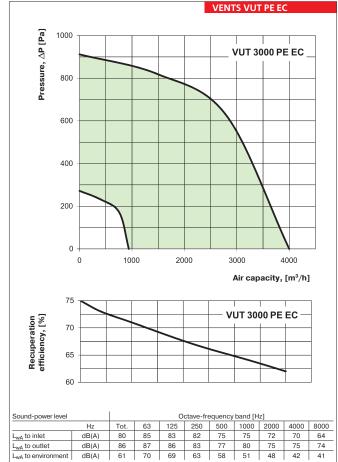

|                                                              | <b>VUT 3000 PE EC</b> | <b>VUT 3000 PW EC</b> |  |  |  |  |
|--------------------------------------------------------------|-----------------------|-----------------------|--|--|--|--|
| Unit supply voltage [V / 50 Hz]                              | 3~-                   | 400                   |  |  |  |  |
| Maximum fan power [W]                                        | 2pcs.                 | x 990                 |  |  |  |  |
| Fan current [A]<br>(Supply voltage of the fan with EC motor) | 2pcs. x 1,7 (400V)    |                       |  |  |  |  |
| Electric heater capacity [kW]                                | - 21,0                |                       |  |  |  |  |
| Electric heater current [A]                                  | 30,0                  | -                     |  |  |  |  |
| Number of water (glycol) coil rows                           | -                     | 2                     |  |  |  |  |
| Total power of the unit [kW]                                 | 23,0                  | 1,99                  |  |  |  |  |
| Total current of the unit [A]                                | 33,4                  | 3,4                   |  |  |  |  |
| Air capacity [m <sup>3</sup> /h]                             | 4000                  | 3800                  |  |  |  |  |
| RPM                                                          | 2580                  |                       |  |  |  |  |
| Noise level at 3m [dB[A]]                                    | 59                    |                       |  |  |  |  |
| Operating temperature [°C]                                   | -25 up to +50         |                       |  |  |  |  |
| Casing material                                              | alu                   | zink                  |  |  |  |  |
| Insulation                                                   | 25 mm mi              | neral wool            |  |  |  |  |
| Filter: exhaust                                              | G                     | 64                    |  |  |  |  |
| intake                                                       | G                     | i4                    |  |  |  |  |
| Duct connection diameter, [mm]                               | Ø4                    | 00                    |  |  |  |  |
| Weight, [kg]                                                 | 290                   | 295                   |  |  |  |  |
| Recuperation efficiency                                      | up to                 | 75%                   |  |  |  |  |
| Heat exchanger type                                          | cross                 | s-flow                |  |  |  |  |
| Heat exchanger material                                      | alum                  | inum                  |  |  |  |  |
|                                                              |                       |                       |  |  |  |  |





#### Accessories to air handling units:

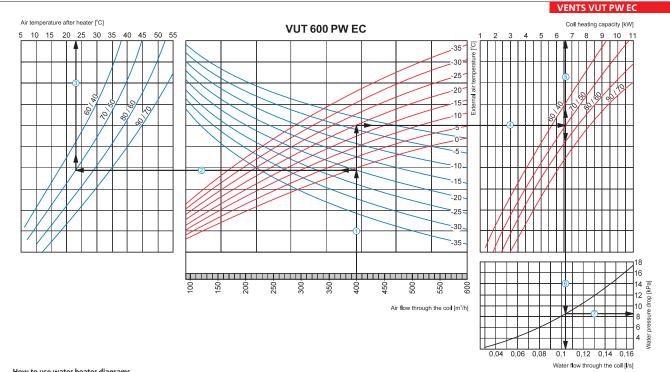

| Turpo          | Replace              | able filter          |  |  |  |  |
|----------------|----------------------|----------------------|--|--|--|--|
| Туре           | Intake (pocket type) | Exhaust (panel type) |  |  |  |  |
| VUT 350 PE EC  | SFK 350 PE G4        | SF 350 PE G4         |  |  |  |  |
| VUT 600 PE EC  | SFK 600 PE/PW G4     | SF 600 PE/PW G4      |  |  |  |  |
| VUT 1000 PE EC | SFK 1000 PE/PW G4    | SF 1000 PE/PW G4     |  |  |  |  |
| VUT 2000 PE EC | SF 2000 PE/PW G4     |                      |  |  |  |  |
| VUT 3000 PE EC | SF 3000              | PE/PW G4             |  |  |  |  |
| VUT 600 PW EC  | SFK 600 PE/PW G4     | SF 600 PE/PW G4      |  |  |  |  |
| VUT 1000 PW EC | SFK 1000 PE/PW G4    | SF 1000 PE/PW G4     |  |  |  |  |
| VUT 2000 PW EC | SF 2000              | PE/PW G4             |  |  |  |  |
| VUT 3000 PW EC | SF 3000              | PE/PW G4             |  |  |  |  |


# AIR HANDLING UNIT WITH VENTS HEAT RECOVERY SERIES PW EC







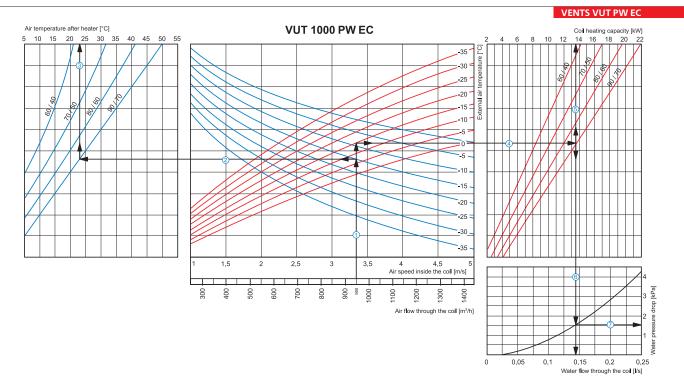








AIR HANDLING UNIT WITH HEAT RECOVERY SERIES

#### Hot water coil parameters:



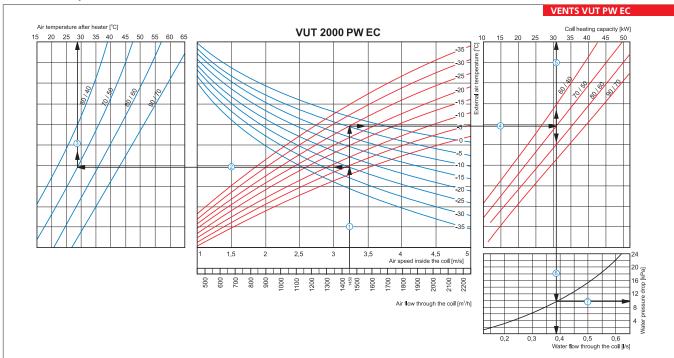

#### How to use water heater diagrams

System Parameters: Air flow = 400 m<sup>3</sup>/h. Outside air temperature =-20°C. Water temperature (in/out) = 70/50 °C. Supply air temperature. prolong the line of air flow (e.g., 400 m<sup>3</sup>/h) ① up to the point where it crosses the outside air temperature (blue curve, e.g. -20°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature as on top of the graphic (+23°C).

• Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (6.6 kW).

Water flow. Prolong the line ③ down to water flow axis at the bottom of the graphic ⑥ (0.105 l/s).
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (8.5 kPa).

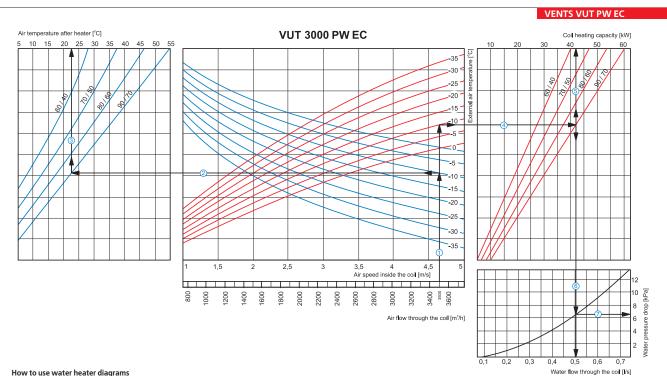



#### How to use water heater diagrams

Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line 🕘 from this point to the right to the intersection of water in /out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (13.5 kW).
Water flow. Prolong the line (6) down to water flow axis at the bottom of the graphic (0.14 l/s).
Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (1.5 kPa).


#### Hot water coil parameters:



#### How to use water heater diagrams

System Parameters: Air flow = 1450 m<sup>3</sup>/h. Outside air temperature =-25°C. Water temperature (in/out) = 70/50 °C.

- Air Speed. Starting from 1450 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.2 m/s.
  Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -25°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+28°C).
- = Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. 25°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (31.0 kW).
- Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.38 l/s).
- Water pressure drop. Draw the line  $\overline{O}$  from the point where the line 6 crosses the black curve to the pressure drop axis. (9.8 kPa).



#### How to use water heater diagrams

System Parameters: Air flow = 3500 m<sup>3</sup>/h. Outside air temperature =-10°C. Water temperature (in/out) = 90/70 °C.

Air Speed. Starting from 3500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.65 m/s.

**=** Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -10°C); then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22,5°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -10°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 90/70 °C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (42.0 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.5 1/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (6.5 kPa).

AIR HANDLING UNIT WITH HEAT RECOVERY SERIES

# Series VENTS VUT R EH EC



# Series VENTS VUT R WH EC



Air handling units with air capacity up to **900 m<sup>3</sup>/h** in sound- and heatinsulated casing with integrated electric heater. Recuperating efficiency up to 85%.

#### Description

The air handling units VUT R EH with an integrated electric heater or VUT R WH with an integrated water heater are the ready-to-use ventilation units that provide air filtering, supply of fresh air to the premises and exhaust of stale extract air from the premises with synchronous thermal energy transfer from extract air flow to the supply air flow through the rotary heat exchanger. The VUT R models are used in ventilation and air conditioning systems installed in various premises that require reasonable energy saving solutions and controlled ventilation systems. EC motors reduce energy demand by 1.5-3 times and ensure high performance and low noise operation. All the models are designed for connection to Ø 160 and 250 mm round air ducts.

#### Modifications

**VUT R EH** - models with electric heater, fans with EC motors, rotary heat exchanger.

**VUT R WH** - models with water (glycol) heater, fans with EC motors, rotary heat exchanger.

Air handling units with heat recovery

with air capacity up to **900 m<sup>3</sup>/h** 

in sound- and heat insulated casing

with integrated water heater.

Recuperating efficiency up to 85%.

#### Casing

The casing consists of a frame and three-layer 20 mm thick panels made of AlZn plate internally filled with mineral cotton for reliable sound- and thermal insulation.

Due to the specially designed removable side panels the unit requires little space for servicing and accessing to all the unit components.

#### Filter

G4/F7 supply and exhaust filters prevent dirt ingress into the the room and are the essential components that protect that unit elements against soiling.

#### Motor

The units are equipped with high-efficient direct current electronically-commutated (EC) motors with external rotor and backward curved impeller blades. Such motor design is the most progressive solution in energy saving. EC motors are featured with high performance and well controllable speed range. Premium efficiency reaching 90% is a definite advantage of electronically commutated motors.

#### Rotary heat exchanger

The rotary heat exchanger is a rotating short cylinder internally filled with corrugated aluminium band placed in such a way as to ensure passing of the supply and exhaust air streams through the heat exchanger but to exclude their direct contact. While rotating of the heat exchanger the band inside of it first comes in contact with supply air stream and then with exhaust air stream. Consequently the aluminium band is heated up and cooled down by turns and recuperates the thermal energy and moisture contained in the warm extract air to cold intake air flow from outside. The advantages of the rotary heat exchanger as compared to the plate air-to-air heat exchangers include higher efficiency, maintaining comfortable indoor humidity



level and extremely low freezing danger (it is nearly zero for rated temperature and humidity conditions).

#### Heater

Electric heaters (VUT R EH EC models) or water heaters (VUT R WH models) are used for application of the air handling unit at low outdoor temperatures. If heat recovery is not sufficient to reach the set supply air temperature, the air heater is turned automatically on and warms up the supply air flow. The heaters are equipped with protecting devices to ensure safe and reliable operation of the unit. The water heaters are designed for max. operating pressure 1.0 MPa (10 bar) and max. heat medium operating temperature 95°C.

#### Control and automation

The unit is equipped with a built-in automation system and a multi-functional control panel with a graphic indicator. The standard delivery set includes a 10 m cable for connection to the control panel.

#### VUT R EH EC automation functions:

 turning the unit on and off according to set parameters;

week-scheduled operation;

• setting of the required supply air temperature and air flow with an external control panel;

- operation according to timer settings;
- regulation of air control dampers;
- filter clogging degree;

 electric heating elements overheating protection (operating and emergency thermostats);
 RS485 interface;

#### VUT R WH EC automation functions:

 turning the unit on and off according to set parameters;

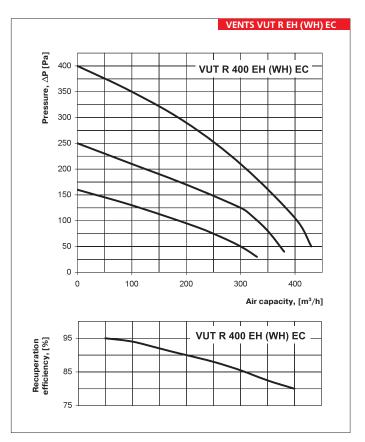
- week-scheduled operation;
- setting of the required supply air temperature and air flow with an external control panel;
- operation according to timer settings;
- regulation of air control dampers;
- filter clogging degree;

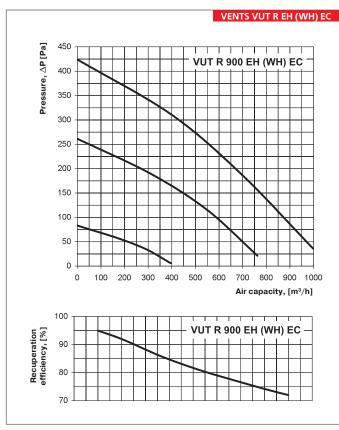
#### RS485 interface;

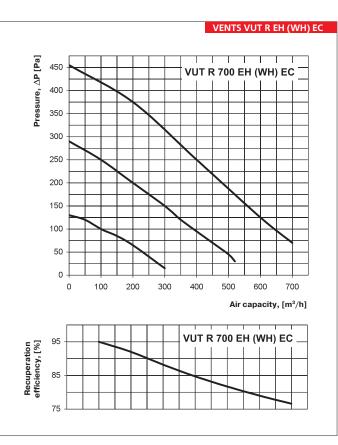
• supply air temperature control by means of actuating the three-way valve;

circulating pump control;

▶ water (glycol) heater freezing protection based on air temperature sensor after the heater and on return medium thermostat.


#### Mounting


The air handling unit is suitable for mounting on a level surface, to the ceiling or to wall with mounting brackets. Service access is from the side panel on the left (along supply air stream). In the unit VUTR WH EC the water heater pipes are leaded outside to the service side.


The air handling unit is suitable for mounting on a level surface, to the ceiling or to wall with mounting brackets. Service access is on side of service panels of the side panel on the left (along supply air stream). In the unit VUTR WH EC the water heater pipes are leaded outside to the service side on the left from supply air side.

#### **Technical data**

|                                                                         | VUT R<br>400 EH EC | VUT R<br>400 WH EC | VUT R<br>700 EH EC | VUT R<br>700 WH EC | VUT R<br>900 EH EC | VUT R<br>900 WH EC |
|-------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Unit power supply, V/50 Hz                                              | 1~                 | 230                | 1~ 230             |                    | 3~ 380             | 1~ 230             |
| Max. fan power, W                                                       | 2 pcs. x 95        |                    | 2 pcs. x 105       |                    | 2 pcs. x 135       |                    |
| Fan current, A                                                          | 2 pcs. x 0,46      |                    | 2 pcs. x 0,5       |                    | 2 pcs.             | x 0,65             |
| Electric heater power, kW                                               | 2,0                | -                  | 3,3                | -                  | 6,6                | -                  |
| Electric heater current, A                                              | 8,7                | -                  | 15,0               | -                  | 10,7               | -                  |
| Number of electric heating elements / rows of water heating coils, pcs. | 1                  | 2                  | 1                  | 2                  | 2                  | 2                  |
| Total unit power, W                                                     | 2295               | 290                | 3710               | 310                | 7040               | 440                |
| Total unit current, A                                                   | 10,9               | 2,1                | 17,3               | 2,2                | 14                 | 3,2                |
| Maximum air capacity, m³/h                                              | 400                |                    | 700                |                    | 900                |                    |
| Rotation speed, min <sup>-1</sup>                                       | up to 2700         |                    | up to              | up to 2600         |                    | 2600               |
| Sound power level at 3 m, dB(A)                                         | 4                  | 5                  | 52                 |                    | 58                 |                    |
| Maximum operating temperature, °C                                       | -25.               | +60                | -25+60             |                    | -25.               | +60                |
| Casing material                                                         | Alum               | ozink              | Alumozink          |                    | Alumozink          |                    |
| Insulation                                                              | mineral wool 20mm  |                    | mineral wool 20mm  |                    | mineral wool 20mm  |                    |
| Filter: exhaust                                                         | G                  | 4                  | G4                 |                    | G4                 |                    |
| intake                                                                  | G4 (F7)            |                    | G4 (F7)            |                    | G4                 | (F7)               |
| Overall dimensions: Length, mm                                          | 11                 | 66                 | 1329               |                    | 13                 | 29                 |
| Width, mm                                                               | 64                 | 18                 | 74                 | 46                 | 74                 | 46                 |
| Height, mm                                                              | 6                  | 70                 | 70                 | )2                 | 70                 | 02                 |
| Connecting air duct diameter, mm                                        | 16                 | 60                 | 25                 | 50                 | 2                  | 50                 |
| Weight, kg                                                              | 1                  | 12                 | 12                 | 28                 | 10                 | 30                 |
| Recuperation efficiency, %                                              | 8                  | 5                  | 8                  | 5                  | 8                  | 5                  |
| Heat exchanger type                                                     | rotary             |                    | rot                | ary                | rot                | ary                |
| Heat exchanger material                                                 | alum               | inium              | alumi              | inium              | alum               | inium              |







#### Calculation of air temperature at heat exchanger outlet:

$$t = t_{int} + k_{eff} + (t_{ext} - t_{int}) / 100,$$

Where

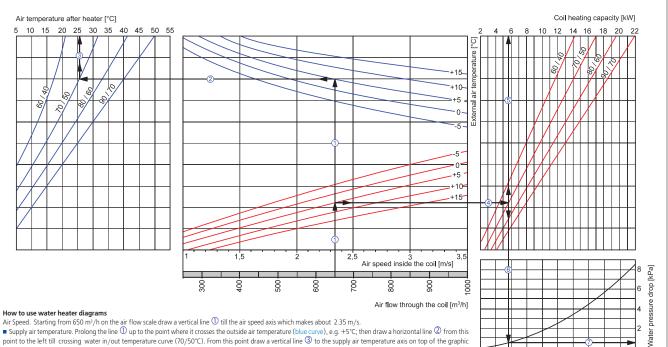
 $t_{\rm int}$  - intake air temperature  $^{\rm 0}\text{C}$  ,

 $t_{ext}$  - extract air temperature °C,  $k_{eff}$  - heat exchanger efficiency (as per diagram), %

0,05

0

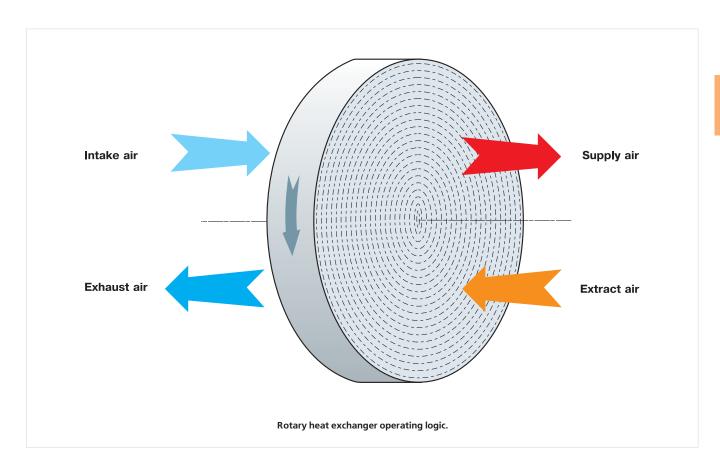
0,1


0,15

Water flow through the coil  $\left[ l/s \right]$ 

0,2

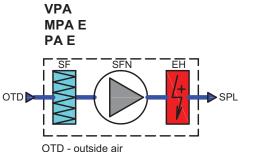
0,25


#### **Calculation of water heater parameters**



point to the left till crossing water in/out temperature curve (70/50°C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+26°C).

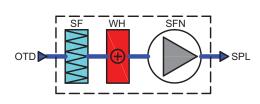
(+20 C). Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., +5°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line ⑤ up to the scale of heating coil capacity (5.8 kW).


Water flow. Prolong the line <sup>®</sup> down to water flow axis at the bottom of the graphic (0.04 l/s).
 Water pressure drop. Draw the line <sup>®</sup> from the point where line <sup>®</sup> crosses the black curve to the pressure drop axis. (0.5 kPa).

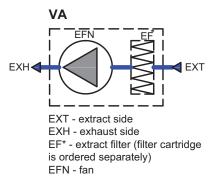


AIR HANDLING UNIT WITH HEAT RECOVERY SERIES

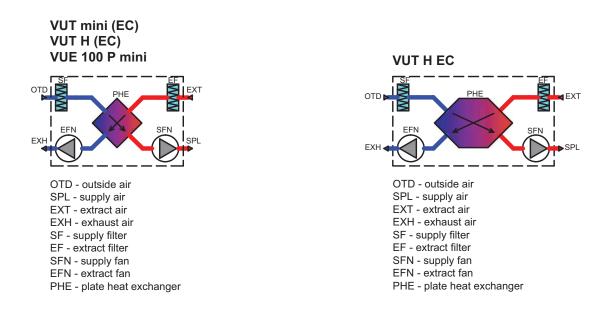
# **AHU SCHEMATIC DIAGRAMS**

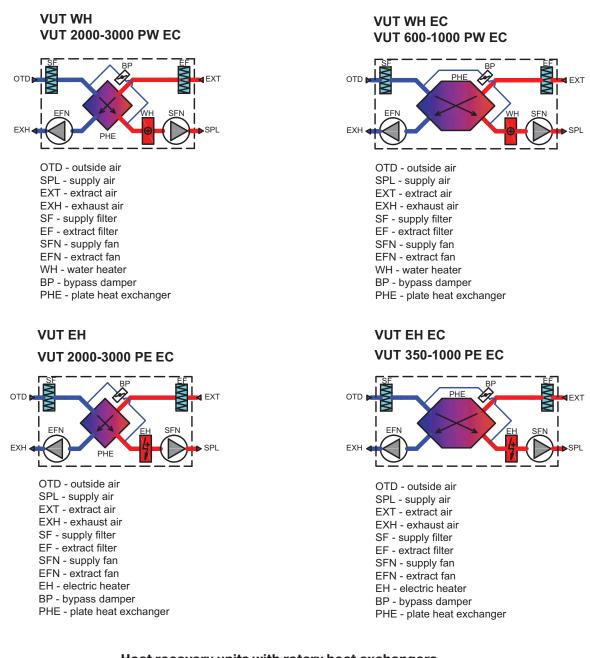

#### **Suply extract units**




CTD - outside air SPL - supply air SF - supply filter SFN - supply fan

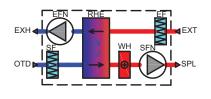
EH - electric heater


MPA W PA W



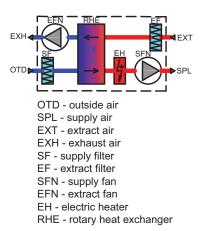

OTD - outside air SPL - supply air SF - supply filter SFN - supply fan WH - water heater




# Heat Recovery units with plate exchangers






## Heat recovery units with rotary heat exchangers





OTD - outside air SPL - supply air EXT - extract air EXH - exhaust air SF - supply filter EF - extract filter SFN - supply fan EFN - extract fan WH - water heater RHE - rotary heat exchanger

# **VUT R EH EC**







#### Energy-saving units X-vent are the best solution for ventilation and conditioning systems!

# Do you have limited space in your room?

- Ventilating chambers are not provided?
  - Do you want to conceal the whole ventilation system under the suspended ceiling?
    - Do you need reasonable and energy-saving solution?

#### In this case X-vent in-line units are the best solution!

Based on in-line X-vent units you can arrange both complex and simple ventilation and conditioning systems. X-vent units are designed for arranging any application: air supply, air exhaust, air handling with heat recovery.

#### Advantages of in-line X-vent units:

Basic components of the in-line system:

- Complex solution;
- Complete range of products; •
- Small-sized and efficient;
- Easy mounting; ь
- Energy-saving technologies; •

- Complex automation system included into equipment list;
- Low operating costs;
- Easy fan maintenance and filter removal; Long service life (at least 40 000 hours of continuous operation);
- High quality for the best price.



RRVAF air flow regulating damper



radial-flow fan with EC-motor



VKPF radial fan



FB and FBK filters



bend



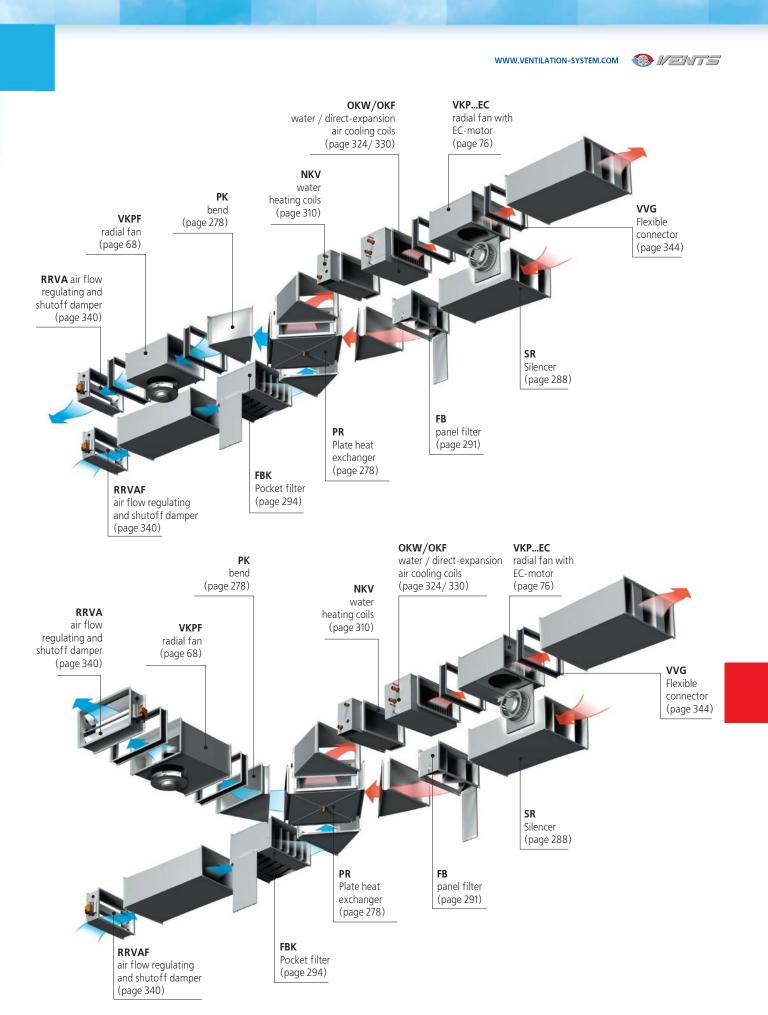
PR Plate heat exchanger



water coil



SR Silencer




OKW/OKF water / direct-expansion air cooling coils



VVG Flexible connector





# AIR HANDLING UNITS AIR VENTS



WWW.VENTILATION-SYSTEM.COM





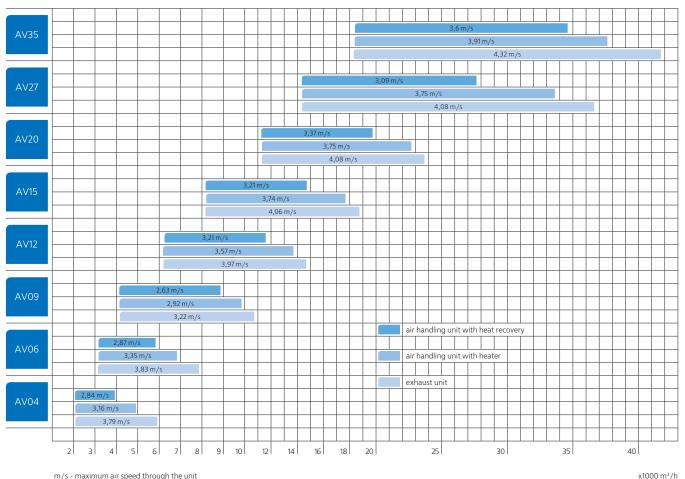
# Designation

AirVents air handling units are the complete ventilation units ensuring the supply air filtering and heating as well as removal of the extract air. Application varies from the office and bank premises, cinema halls, gyms and swimming pools to the hotels, residential premises, industrial workshops, stocks and supermarkets etc.

#### Standard sizes

Air handling units AirVents are available in 8 standard sizes for the air capacity from 2000 up to 35000 m<sup>3</sup>/h. Air handling units are available in leftside and right-side modifications. The service side is marked with respect to its location to air flow. It determines the position of the connecting pipes of water coils and condensate drainage.

#### Description


AirVents air handling units is a complex solution for a fully compact and packaged ventilation system. Modularity is the basic priviledge of AirVents system. The modular air handling units consist of some functional sections that can be connected in any configurations to create the various complexity equipment upon the customer request in compliance with specific operating conditions.

Purely high quality components supplied by the leading world-wide manufacturers ensure the reliability of the whole complete unit. Energyefficient automation as well as units and components contribute much to reducing energy consumption.

VENTS is the only company with complete production run of air handling units at one manufacturing facility.

#### Casing

The air handling unit frame consists of aluminium shapes connected together with aluminium angles on the mounting frame made of rolled steel to ensure the structure strength and stability. The air-tight casing with extra sealing consists of assembled double skinned aluzink panels internally filled with 50 mm mineral wool heat and soundinsulating layer.



# Effective ranges of air capacity for AirVents units:

m/s - maximum air speed through the unit

# AIR HANDLING UNITS

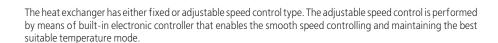
#### Fan section



The fan section is the basic element of the air handling units. Centrifugal belt-driven cased fans and plug direct-driven fans are applied for AirVents air handling units. A cased fan is a double-inlet high-efficient belt-driven centrifugal fan in the sound-insulated casing. The fan impeller can be supplied with backward or forward curved blades. He fans are mounted on a rigid frames on rubber anti-vibration mounts specifically selected in compliance with the minimum vibration transmittion requirements to the air handling unit casing. The fan is connected to the air handling unit through the flexible connector that excludes the vibration transmission to the unit casing.

#### Heat exchanger section




Heat exchanger section is designed for utilization of exhaust air heat. The units can be equipped with the plate heat exchanger or rotary heat exchanger. The cross-flow plate heat exchanger is made of aluminium plates that create ductwork system. The heat exchanger plates are sealed with elastic thermal sealant and fixed internally by means of fixing clamps. Such sealing ensures partition of air streams.



overflow.

Heater and coolers





Rotor heat exchanger section consists of the belt driven rotary with the cellular structure due to the aluminium band. The heat exchanger is equipped with the efficient brush sealing around the rotor to minimize the air

The electric heater in the air handling units is applied to warm up the supply air. The casing is made of galvanized steel sheet and the heating elements are made of stainless steel with additional ribbing which increases the heat exchange surface area and heat transfer to incoming air. NK heaters are equipped with two overheating protection thermostats.



Water heatin coils in air handling units are applied to warm up the supply air. The casing is made of galvanized steel sheet and the coils are made of copper tubes and the heat exchange surface is made of aluminium plates. Hot water with the temperature up to 150 °C serves as a heat medium. The connection of the water coils to the heat supply system can be performed by means of threading connection, flanges or welding. The water heating coils can be equipped with connecting pipes for temperature sensors for automatic icing protection.



Silencer section

The cooler in air handling units is applied for supply air cooling. This fuction is performed by water or direct expansion cooling coils which consist of copper tubes with additional aluminum ribbing. For marine climate application the heat exchangers with additional ribbing made of aluminum-magnesium alloy are available. The direct evaporation cooling coils are equipped with the built-in manifold header. The thermostatic expansion valve can be placed outside on the connected pipe. The unit is equipped with the drain pan for the condensate collection. Droplet separator can be installed to prevent the dropping liquid carrying away with the air stream.



The plate silencers in air handling units are applied for absorption of noise produced by the operating unit. The silencer sections are installed between the fan units and air inlet/outlet vent. The silencers consist of galvanized steel plates filled internally with sound-absorbing fire-resistant insulant with additional synthetic fiber protection. The noise absorbing plates have special covering to protect the noise-absorbing material:

1. Standard covering is applied for general-purpose ventilation systems.

2. Wear-resistant covering is for dry cleaning of noise-absorbing plates with a brush or vacuum cleaner.

3. Synthetic fiber covering is for wet cleaning of noise-absorbing plates. Each noise-absorbing plate is placed into a galvanized steel frame and is used in cases when water treatment of silencers is required by hygienic standards. A large swing-out access door for removal of noise-absorbing plates is provided in the silencer casing with 2 and 3 type plates. After treatment the plates can be easily installed back. The special separators ensure the plates alignment.

#### Filter section





Air shuttoff dampers



**Droplet separator** 



#### Condensate drainage system



The drain pan is designed for condensate collection and drainage. It is located angularly at the bottom of the heat exchanger and equipped with tapping.

Inspection section

**Empty section** 

The inspection section consists of the casing with the access door. Such section is installed between the components requiring inspection and maintenance and used in case some regular measurements are required in any other AHU component. The section can be equipped with the access cover and internal illumination that makes the inspection more comfortable.

An empty section is placed between the sections of the air handling unit and is used as place for sensors, i.e. temperature sensors. Later any other AHU section can be placed instead of the empty section.



The height of the mounting frame is adjusted by means of adjustable legs. The sections are interconnected with additional steel angles to increase the stability and rigidity. Easy-to-use door locks and handles for safe operation and quick maintenance.

Applied for purification of supply and extract air to prevent the heat exhangers, fans, automation equipment against dusting. Coarse filters can be used as first stage purification filters before more efficient filters.

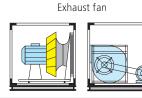
High degree of supply air purification is achieved due to utilization of built-in coarse and fine filters of panel and pocket types on a metal frame. Panel filter is a compact-sized coarse filter of G4 class as per EN 779 which is featured by shallow incorporation depth that provides efficient utilization of the unit internal space. Folded structure ensures relatively large filtering surface. The filter has insignificant aerodynamic resistance and longterm service life. The coarse filter enables extending of the main filter service life. Pocket filter has a special pocket-type design that povides extremly large filtering surface and extremely high dust capacity. The filter is featured by long service life and efficient operation. The filter consists of several filter cells varied from G3 to F9 class as per EN 779 (coarse and fine filters). The filters are fixed by means of locking rack bars with big handles to enable easy replacement of filtering elements. Filter clogging control as well as filter easy cleaning and removal ensure their high quality and durability in operation.

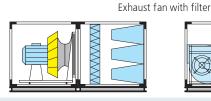
Designed for automatic shutoff of ventilating duct when ventilation system is out of operation. Airtightness of air handling unit shutoff dampers has class 3 as per EN 1751. The shutoff dampers consist of oppositely rotating blades with excellent aerodynamic characteristics. Rubber sealing between the blades and the casing prevents the air inflow. Provision is made for coldproof of the blades in case of operating at low temperatures. Gear drive made of durable heat-resisting plastic ensures smooth air stream regulation. The shutoff damper control is performed by means of electric spring-loaded drive to ensure the guaranteed blades closing during emergency powr cutoff.

Droplet separator is a device to prevent the dropping liquid carrying away with the air stream. The device consists of manifold bent plastic plates installed at the outlet of cooling and heat recovery units. Drop separation is effected due to multiple change of air stream direction in the plate bending. Water drops accumulate on blades and then flow into the drain pan.

Installed in air handling units at cooling or heat exchanging blocks outlet in case the air speed in the unit section 2.5 m/s and if drop separation and their

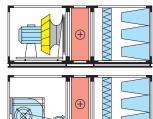
penetration into the duct system is possible.


 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ 

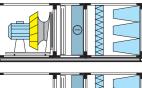

AIR HANDLING UNITS AIR VENTS

# AIR HANDLING UNITS

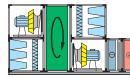
#### Characteristic equipment list of ventilation units

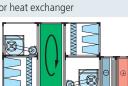

#### **Exhaust units**






#### Supply units


Supply fan with filter and heater

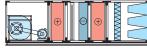



Supply fan with filter and cooler

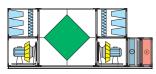


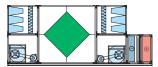
Air handling units with rotor heat exchanger









Supply fan with filter, heater and cooler








Air handling units with plate heat exchanger





#### Automation

Air handling units AirVents are equipped with absolutely new automation set to ensure the professional and easy control of air ventilation and conditioning system. This automation provides comfortable low cost microclimate in any premises. Free programmable controller that operates jointly with remote control panel is the core of the new automation set. It ensures easy adjustment of parameters for ventilation and air conditioning system operation. Besides, the controller is open for external automation system. Control unit for supply and exhaust units: Functions and applications:

- Control, monitoring, ensuring air handling unit operating parameters as operation, temperature, air capacity, emergency condition.

- Calendar-scheduled unit operation.

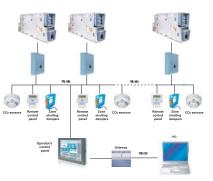
- Remote unit operation control from any place in the premise by means of external communicative elements.

- user interface,
- Joint operation with external units:
- external remote control panel;
- fire alarm system;
- CO2 detector
- zonal air curtains

Control unit functional diagrams:

VENTS control units ensure the control and reliable monitoring of all operating units and components composing the ventilation system of any configuration. See below some options for use of the control units depending on the equipment configuration.




#### AirVents air handling units integration into general centralized building management system (smart house).

Air handling units integration into general centralized building management system provides easy and comfortable control and monitoring of simultaneous operation of many ventilation units.

Freedom of choice is one of the main principles of the control system. The system is based on open standards. The controllers used in the control systems are fully controllable and support the most network protocols which are common in building automation as TCP/ IP, LON.

The control system is therefore compatible with a wide range of equipment and software and can be integrated into centralized building management control. Control system has vast communication performance capabilities. Controllers operate both in slow networks (e.g., dial-up) and fast networks (LAN/WAN). The system utilize different media for signal transmission as Internet, telephone connection, GSM, twisted pair. All these data transmission methods can be used either for connections between the controllers and for connection with SCADA system.

- Optional element for automation complex outfit.



| AirVents          | s technical speci                  | ication data sheet                                                            |
|-------------------|------------------------------------|-------------------------------------------------------------------------------|
| Company           | /                                  | Tell                                                                          |
| Contact p         | person                             | E-mail:                                                                       |
| Tell              |                                    | www.vents.ua                                                                  |
| E-mail            |                                    |                                                                               |
| General           |                                    |                                                                               |
| Unit:             | Exhaust                            | Supply Supply & exhaust Supply & exhaust with heat recovery                   |
| Mountin           | g: Outdoor                         | Indoor Access side: Left Right                                                |
| Supply 8          | exhaust parts:                     | Lineary Side by side One on other                                             |
| Capacity          | y and pressure                     | Supply Exhaust                                                                |
| Capacity          |                                    | m³/hour m³/hour                                                               |
| Pressure          | (system resistanc                  | e) Pa Pa                                                                      |
| Air para          | meters                             | Winter Summer                                                                 |
| Supply            | Outdoor air temp                   | erature and relative humidity °C % °C %                                       |
|                   | Conditioned air te                 | mperature and relative humidity °C % °C %                                     |
| Exhaust           | Extract air tempe                  | rature and relative humidity °C % °C %                                        |
|                   |                                    | erature and relative humidity °C % °C                                         |
| Sections          | s required                         |                                                                               |
| $\bigcirc$        | Fan                                | Belt - driven Plug fan                                                        |
|                   |                                    |                                                                               |
| $\bigcirc$        | Filter                             | Supply G4 F7 Other Other                                                      |
|                   |                                    | Exhaust G4 F7 Other Other                                                     |
| _                 | Heater                             | Air temp before / after heater °C/ °C                                         |
| (+)               | Electric                           | Heater power kWt                                                              |
|                   | Mixing set                         | Water temp before / after heater °C/ °C                                       |
|                   | <b>Cooling section</b>             | Air temp before / after heater °C/ °C                                         |
| $\ominus$         | Freon                              | Heater power kWt                                                              |
|                   | Mixing set                         | Water temp before / after heater °C/ °C                                       |
| Heat r            | ecovery section                    | Inlet temperature °C Outlet temperature °C                                    |
| $\bigcirc$        | Plates                             | Inlet humidity % Outlet humidity %                                            |
|                   | Rotor                              |                                                                               |
|                   |                                    |                                                                               |
|                   | Silencer                           | 1200 mm long ; other                                                          |
| $\cup$            | Shericer                           | Exhaust                                                                       |
|                   |                                    |                                                                               |
| $(\mathbf{x})$    | Air damper                         | Supply Exhaust                                                                |
|                   |                                    |                                                                               |
|                   | -                                  | Sirculating air %                                                             |
| $\bigcirc$        | Mixing                             | Inlet air temperature °C                                                      |
|                   | section                            | Inlet air humidity °C                                                         |
| Accesso           | ries: Fle                          | xible connection (inlet) 🔲 Flexible connection (outlet) 🦳 Mounting base frame |
| Controll          | system                             |                                                                               |
|                   | al information:                    |                                                                               |
|                   |                                    |                                                                               |
|                   |                                    |                                                                               |
| * please indicate | e the control pattern in case of c | ntrol board order                                                             |

Fax the filled questionnaire +38 044 406 36 27



# AIR HEATING (COOLING) UNITS

#### VENTS AOW Series



Air unit with the water heat exchanger with heating capacity up to 45 kW and the air capacity up to 3850 m<sup>3</sup>/h. Designed for cost-saving and efficient air heating and cooling in various premises.



Air curtains are designed against cold or hot air stream penetration into door or window openings. Can be equipped with water heating coils or electrical heating batteries. Available standard sizes: 600x350, 700x400, 800x500, 900x500 mm.

# VENTS DRF-VKM and VENTS DRF-VKMz Series



> Destratificators are designed to prevent accumulation of heated air in upper part of premises and direction of warm air to occupied areas. Use of destratificators is reasonable in large premises above 5 m height, e.g. industrial workshops, stocks, supermarkets, exhibition and conference halls, enclosed sport halls, etc.

WWW.VENTILATION-SYSTEM.COM

**page** 264

page 274





| Air heating (cooling) unit<br>VENTS AOW |
|-----------------------------------------|
| Air capacity – up to 3850 m³/h          |



| Air curtain<br>VENTS PVZ        | page |
|---------------------------------|------|
| Air capacity – up to 84000 m³/h | 270  |



Destratificators VENTS DRF-VKM and DRF-VKMz

Series

## Application

Designed for air heating or cooling by water heat medium with subsequent uniform air distribution by the fan and louvre shutters. The units provide quick heating or cooling of large premises due to high efficient air heater and powerful fan and are suitable for local air heating or cooling of working areas in hangars or large industrial premises. Further application areas include workshops, garages, car showrooms, stock houses, trade facilities, super- and hypermarkets, shops, sport halls, conference halls, poultry and cattle farms, greenhouses and other similar premises. The unit design enables quick and easy mounting and reduces total investment costs for heating (cooling) system.

#### Design

AOW unit consists of the axial fan and aluminiumcopper ribbed water heating coils located in steel casing with polymeric coating. The water coils are equipped with internally threaded pipes on the casig side for connection and supply of heat medium. The units are rated for operation at maximum operating pressure 1.6 Mpa (16 bar) and maximim heat medium temperature 100°C.

#### Motor

AC motors with external rotor and built-in thermal overheating protection with automatic restart.

#### Control and regulation

Both smooth or step speed control with a thyristor or autotransformer controller. Motor speed decrease allows reducing flow and value of heating or cooling energy transfer.

The control block **UWT-1E** is used for controlling the operation modes of the air heating (cooling) unit. The casing is made of polymer coated steel and has IP 44 ingress protection rating. The automation unit has three operation modes, i.e. three modes for speed control.

The unit incorporates a switch with a light indicator, cable entry seals for cable connection, safety fuse for short circuit protection. The automation unit is designed for joint operation either with TST-3 series digital thermostats with a sensor display (the thermostat TSTD-3 is equipped with a remote control panel) or with RTS-1-400 series thermostats with LCD display (RTSD-1-400 is equipped with a remote control panel). The digital thermostats are available upon separate order. Install the thermostat in the same room where the AOW unit is installed. It is used to measure the indoor temperature and control the unit operation. For correct functioning of the unit install the thermostat in places that are not subjected to temperature fluctuations, i.e. close to windows, doors, hot-water radiators. One thermostat can be used for control of several air heating (cooling) units located in the same room.

#### Mounting

Accessories

The unit is suitable for vertical installation on walls or columns or horizontal installation on ceiling (beams). See mounting accessories.

# Air heating (cooling) advantages:

- quick attaining of the set temperature in the premises,
- low system response time allows applying varying temperature conditions,
- high thermal capacity,
- Lower investment costs for air heating (cooling) system as compared to similar water heating (cooling) systems.

#### Designation key:

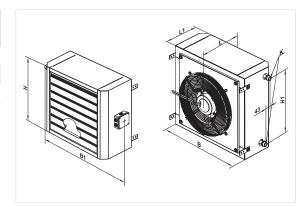
| Series    | Rated power [kW] | 3      | M      | A       | r       | 155   | 122  | - 23 | 23   |
|-----------|------------------|--------|--------|---------|---------|-------|------|------|------|
| VENTS AOW | 25; 30; 45       | UWT-1E | MK-AOW | MKU-AOW | MKP-AOW | * RTS | RTSD | TST  | TSTD |

Technical data:

|                                      | AOW 25 | AOW 30 | AOW 45 |
|--------------------------------------|--------|--------|--------|
| Unit power voltage [V / 50 Hz]       | 230    | 230    | 230    |
| Fan power [W]                        | 136    | 191    | 255    |
| Fan current [A]                      | 0,6    | 0,85   | 1,12   |
| RPM                                  | 1350   | 1440   | 1360   |
| Noise level at 3m [dB[A]]            | 53     | 55     | 58     |
| Maximum heat medium temperature [°C] | 100    | 100    | 100    |
| Ingress protection rating            | IP 44  | IP 44  | IP 44  |
| Insulation class                     | F      | В      | F      |

## Technical data for heating mode:

|           |                       | ow temp | Temperature difference<br>90/70 °C |                                |                        | Tem                                     | Temperature difference<br>80/60 °C |                                |                        | Temperature difference<br>70/50 °C      |               |                                | Temperature difference<br>60/40 °C |                                         |               |                                |                        |                                         |
|-----------|-----------------------|---------|------------------------------------|--------------------------------|------------------------|-----------------------------------------|------------------------------------|--------------------------------|------------------------|-----------------------------------------|---------------|--------------------------------|------------------------------------|-----------------------------------------|---------------|--------------------------------|------------------------|-----------------------------------------|
| Model     | Air<br>flow<br>[m³/h] |         | Power<br>[kW]                      | Outlet<br>air<br>temp.<br>[°C] | Water<br>flow<br>[I/s] | Water<br>pres-<br>sure<br>loss<br>[kPa] | Power<br>[kW]                      | Outlet<br>air<br>temp.<br>[°C] | Water<br>flow<br>[I/s] | Water<br>pres-<br>sure<br>loss<br>[kPa] | Power<br>[kW] | Outlet<br>air<br>temp.<br>[°C] | Water<br>flow<br>[I/s]             | Water<br>pres-<br>sure<br>loss<br>[kPa] | Power<br>[kW] | Outlet<br>air<br>temp.<br>[°C] | Water<br>flow<br>[I/s] | Water<br>pres-<br>sure<br>loss<br>[kPa] |
|           |                       | -15     | 34,5                               | 26,0                           | 1,5                    | 7,5                                     | 30,4                               | 21,2                           | 1,3                    | 6,0                                     | 26,0          | 16,0                           | 1,1                                | 4,6                                     | 22,0          | 11,0                           | 1,0                    | 3,4                                     |
|           |                       | -10     | 32,0                               | 29,0                           | 1,4                    | 6,6                                     | 28,3                               | 24,3                           | 1,2                    | 5,3                                     | 24,0          | 19,2                           | 1,1                                | 4,0                                     | 20,0          | 14,0                           | 0,9                    | 2,8                                     |
|           |                       | -5      | 30,0                               | 32,0                           | 1,3                    | 5,8                                     | 26,2                               | 27,4                           | 1,2                    | 4,6                                     | 22,0          | 22,0                           | 1,0                                | 3,4                                     | 18,0          | 17,0                           | 0,8                    | 2,3                                     |
| AOW<br>25 | 2200                  | 0       | 28,0                               | 35,0                           | 1,2                    | 5,2                                     | 24,1                               | 30,4                           | 1,1                    | 4,0                                     | 20,0          | 25,0                           | 0,9                                | 2,8                                     | 16,0          | 20,0                           | 0,7                    | 1,8                                     |
|           |                       | 5       | 26,2                               | 38,5                           | 1,2                    | 4,5                                     | 22,1                               | 33,3                           | 1,0                    | 3,3                                     | 18,0          | 28,0                           | 0,8                                | 2,3                                     | 14,0          | 22,0                           | 0,6                    | 1,4                                     |
|           |                       | 10      | 24,2                               | 41,4                           | 1,1                    | 3,9                                     | 20,1                               | 36,1                           | 0,9                    | 2,8                                     | 15,9          | 30,6                           | 0,7                                | 1,9                                     | 12,0          | 25,0                           | 0,5                    | 1,0                                     |
|           |                       | 15      | 22,1                               | 44,2                           | 1,0                    | 3,3                                     | 18,1                               | 38,8                           | 0,9                    | 2,3                                     | 13,8          | 33,0                           | 0,6                                | 1,4                                     | 9,0           | 27,0                           | 0,4                    | 0,7                                     |
|           |                       | -15     | 48,4                               | 27,2                           | 2,1                    | 7,4                                     | 42,0                               | 22,0                           | 1,9                    | 6,0                                     | 36,6          | 17,0                           | 1,6                                | 4,7                                     | 31,0          | 11,7                           | 1,3                    | 3,5                                     |
|           |                       | -10     | 45,4                               | 30,3                           | 2,0                    | 6,6                                     | 39,0                               | 25,2                           | 1,7                    | 5,3                                     | 33,7          | 20,0                           | 1,5                                | 4,0                                     | 27,6          | 14,6                           | 1,2                    | 2,9                                     |
| AOW       |                       | -5      | 42,4                               | 33,4                           | 1,9                    | 5,9                                     | 36,7                               | 28,2                           | 1,6                    | 4,6                                     | 30,0          | 22,9                           | 1,4                                | 3,4                                     | 24,0          | 17,4                           | 1,1                    | 2,4                                     |
| 30        | 3000                  | 0       | 39,5                               | 36,4                           | 1,7                    | 5,2                                     | 33,8                               | 31,1                           | 1,5                    | 3,9                                     | 28,0          | 25,7                           | 1,2                                | 2,9                                     | 21,0          | 20,0                           | 1,0                    | 1,9                                     |
|           |                       | 5       | 36,7                               | 39,4                           | 1,6                    | 4,5                                     | 30,9                               | 34,0                           | 1,4                    | 3,4                                     | 25,0          | 28,5                           | 1,1                                | 2,4                                     | 19,0          | 22,7                           | 0,8                    | 1,5                                     |
|           |                       | 10      | 33,8                               | 42,1                           | 1,5                    | 3,9                                     | 28,1                               | 36,7                           | 1,2                    | 2,8                                     | 22,0          | 31,1                           | 1,0                                | 1,9                                     | 16,0          | 25,2                           | 0,7                    | 1,1                                     |
|           |                       | 15      | 31,0                               | 44,9                           | 1,4                    | 3,3                                     | 25,3                               | 40,0                           | 1,1                    | 2,3                                     | 19,4          | 33,7                           | 0,9                                | 1,5                                     | 13,0          | 27,5                           | 0,6                    | 0,7                                     |
|           |                       | -15     | 63,0                               | 28,4                           | 2,8                    | 11,9                                    | 55,6                               | 23,3                           | 2,4                    | 9,7                                     | 48,1          | 18,1                           | 2,1                                | 7,6                                     | 40,4          | 12,8                           | 1,8                    | 5,7                                     |
|           |                       | -10     | 59,2                               | 31,5                           | 2,6                    | 10,6                                    | 51,8                               | 26,4                           | 2,3                    | 8,5                                     | 44,3          | 21,1                           | 1,9                                | 6,6                                     | 36,7          | 15,7                           | 1,6                    | 4,8                                     |
| 1014      |                       | -5      | 55,4                               | 34,6                           | 2,4                    | 9,4                                     | 48,0                               | 29,3                           | 2,1                    | 7,4                                     | 40,6          | 23,9                           | 1,8                                | 5,6                                     | 32,9          | 18,5                           | 1,4                    | 3,9                                     |
| AOW<br>45 | 3850                  | 0       | 51,6                               | 37,5                           | 2,3                    | 8,3                                     | 44,3                               | 32,2                           | 2,0                    | 6,4                                     | 36,9          | 26,8                           | 1,6                                | 4,7                                     | 29,2          | 21,3                           | 1,3                    | 3,2                                     |
|           |                       | 5       | 47,9                               | 40,4                           | 2,1                    | 7,3                                     | 40,6                               | 35,0                           | 1,8                    | 5,5                                     | 33,2          | 29,5                           | 1,5                                | 3,9                                     | 25,6          | 23,9                           | 1,1                    | 2,5                                     |
|           |                       | 10      | 44,3                               | 43,2                           | 2,0                    | 6,3                                     | 37,0                               | 37,8                           | 1,6                    | 4,6                                     | 29,6          | 32,2                           | 1,3                                | 3,2                                     | 21,9          | 26,4                           | 1,0                    | 1,9                                     |
|           |                       | 15      | 40,6                               | 45,9                           | 1,8                    | 5,4                                     | 33,4                               | 40,4                           | 1,5                    | 3,8                                     | 26,0          | 34,8                           | 1,1                                | 2,5                                     | 18,1          | 28,8                           | 0,8                    | 1,3                                     |

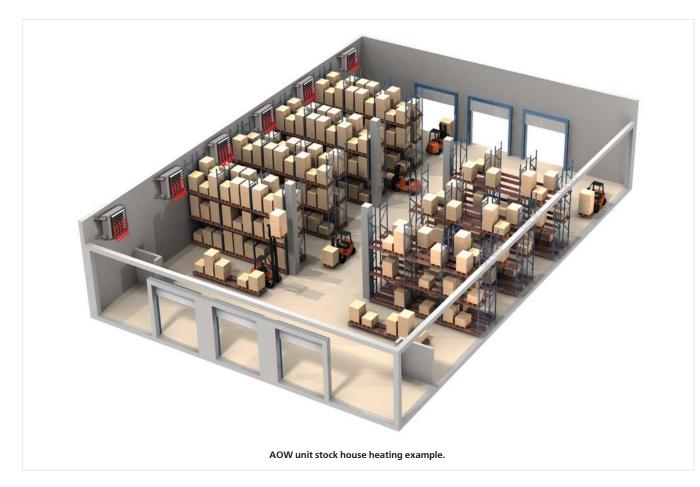

# AIR HEATING (COOLING) UNITS

# Technical data for cooling mode:

|          | Airflow            | Inlat air tamp          |               | Temperature difference 7/12 °C |                     |                              |  |  |  |
|----------|--------------------|-------------------------|---------------|--------------------------------|---------------------|------------------------------|--|--|--|
| Model    | Air flow<br>[m³/h] | Inlet air temp.<br>[°C] | Power<br>[kW] | Outlet air temp.<br>[°C]       | Water flow<br>[l/s] | Water pressure loss<br>[kPa] |  |  |  |
|          |                    | 35                      | 9,1           | 26,0                           | 1,6                 | 7,5                          |  |  |  |
| AOW 25   | 2200               | 30                      | 5,8           | 22,5                           | 1,0                 | 6,1                          |  |  |  |
| AOW 23   | 2200               | 25                      | 3,2           | 21,0                           | 0,6                 | 2,1                          |  |  |  |
|          |                    | 20                      | 2,0           | 18,0                           | 0,3                 | 0,9                          |  |  |  |
|          | 3000               | 35                      | 11,4          | 27,0                           | 2,0                 | 11,2                         |  |  |  |
| AOW 30   |                    | 30                      | 7,3           | 22,9                           | 1,3                 | 5,0                          |  |  |  |
| AOW 30   |                    | 25                      | 3,9           | 21,1                           | 0,7                 | 1,6                          |  |  |  |
|          |                    | 20                      | 2,4           | 17,7                           | 0,4                 | 0,7                          |  |  |  |
|          |                    | 35                      | 18,0          | 24,9                           | 3,1                 | 31,8                         |  |  |  |
| AO)N/ 45 | 2950               | 30                      | 10,8          | 21,7                           | 1,9                 | 12,9                         |  |  |  |
| AOW 45   | 3850               | 25                      | 7,3           | 19,0                           | 1,3                 | 6,3                          |  |  |  |
|          |                    | 20                      | 3,2           | 17,4                           | 0,5                 | 1,4                          |  |  |  |

# Overall dimensions without control unit:

| Turno  |     |     | Dime |     | Number of | Weight |                    |             |      |
|--------|-----|-----|------|-----|-----------|--------|--------------------|-------------|------|
| Туре   | В   | B1  | Н    | H1  | L         | L1     | K                  | water coils | [kg] |
| AOW 25 | 680 | 785 | 605  | 468 | 360       | 286    | G 3/4"             | 2           | 37,0 |
| AOW 30 | 680 | 785 | 655  | 518 | 360       | 286    | G <sup>3/4</sup> " | 2           | 40,0 |
| AOW 45 | 780 | 885 | 710  | 570 | 380       | 300    | G <sup>3/4</sup> " | 2           | 50,0 |





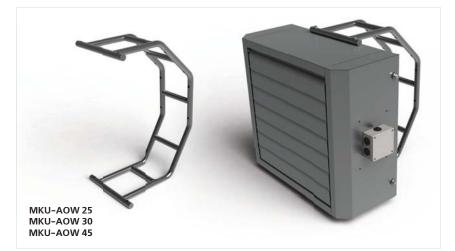

AOW unit greenhouse heating example.







#### **AOW UNIT MOUNTING ACCESSORIES**

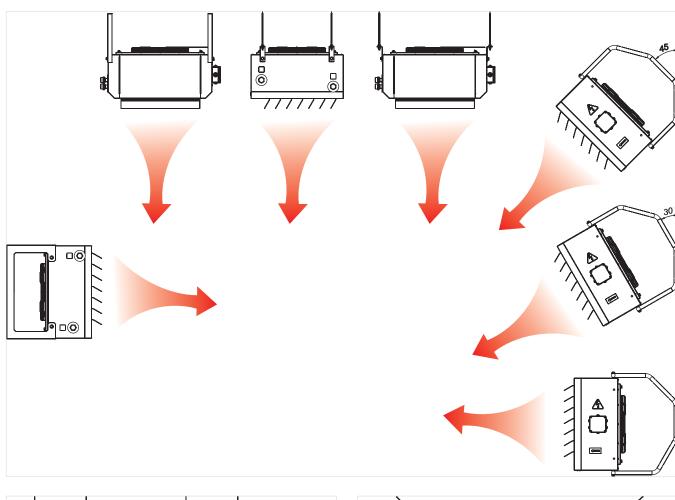

We offer the following mounting accessories to make the unit installation easy and quick: ✓mounting angles ✓mounting brackets ✓multi-angle bracket

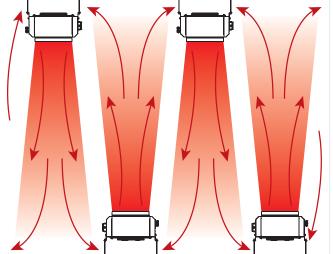


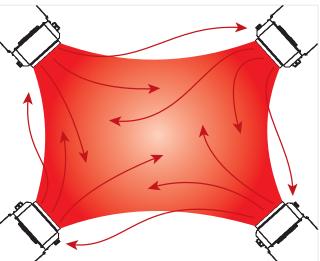
1. The angles are used for horizontal attachment of the unit to the ceiling with mounting studs or chains. This mounting option is applied only for the units operating in heating mode.



2. The mounting brackets enable vertical attachment of the unit to the wall or beam or horizontal fixing to the ceiling. This horizontal mounting is applied only for the units operating in heating mode.





3. The multi-angle bracket enables attachment of the unit to horizontal or vertical structures tilted at 45° or 30°.


#### WARNING!

While mounting provide free air supply to the fan suction vent by keeping the minimum distance from the unit to the wall or ceiling 300 mm.

# Warm air distribution.







AIR HEATING (COOLING) UNITS AOW

# **AIR CURTAINS**





The air curtains application contributes much to significant cost saving for the house cooling or heating due to invisible aerodynamic barrier between indoor and outdoor spaces, for instance, at the building entry.

#### Applications

The air curtains are designed to prevent the cold or hot air streams from outside into door openings or gateways.

The height or width of the covered areas ranges from 2 to 5 meters. The air curtains are suitable for crowded premises with increased traffic load. Designed for application in manufacturing premises, stocks, garages, car service centers and car wash shops, shopping malls, super- and hypermarkets, conference and exhibition halls, and other premises.

#### Operating logic of the air curtain

Rectangular duct high pressure fan is applied in air curtain. The supply air is filtered and then supplied to the premise through a narrow slit which ensures the outlet air speed increase and its correct operation. If the curtain has a water or electrical heater the supplied air is warmed up to the set temperature. The aerodynamic barrier created in such a way separates the premise from environment.

#### Design

Air curtains are available in 4 standard sizes depending on the capacity. The curtains and their components are made of galvanized steel. Rectangular duct high pressure fan serves for air supply. G4 panel filter provides air filtration. Air heating is effected by means of water heating coils or electrical heater. If water serve as a heat medium these curtain types are suitable for the premises with the indoor temperature not below 0°C only. Air distribution is performed through the slit sections. The standard slit sections are 1 to 1.5m long that enables easy selection for any door opening.

#### Fan motor

The impellers with forward-curved blades made of galvanized steel are powered by four- or six-pole asynchronous motors with external rotor. The fans with such turbine modification are featured with relatively high pressure differential and high air flow capacity. For thermal overheating protection the thermal contacts with the leaded terminals are built in the motor winding for connection to the external protection devices.

#### Mounting

Both horizontal and vertical mounting is possible. In case of horizontal mounting the air curtain is fixed above the door opening and creates the air stream vertically downwards along the whole opening width. In case of vertical mounting the curtain is fixed at one side or at both sides of the opening and the air is streamed horizontally. One vertical curtain covers 10 to 12 m<sup>2</sup> space and for larger surfaces the air curtains at both sides shall be installed to increase the effective area.

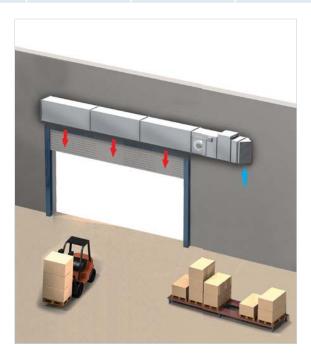
#### Designation key:

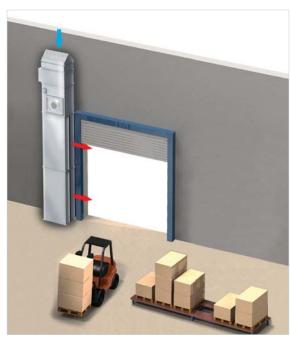
 Series
 Standard size

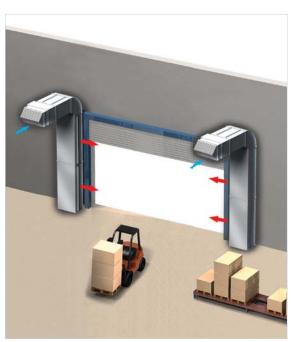
 600x350
 700x400

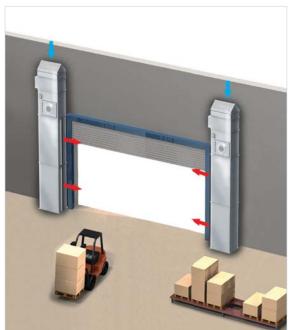
 800x500
 800x500

900x500


# Heater type


W – water coilsE – electrical heating elementsN – no heater

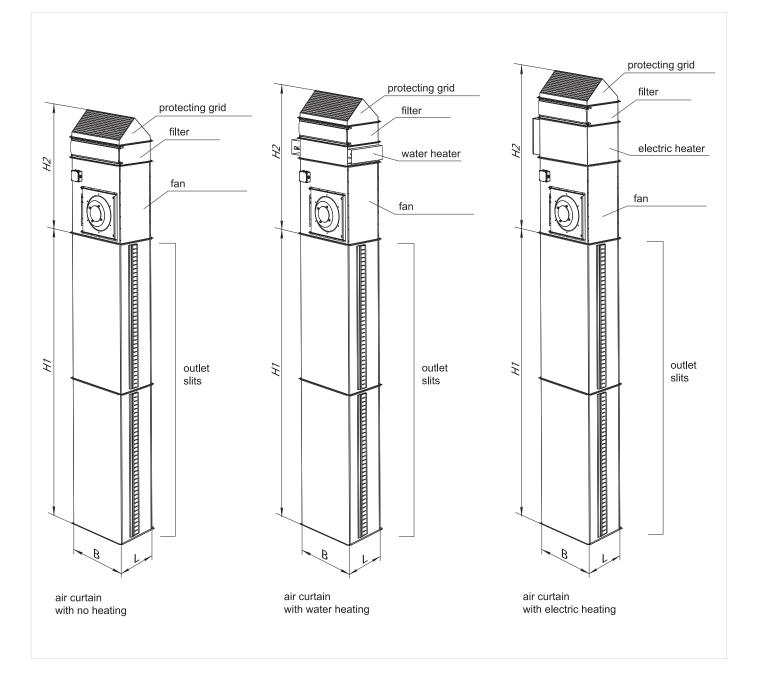

## Slit outlet section length

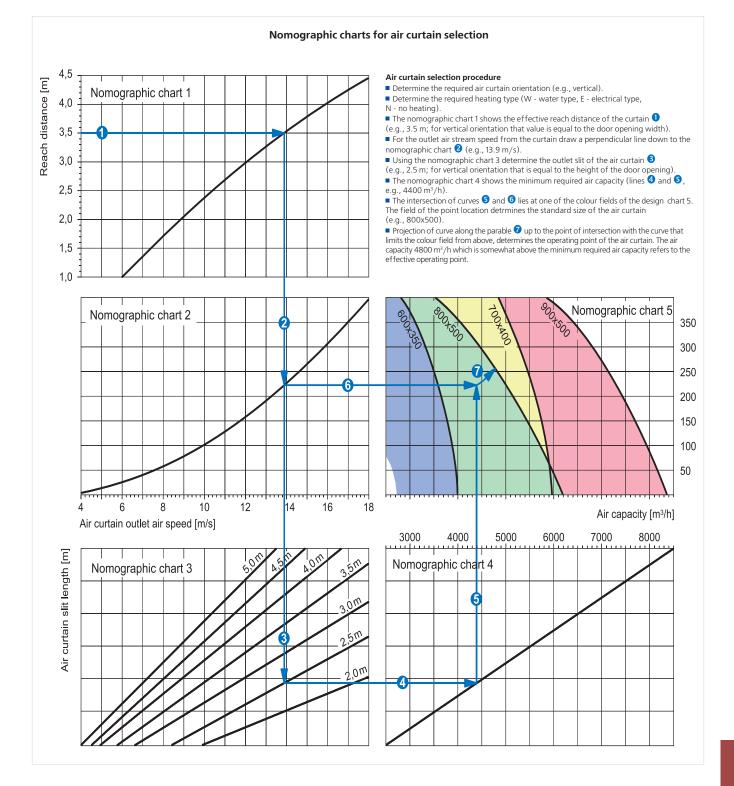

2; 2,5; 3; 3,5; 4; 4,5; 5

| Technical data: |                                  |                   |                   |                   |                   |
|-----------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|
|                 |                                  | PVZ 600x350       | PVZ 700x400       | PVZ 800x500       | PVZ 900x500       |
|                 | Voltage [V]                      | 3~ 400            | 3~ 400            | 3~ 400            | 3~ 400            |
|                 | Air capacity [m <sup>3</sup> /h] | 4000              | 6000              | 6200              | 8400              |
|                 | Fan power [kW]                   | 2,46              | 3,63              | 2,79              | 3,87              |
|                 | Fan current [A]                  | 3,93              | 6,0               | 5,18              | 7,0               |
|                 | Electric heater power [kW]       | 21                | 36                | 36                | 45                |
|                 | Electric heater current [A]      | 30                | 52                | 52                | 65                |
|                 | Fan type                         | VKPF 4D 600x350   | VKPF 4D 700x400   | VKPF 6D 800x500   | VKPF 6D 900x500   |
|                 | Filter type                      | FB 600x350        | FB 700x400        | FB 800x500        | FB 900x500        |
|                 | Water heating coils type         | NKV 600x350-2     | NKV 700x400-2     | NKV 800x500-2     | NKV 900x500-2     |
|                 | Electric heating battery type    | NK 600x350-21,0-3 | NK 700x400-36,0-3 | NK 800x500-36,0-3 | NK 900x500-45,0-3 |








# **AIR CURTAINS**

# **Overall dimensions:**

|                                                | PVZ 600x350        | PVZ 700x400 | PVZ 800x500 | <b>PVZ</b> 900x500 |  |  |  |
|------------------------------------------------|--------------------|-------------|-------------|--------------------|--|--|--|
| W, mm                                          | 600                | 700         | 800         | 900                |  |  |  |
| L, mm                                          | 350                | 400         | 500         | 500                |  |  |  |
| H1, mm                                         | from 2.0 up to 5.0 |             |             |                    |  |  |  |
| H2 (curtain with no heating), mm               | 1150               | 1300        | 1450        | 1520               |  |  |  |
| H2 (curtain with water heating coils), mm      | 1350               | 1500        | 1650        | 1720               |  |  |  |
| H2 (curtain with electric heating battery), mm | 1350               | 2050        | 1960        | 2270               |  |  |  |





# DESTRATIFICATORS



Destratificator is one of the most efficient energy saving components. Its basic target is to prevent warm air accumulation in upper parts of the premise and to direct warm air flow to occupied spaces at the human height elevation.

#### Applications

Destratificators are used in industrial premises, workshops, exhibition, concert and enclosed sport halls and other premises with the ceiling height 5 m and more. As a result of natural air convection warm air is accumulated upwards closer to ceiling and air at 2-2.5 m height has lower temperature.

#### Description

Destratificators are designed for balancing of the air temperature under the ceiling and in occupied areas. A great amount of thermal energy is accumulated above the occupied areas and just dissipated through the walls or ceilings in case of no heat recovery. Destratificators solve this problem by generating vertical air flow that minimizes air temperature drop between floor and the ceiling. Use of destratificator reduces thermal losses and energy demands for heating.

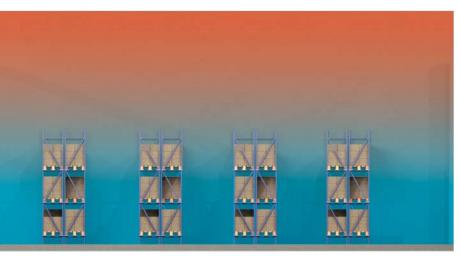
#### Design

The destratificator casing is made of polymer-coated or galvanized steel and supplied with aluminium guiding nozzle.

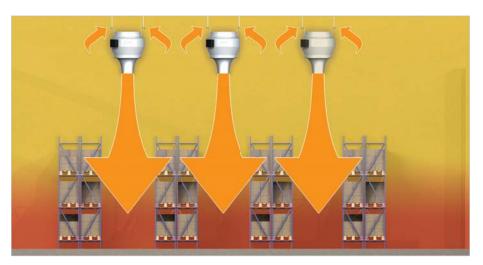
#### Motor

Destratificator is equipped with a single-phase external rotor motor and a centrifugal impeller with backward curved blades. The motor has integrated overheating protection with automatic restart. The motors are equipped with ball bearings. Ingress protection rating is IP 44.

#### Speed control


Step or speed control is performed with a thyristor or autotransformer. Several destratificators can be connected to one speed controller if the total power and operating current do not exceed the rated speed controller parameters.

#### Mounting

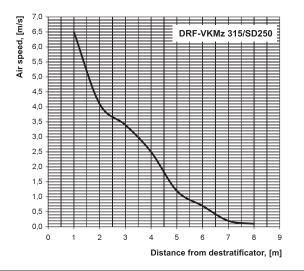

Destratificators are designed for indoor mounting in premises protected against weather factors and are installed under ceiling with the discharge nozzles downwards. Electric power to the destratificator fan is supplied through the external terminal block. While connecting and installing the unit follow the installation guidelines and wiring diagram shown on the terminal box.

#### Selection

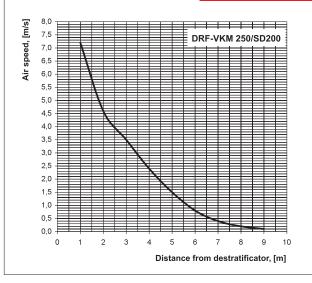
While selecting the standard size of the destratificator consider that the effective reach distance must be correlated with the premise height as 1, 25 to 1. The number of destratificators is selected on the assumption that the total air capacity is equal to the premise volume or doubles it.



Nonuniform distribution of warm and cold air in premises without destratificator.



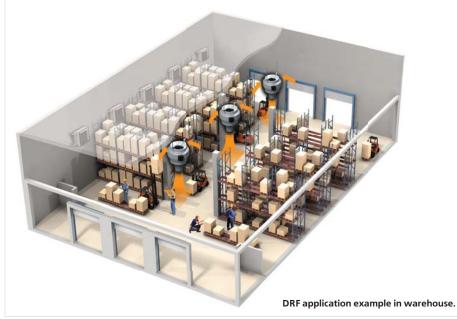

Uniform distribution of warm air in premises equipped with a destratificator.


#### Technical data:

|                                      | DRF-VKM 250/SD200 | DRF-VKMz 315/SD250 |
|--------------------------------------|-------------------|--------------------|
| Voltage [V / 50 Hz]                  | 1~ 230            | 1~ 230             |
| Power [W]                            | 193               | 178                |
| Current [A]                          | 0,84              | 0,77               |
| Maximum air flow [m <sup>3</sup> /h] | 645               | 805                |
| RPM [min <sup>-1</sup> ]             | 2345              | 2400               |
| Noise level at 3 m [dBA]             | 52                | 53                 |
| Maximum operating temperature [°C]   | -25 +50           | -25 +45            |
| Ingress Protection                   | IP 44             | IP 44              |

# VENTS DRF-VKM z





# VENTS DRF-VKM



## **Overall dimensions:**

| Turpe              | Dimensions [mm] |     |     |     |     |     |    |      |  |  |
|--------------------|-----------------|-----|-----|-----|-----|-----|----|------|--|--|
| Туре               | ØD              | ØD1 | ØD2 | В   | Н   | H1  | H2 | [kg] |  |  |
| DRF-VKM 250/SD200  | 344             | 112 | 249 | 300 | 461 | 395 | 31 | 7,5  |  |  |
| DRF-VKMz 315/SD250 | 402             | 140 | 313 | 365 | 535 | 488 | 55 | 8,7  |  |  |





DESTRATIFICATORS DRF-VKW







|    | Coolers              | page<br>324        |
|----|----------------------|--------------------|
|    |                      |                    |
|    | Dampers              | page<br>336        |
|    |                      | 0050               |
|    | Shutoff dampers      | page<br>338        |
|    | Air flow controllers | page               |
|    |                      | 340                |
|    | Backdraft dampers    | page<br>342        |
|    |                      |                    |
|    | Flexible connectors  | page<br>344        |
|    |                      |                    |
|    | Mixing chambers      | <b>page</b><br>345 |
| M  | Clamps               | page               |
| Q. | Clamps               | page<br>346        |

# PLATE HEAT EXCHANGERS



#### Applications

PR plate heat exchanger with X-shaped air passage designed for exhaust air heat recovery in conditioning and ventilating systems. The heat exchangers are connected directly to the rectangular ducts both with parallel and perpendicular or diagonal ducting at 45° Various connection modification are possible due to bend fittings which shall be ordered in the required quantity. The transported air shall not contain solid, fibrous, aggressive and explosive impurities.

#### Design

The heat exchanger casing is made of galvanized steel. The surface of the heat exchanger consists of thin aluminium plates for efficient heat exchange. Some condensate quantity which can be generated at exhaust surface can be removed at the bottom removable panel. PR heat exchangers equipment list includes connecting pipe on the bottom panel for condensate removing.

#### Technical data

Efficiency or performance is the basic characteristics of the plate heat exchangers along with the air resistance in the duct. The thermal efficiency is calculated as following:

$$\eta = \frac{t_{s} - t_{i}}{t_{e} - t_{i}}$$

**t**<sub>s</sub> – supply air temperature after heat recuperation;

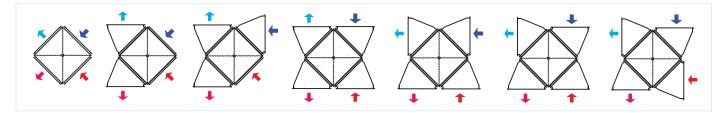
**t**<sub>i</sub> – intake air temperature before heat recuperation;

 $\mathbf{t}_{\mathbf{e}}$  – extract air temperature before heat recuperation.

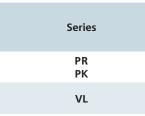
#### Accessory

PK bend Designed for easy mounting of the heat exchanger in any modifications of the air duct.

Bend designation PK 600 x 300



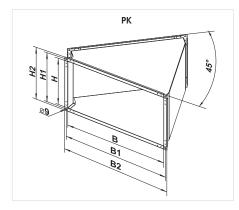

#### Accessory


Summer block VL

For the summer period the heat exchanger can be replaced with the summer block VL which performs no heat recovery but reduces pressure loss by 10%. It is applied in systems without by-pass at the inlet and in systems with no cooling.

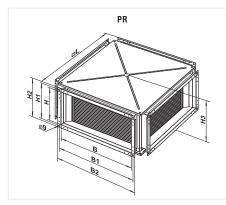
#### Possible layout arrangements of PR heat exchanger and bends PK:




#### **Designation key:**

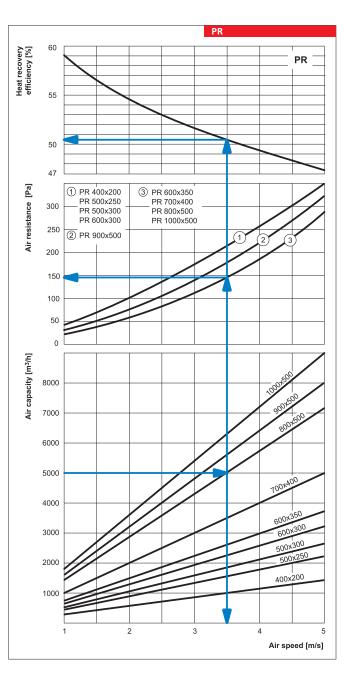


# Flange designation (WxH) [mm]


400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

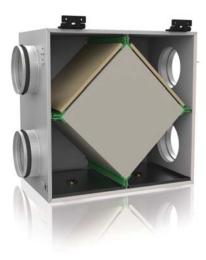
400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500




#### **Overall dimensions:**

| Turne       |      | Mass, |      |     |     |     |      |
|-------------|------|-------|------|-----|-----|-----|------|
| Туре        | В    | B1    | B2   | Н   | H1  | H2  | [kg] |
| PK 400x200  | 400  | 420   | 440  | 200 | 220 | 240 | 2,2  |
| PK 500x250  | 500  | 520   | 540  | 250 | 270 | 290 | 3,3  |
| PK 500x300  | 500  | 520   | 540  | 300 | 320 | 340 | 3,5  |
| PK 600x300  | 600  | 620   | 640  | 300 | 320 | 340 | 4,5  |
| PK 600x350  | 600  | 620   | 640  | 350 | 370 | 390 | 4,7  |
| PK 700x400  | 700  | 720   | 740  | 400 | 420 | 440 | 5,9  |
| PK 800x500  | 800  | 820   | 840  | 500 | 520 | 540 | 7,5  |
| PK 900x500  | 900  | 920   | 940  | 500 | 520 | 540 | 8,7  |
| PK 1000x500 | 1000 | 1020  | 1040 | 500 | 520 | 540 | 10,3 |




# **Overall dimensions:**

| Туре        | Dimensions [mm] |      |      |     |     |     |     |      |      |  |  |
|-------------|-----------------|------|------|-----|-----|-----|-----|------|------|--|--|
|             | В               | B1   | B2   | Н   | H1  | H2  | H3  | L    | [kg] |  |  |
| PR 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 275 | 530  | 17,1 |  |  |
| PR 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 325 | 630  | 22,6 |  |  |
| PR 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 375 | 630  | 24,2 |  |  |
| PR 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 375 | 730  | 31,0 |  |  |
| PR 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 425 | 730  | 33,4 |  |  |
| PR 700x400  | 700             | 720  | 740  | 400 | 420 | 440 | 475 | 830  | 47,8 |  |  |
| PR 800x500  | 800             | 820  | 840  | 500 | 520 | 540 | 575 | 930  | 61,1 |  |  |
| PR 900x500  | 900             | 920  | 940  | 500 | 520 | 540 | 575 | 1130 | 78,8 |  |  |
| PR 1000x500 | 1000            | 1020 | 1040 | 500 | 520 | 540 | 575 | 1130 | 78,3 |  |  |



# PLATE HEAT EXCHANGERS FOR ROUND DUCTS

# Series PR 150



#### Application

The plate heat exchanger PR 150 unit is an energy saving device designed to save thermal energy by means of thermal energy recovery and is used as a component part of energy saving technologies in buildings and premises. The unit with a passive heat exchanger is an integral element of ventilation systems of modern buildings and premises. The heat exchanger utilizes extract air thermal energy to warm up filtered supply air which allows reducing thermal energy loss and minimizing heating costs in cold season. The passive heat exchanger is designed for joint operation together with supply and exhaust fans, e.g. VENTS VK 150 fan models.

#### Design

The plate heat exchanger consists of:

AlZn casing internally filled with thermal- and sound

insulating 15 mm penophole layer;

plate cross-flow heat exchanger made of aluminium or polystyrene;

replaceable G4 supply and extract filters.

#### Features

• Thermal- and sound-insulated corrosion-resistant casing.

• High-efficient counter-flow heat exchanger made of polystyrene or aluminium.

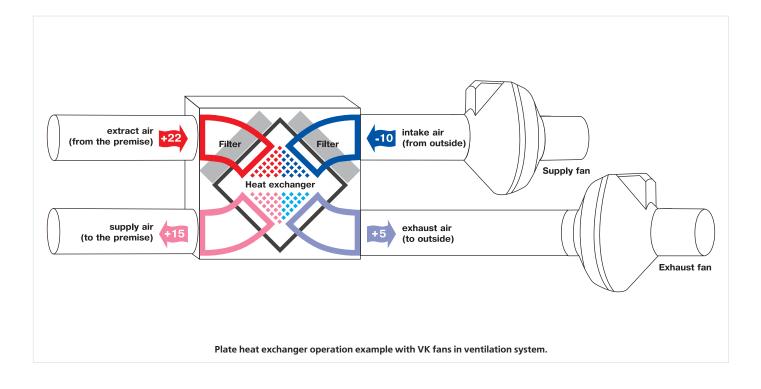
Recuperation efficiency up to 75%.

• Built-in G4 filters for purification of supply and exhaust air flows.

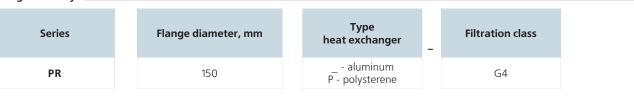
• Compact sizes and low weight.

#### Technical parameters

Efficiency and air resistance in the ductwork system are the basic technical parameters of the plate heat exchangers.

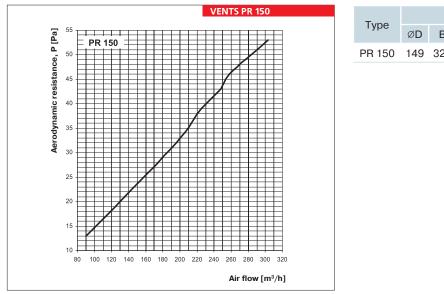

Coefficient of thermal efficiency is calculated as follows:

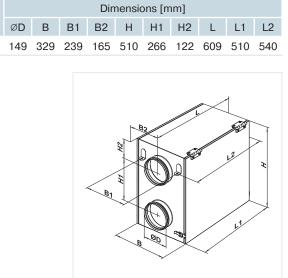
$$\eta = \frac{t_s - t_i}{t_e - t_i}$$


where:

 ${\rm t}_{\rm s}$  - supply air temperature (after heat recovery)

 $t_i$  - intake air temperature (before heat recovery)  $t_e$  - extract air temperature (extract air before heat recovery)





**Designation key:** 



#### **Technical data:**

#### **Overall dimensions:**







# SILENCERS

# Series

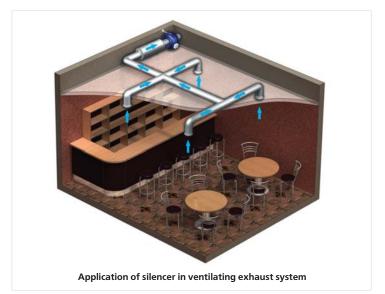


Series

SRF

#### Applications

Silencer is applied for noise absorption produced during the ventilating equipment operation and spread along the ducting systems. Suitable for installation into round ducts. The silencer reduces the noise level in the air duct significantly (refer the diagram «Noise level reduction»). The silencer is applied jointly with the sound-insulated fan in case of low-noise requirements not only to the air duct but to the equipment altogether.


#### Design

- The galvanized steel casing is filled with flameproof sound insulating material and equipped with protecting covering against fiber blowing-out and connecting flanges with rubber sealing for airtight connection to the air ducts.

- SRF silencer casing consists of internal and external aluminium-alloy spiral seam tubes filled with flameproof sound insulating material. The casing external surface is perforated and has the protecting cover to prevent the fiber blowing-out. The minimum bending radius of the silencer is up to 2 diameters. Each standards size has several length modifications.

# Mounting

The silencer design allows fixing it on the round ducts in any position by means of clamps. The linear mounting is preferable for to attain the better effect. To prevent the flexible silencer sagging it should be fixed not only at the ends but in the middle.



#### Designation key:

Series SR SRF

Air duct diameter, mm

100; 125; 150; 160; 200; 250; 315

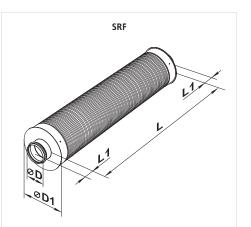


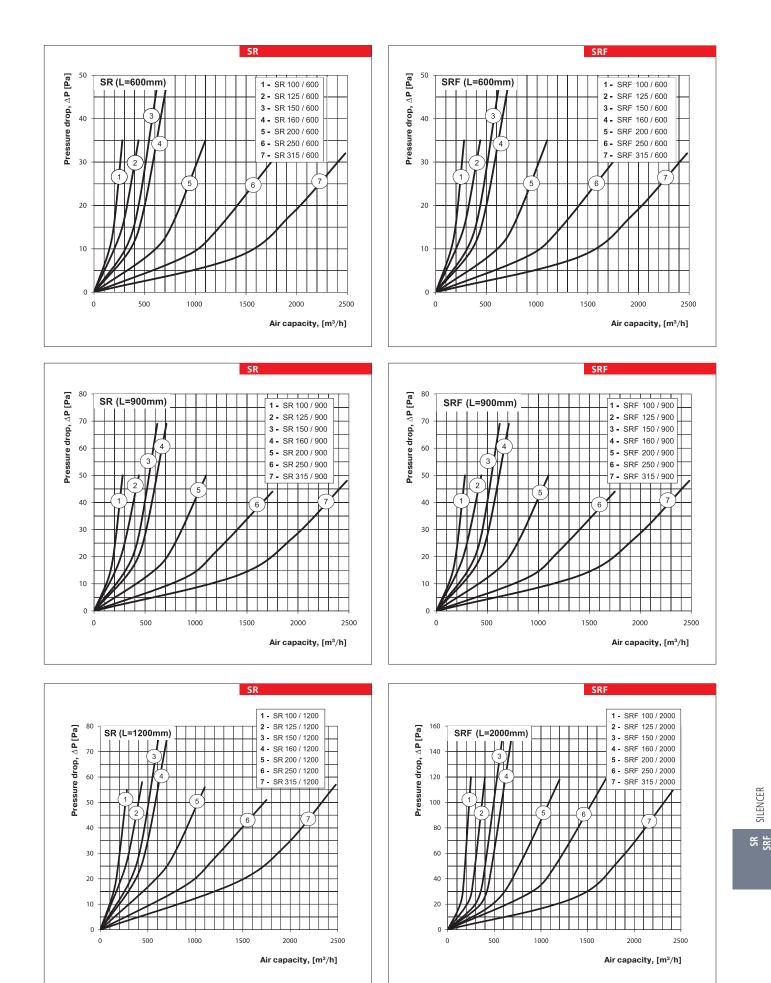
600; 900; 1200; 2000

|             | Noise level reduction, dB (Octave-frequency band [Hz]) |        |        |        |         |         |         |         |  |  |  |
|-------------|--------------------------------------------------------|--------|--------|--------|---------|---------|---------|---------|--|--|--|
|             | 63 Hz                                                  | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | 8000 Hz |  |  |  |
| SR 100/600  | 4                                                      | 8      | 10     | 20     | 34      | 30      | 13      | 14      |  |  |  |
| SR 100/900  | 5                                                      | 10     | 15     | 23     | 44      | 30      | 16      | 15      |  |  |  |
| SR 100/1200 | 6                                                      | 11     | 19     | 28     | 50      | 34      | 20      | 18      |  |  |  |
| SR 125/600  | 3                                                      | 5      | 6      | 15     | 28      | 17      | 10      | 9       |  |  |  |
| SR 125/900  | 4                                                      | 9      | 12     | 22     | 43      | 22      | 16      | 12      |  |  |  |
| SR 125/1200 | 4                                                      | 9      | 16     | 27     | 48      | 27      | 21      | 17      |  |  |  |
| SR 150/600  | 2                                                      | 4      | 8      | 16     | 32      | 11      | 7       | 7       |  |  |  |
| SR 150/900  | 3                                                      | 5      | 9      | 18     | 36      | 25      | 13      | 14      |  |  |  |
| SR 150/1200 | 4                                                      | 8      | 14     | 25     | 43      | 30      | 18      | 19      |  |  |  |
| SR 160/600  | 2                                                      | 4      | 8      | 17     | 33      | 11      | 7       | 7       |  |  |  |
| SR 160/900  | 2                                                      | 5      | 10     | 19     | 37      | 25      | 13      | 15      |  |  |  |
| SR 160/1200 | 4                                                      | 10     | 14     | 24     | 42      | 30      | 19      | 20      |  |  |  |
| SR 200/600  | 2                                                      | 4      | 6      | 10     | 27      | 13      | 7       | 7       |  |  |  |
| SR 200/900  | 3                                                      | 7      | 11     | 20     | 39      | 23      | 8       | 7       |  |  |  |
| SR 200/1200 | 4                                                      | 10     | 14     | 23     | 40      | 26      | 13      | 12      |  |  |  |
| SR 250/600  | 4                                                      | 5      | 6      | 11     | 22      | 12      | 7       | 6       |  |  |  |
| SR 250/900  | 4                                                      | 5      | 7      | 16     | 32      | 20      | 12      | 10      |  |  |  |
| SR 250/1200 | 4                                                      | 6      | 8      | 17     | 34      | 22      | 14      | 12      |  |  |  |
| SR 315/600  | 2                                                      | 4      | 5      | 10     | 17      | 9       | 6       | 5       |  |  |  |
| SR 315/900  | 3                                                      | 5      | 8      | 17     | 30      | 14      | 10      | 8       |  |  |  |
| SR 315/1200 | 4                                                      | 7      | 11     | 22     | 36      | 18      | 14      | 10      |  |  |  |

|              | Noise level reduction, dB (Octave-frequency band [Hz]) |        |        |        |         |         |         |         |  |  |
|--------------|--------------------------------------------------------|--------|--------|--------|---------|---------|---------|---------|--|--|
|              | 63 Hz                                                  | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | 8000 Hz |  |  |
| SRF 100/600  | 6                                                      | 8      | 13     | 22     | 28      | 34      | 17      | 20      |  |  |
| SRF 100/900  | 8                                                      | 10     | 15     | 25     | 33      | 40      | 21      | 23      |  |  |
| SRF 100/2000 | 10                                                     | 15     | 24     | 48     | 53      | 51      | 39      | 36      |  |  |
| SRF 125/600  | 4                                                      | 7      | 14     | 20     | 31      | 31      | 13      | 12      |  |  |
| SRF 125/900  | 5                                                      | 9      | 16     | 23     | 36      | 37      | 17      | 16      |  |  |
| SRF 125/2000 | 7                                                      | 15     | 23     | 47     | 55      | 50      | 28      | 25      |  |  |
| SRF 150/600  | 3                                                      | 7      | 12     | 32     | 40      | 40      | 19      | 20      |  |  |
| SRF 150/900  | 4                                                      | 8      | 14     | 40     | 48      | 49      | 26      | 25      |  |  |
| SRF 150/2000 | 5                                                      | 10     | 21     | 42     | 50      | 48      | 26      | 25      |  |  |
| SRF 160/600  | 3                                                      | 7      | 12     | 20     | 25      | 24      | 10      | 12      |  |  |
| SRF 160/900  | 3                                                      | 8      | 13     | 21     | 28      | 28      | 13      | 16      |  |  |
| SRF 160/2000 | 5                                                      | 11     | 20     | 40     | 48      | 48      | 25      | 25      |  |  |
| SRF 200/600  | 2                                                      | 5      | 12     | 20     | 26      | 21      | 10      | 10      |  |  |
| SRF 200/900  | 3                                                      | 6      | 12     | 22     | 28      | 24      | 12      | 13      |  |  |
| SRF 200/2000 | 4                                                      | 11     | 22     | 42     | 51      | 34      | 19      | 23      |  |  |
| SRF 250/600  | 2                                                      | 3      | 8      | 16     | 22      | 13      | 10      | 10      |  |  |
| SRF 250/900  | 2                                                      | 4      | 9      | 18     | 25      | 16      | 11      | 12      |  |  |
| SRF 250/2000 | 3                                                      | 6      | 16     | 30     | 39      | 27      | 17      | 22      |  |  |
| SRF 315/600  | 2                                                      | 4      | 9      | 18     | 21      | 12      | 7       | 9       |  |  |
| SRF 315/900  | 2                                                      | 5      | 11     | 21     | 24      | 14      | 8       | 10      |  |  |
| SRF 315/2000 | 4                                                      | 7      | 17     | 34     | 39      | 24      | 14      | 18      |  |  |

# SILENCERS


# **Overall dimensions:**


| Tures       |     | Mass, |      |    |      |
|-------------|-----|-------|------|----|------|
| Туре        | ØD  | ØD1   | L    | L1 | [kg] |
| SR 100/600  | 99  | 200   | 600  | 50 | 2,2  |
| SR 100/900  | 99  | 200   | 900  | 50 | 3,2  |
| SR 100/1200 | 99  | 200   | 1200 | 50 | 4,3  |
| SR 125/600  | 124 | 225   | 600  | 50 | 2,7  |
| SR 125/900  | 124 | 225   | 900  | 50 | 4,1  |
| SR 125/1200 | 124 | 225   | 1200 | 50 | 5,4  |
| SR 150/600  | 149 | 250   | 600  | 50 | 2,8  |
| SR 150/900  | 149 | 250   | 900  | 50 | 4,2  |
| SR 150/1200 | 149 | 250   | 1200 | 50 | 5,6  |
| SR 160/600  | 159 | 260   | 600  | 50 | 3,1  |
| SR 160/900  | 159 | 260   | 900  | 50 | 4,6  |
| SR 160/1200 | 159 | 260   | 1200 | 50 | 6,2  |
| SR 200/600  | 199 | 300   | 600  | 50 | 3,5  |
| SR 200/900  | 199 | 300   | 900  | 50 | 5,3  |
| SR 200/1200 | 199 | 300   | 1200 | 50 | 7,1  |
| SR 250/600  | 249 | 350   | 600  | 50 | 4,2  |
| SR 250/900  | 249 | 350   | 900  | 50 | 6,2  |
| SR 250/1200 | 249 | 350   | 1200 | 50 | 8,3  |
| SR 315/600  | 314 | 415   | 600  | 50 | 4,7  |
| SR 315/900  | 314 | 415   | 900  | 50 | 7,1  |
| SR 315/1200 | 314 | 415   | 1200 | 50 | 9,4  |



# **Overall dimensions:**

| Truce        |     | Mass, |      |    |      |
|--------------|-----|-------|------|----|------|
| Туре         | ØD  | ØD1   | L    | L1 | [kg] |
| SRF 100/600  | 99  | 200   | 600  | 50 | 1,5  |
| SRF 100/900  | 99  | 200   | 900  | 50 | 2,2  |
| SRF 100/2000 | 99  | 200   | 2000 | 50 | 4,8  |
| SRF 125/600  | 124 | 225   | 600  | 50 | 1,8  |
| SRF 125/900  | 124 | 225   | 900  | 50 | 2,7  |
| SRF 125/2000 | 124 | 225   | 2000 | 50 | 6,0  |
| SRF 150/600  | 149 | 250   | 600  | 50 | 1,9  |
| SRF 150/900  | 149 | 250   | 900  | 50 | 2,8  |
| SRF 150/2000 | 149 | 250   | 2000 | 50 | 6,2  |
| SRF 160/600  | 159 | 260   | 600  | 50 | 2,1  |
| SRF 160/900  | 159 | 260   | 900  | 50 | 3,1  |
| SRF 160/2000 | 159 | 260   | 2000 | 50 | 6,8  |
| SRF 200/600  | 199 | 300   | 600  | 50 | 2,4  |
| SRF 200/900  | 199 | 300   | 900  | 50 | 3,5  |
| SRF 200/2000 | 199 | 300   | 2000 | 50 | 7,8  |
| SRF 250/600  | 249 | 350   | 600  | 50 | 2,8  |
| SRF 250/900  | 249 | 350   | 900  | 50 | 4,2  |
| SRF 250/2000 | 249 | 350   | 2000 | 50 | 9,2  |
| SRF 315/600  | 314 | 415   | 600  | 50 | 3,2  |
| SRF 315/900  | 314 | 415   | 900  | 50 | 4,7  |
| SRF 315/2000 | 314 | 415   | 2000 | 50 | 10,4 |





# SILENCERS

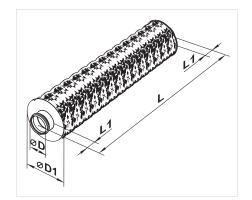


#### Applications

Silencer is applied for noise absorption produced during the ventilating equipment operation and spread along the ducting systems. Suitable for installation into round ducts. The silencer reduces the noise level in the air duct significantly (refer the diagram «Noise level reduction»). The silencer is applied jointly with the sound-insulated fan in case of high level requirements not only to the air duct but to the equipment altogether.

#### Design

**SRP** silencer consists of internal flexible air duct made of micro-perforated aluminum foil and laminated with


polyether film. The ducts are reinforced by the scroll frame made of high-carbon steel wire and outer polyethylene sleeve. Silencer supplied with high quality 25 mm sound insulation material. The silencer is equipped with the connecting flanges with rubber sealing that provides the airtight connection to the air ducts. Each standards size has several length modifications.

- **SRN** silencer consists of the internal and external flexible air duct made of metallized polyether film. The ducts are reinforced by the scroll frame made of high-carbon steel wire. 25 mm mineral woollayer is laid between the air ducts. The silencer is equipped with

connecting flanges with rubber sealing which provides the airtight connection to the air ducts. Each standards size has several length modifications.

# Mounting

The silencer design allows fixing it on the round ducts in any position by means of clamps. Installation in series is preferable to attain the better effect. To prevent the flexible silencer sagging it should be fixed not only at the ends but in the middle as well.



#### **Designation key:**

Series SRP SRN 100

# Air duct diameter, mm /

#### Length

500; 600; 750; 900; 1200; 1500; 2000

#### **Overall dimensions:**

| Tupo         |     | Dimensio | ons [mm] |    | Mass | Turce        |     | Dimensio | ons [mm] |    | Mass, |
|--------------|-----|----------|----------|----|------|--------------|-----|----------|----------|----|-------|
| Туре         | ØD  | ØD1      | L        | L1 | [kg] | Туре         | ØD  | ØD1      | L        | L1 | [kg]  |
| SRP 100/500  | 99  | 162      | 600      | 50 | 0,56 | SRN 100/500  | 99  | 162      | 600      | 50 | 0,56  |
| SRP 100/600  | 99  | 162      | 700      | 50 | 0,62 | SRN 100/600  | 99  | 162      | 700      | 50 | 0,62  |
| SRP 100/750  | 99  | 162      | 850      | 50 | 0,72 | SRN 100/750  | 99  | 162      | 850      | 50 | 0,72  |
| SRP 100/900  | 99  | 162      | 1000     | 50 | 0,82 | SRN 100/900  | 99  | 162      | 1000     | 50 | 0,82  |
| SRP 100/1200 | 99  | 162      | 1300     | 50 | 1,02 | SRN 100/1200 | 99  | 162      | 1300     | 50 | 1,02  |
| SRP 100/1500 | 99  | 162      | 1600     | 50 | 1,22 | SRN 100/1500 | 99  | 162      | 1600     | 50 | 1,22  |
| SRP 100/2000 | 99  | 162      | 2100     | 50 | 1,55 | SRN 100/2000 | 99  | 162      | 2100     | 50 | 1,55  |
| SRP 120/500  | 119 | 187      | 600      | 50 | 0,59 | SRN 125/500  | 124 | 187      | 600      | 50 | 0,66  |
| SRP 120/600  | 119 | 187      | 700      | 50 | 0,65 | SRN 125/600  | 124 | 187      | 700      | 50 | 0,74  |
| SRP 120/750  | 119 | 187      | 850      | 50 | 0,75 | SRN 125/750  | 124 | 187      | 850      | 50 | 0,86  |
| SRP 120/900  | 119 | 187      | 1000     | 50 | 0,85 | SRN 125/900  | 124 | 187      | 1000     | 50 | 0,97  |
| SRP 120/1200 | 119 | 187      | 1300     | 50 | 1,05 | SRN 125/1200 | 124 | 187      | 1300     | 50 | 1,21  |
| SRP 120/1500 | 119 | 187      | 1600     | 50 | 1,25 | SRN 125/1500 | 124 | 187      | 1600     | 50 | 1,44  |
| SRP 120/2000 | 119 | 187      | 2100     | 50 | 1,58 | SRN 125/2000 | 124 | 187      | 2100     | 50 | 1,83  |
| SRP 125/500  | 124 | 187      | 600      | 50 | 0,66 | SRN 150/500  | 149 | 212      | 600      | 50 | 0,91  |
| SRP 125/600  | 124 | 187      | 700      | 50 | 0,74 | SRN 150/600  | 149 | 212      | 700      | 50 | 1,00  |
| SRP 125/750  | 124 | 187      | 850      | 50 | 0,86 | SRN 150/750  | 149 | 212      | 850      | 50 | 1,14  |
| SRP 125/900  | 124 | 187      | 1000     | 50 | 0,97 | SRN 150/900  | 149 | 212      | 1000     | 50 | 1,27  |
| SRP 125/1200 | 124 | 187      | 1300     | 50 | 1,21 | SRN 150/1200 | 149 | 212      | 1300     | 50 | 1,54  |
| SRP 125/1500 | 124 | 187      | 1600     | 50 | 1,44 | SRN 150/1500 | 149 | 212      | 1600     | 50 | 1,81  |
| SRP 125/2000 | 124 | 187      | 2100     | 50 | 1,83 | SRN 150/2000 | 149 | 212      | 2100     | 50 | 2,27  |
| SRP 150/500  | 149 | 212      | 600      | 50 | 0,91 | SRN 160/500  | 159 | 212      | 600      | 50 | 0,94  |
| SRP 150/600  | 149 | 212      | 700      | 50 | 1,00 | SRN 160/600  | 159 | 212      | 700      | 50 | 1,03  |
| SRP 150/750  | 149 | 212      | 850      | 50 | 1,14 | SRN 160/750  | 159 | 212      | 850      | 50 | 1,16  |
| SRP 150/900  | 149 | 212      | 1000     | 50 | 1,27 | SRN 160/900  | 159 | 212      | 1000     | 50 | 1,30  |
| SRP 150/1200 | 149 | 212      | 1300     | 50 | 1,54 | SRN 160/1200 | 159 | 212      | 1300     | 50 | 1,57  |
| SRP 150/1500 | 149 | 212      | 1600     | 50 | 1,81 | SRN 160/1500 | 159 | 212      | 1600     | 50 | 1,84  |
| SRP 150/2000 | 149 | 212      | 2100     | 50 | 2,27 | SRN 160/2000 | 159 | 212      | 2100     | 50 | 2,29  |
| SRP 160/500  | 159 | 212      | 600      | 50 | 0,94 | SRN 200/500  | 199 | 264      | 600      | 50 | 1,25  |
| SRP 160/600  | 159 | 212      | 700      | 50 | 1,03 | SRN 200/600  | 199 | 264      | 700      | 50 | 1,36  |
| SRP 160/750  | 159 | 212      | 850      | 50 | 1,16 | SRN 200/750  | 199 | 264      | 850      | 50 | 1,53  |
| SRP 160/900  | 159 | 212      | 1000     | 50 | 1,30 | SRN 200/900  | 199 | 264      | 1000     | 50 | 1,71  |
| SRP 160/1200 | 159 | 212      | 1300     | 50 | 1,57 | SRN 200/1200 | 199 | 264      | 1300     | 50 | 2,05  |
| SRP 160/1500 | 159 | 212      | 1600     | 50 | 1,84 | SRN 200/1500 | 199 | 264      | 1600     | 50 | 2,40  |
| SRP 160/2000 | 159 | 212      | 2100     | 50 | 2,29 | SRN 200/2000 | 199 | 264      | 2100     | 50 | 2,98  |
| SRP 200/500  | 199 | 264      | 600      | 50 | 1,25 | SRN 250/500  | 249 | 314      | 600      | 50 | 1,53  |
| SRP 200/600  | 199 | 264      | 700      | 50 | 1,36 | SRN 250/600  | 249 | 314      | 700      | 50 | 1,67  |
| SRP 200/750  | 199 | 264      | 850      | 50 | 1,53 | SRN 250/750  | 249 | 314      | 850      | 50 | 1,88  |
| SRP 200/900  | 199 | 264      | 1000     | 50 | 1,71 | SRN 250/900  | 249 | 314      | 1000     | 50 | 2,09  |
| SRP 200/1200 | 199 | 264      | 1300     | 50 | 2,05 | SRN 250/1200 | 249 | 314      | 1300     | 50 | 2,51  |
| SRP 200/1500 | 199 | 264      | 1600     | 50 | 2,40 | SRN 250/1500 | 249 | 314      | 1600     | 50 | 2,93  |
| SRP 200/2000 | 199 | 264      | 2100     | 50 | 2,98 | SRN 250/2000 | 249 | 314      | 2100     | 50 | 3,63  |
| SRP 250/500  | 249 | 314      | 600      | 50 | 1,53 | SRN 315/500  | 314 | 365      | 600      | 50 | 1,87  |
| SRP 250/600  | 249 | 314      | 700      | 50 | 1,67 | SRN 315/600  | 314 | 365      | 700      | 50 | 2,04  |
| SRP 250/750  | 249 | 314      | 850      | 50 | 1,88 | SRN 315/750  | 314 | 365      | 850      | 50 | 2,30  |
| SRP 250/900  | 249 | 314      | 1000     | 50 | 2,09 | SRN 315/900  | 314 | 365      | 1000     | 50 | 2,55  |
| SRP 250/1200 | 249 | 314      | 1300     | 50 | 2,51 | SRN 315/1200 | 314 | 365      | 1300     | 50 | 3,06  |
| SRP 250/1500 | 249 | 314      | 1600     | 50 | 2,93 | SRN 315/1500 | 314 | 365      | 1600     | 50 | 3,56  |
| SRP 250/2000 | 249 | 314      | 2100     | 50 | 3,63 | SRN 315/2000 | 314 | 365      | 2100     | 50 | 4,41  |
| SRP 315/500  | 314 | 365      | 600      | 50 | 1,87 |              |     |          |          |    |       |
| SRP 315/600  | 314 | 365      | 700      | 50 | 2,04 |              |     |          |          |    |       |
| SRP 315/750  | 314 | 365      | 850      | 50 | 2,30 |              |     |          |          |    |       |
| SRP 315/900  | 314 | 365      | 1000     | 50 | 2,55 |              |     |          |          |    |       |
| SRP 315/1200 | 314 | 365      | 1300     | 50 | 3,06 |              |     |          |          |    |       |
| SRP 315/1500 | 314 | 365      | 1600     | 50 | 3,56 |              |     |          |          |    |       |

SRP 315/2000 314 365 2100 50 4,41

# SILENCERS

# Series



## Applications

The plate silencer is applied for noise absorption produced during the ventilating equipment operation and spread along the ducting systems. Suitable for installation into rectangular ducts. The silencer reduces the noise level in the air duct significantly (refer the diagram «Noise level reduction»). The silencer is applied jointly with the sound-insulated fan in case of high noise level requirements not only to the air duct but to the equipment in general.

## Design

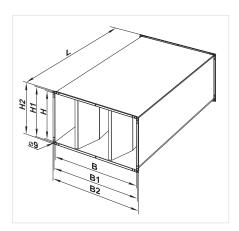
Silencer casing and plate shells are made of galvanized steel. The plates are filled with flameproof sound insulating material with protecting covering to prevent the fiber blowing-out.

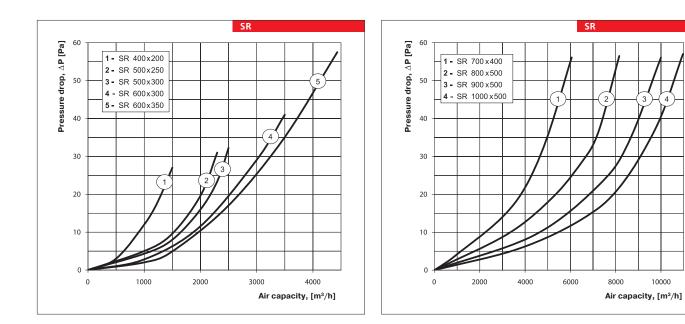
#### Mounting

The mounting is performed by means of flange connection with respect to air flow direction (indicated with an arror on the casing). The straight portion of at least 1 m long before the silencer is recommended to provide the peak efficiency. Installation in series is preferable to attain the better effect.

|             | Noise level reduction, dB (Octave-frequency band [Hz]) |        |        |        |         |         |         |         |
|-------------|--------------------------------------------------------|--------|--------|--------|---------|---------|---------|---------|
|             | 63 Hz                                                  | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | 8000 Hz |
| SR 400x200  | 3                                                      | 7      | 10     | 23     | 27      | 30      | 25      | 22      |
| SR 500x250  | 3                                                      | 6      | 11     | 22     | 26      | 25      | 27      | 22      |
| SR 500x300  | 3                                                      | 6      | 10     | 23     | 24      | 25      | 23      | 18      |
| SR 600x300  | 3                                                      | 6      | 10     | 21     | 24      | 30      | 24      | 17      |
| SR 600x350  | 3                                                      | 5      | 11     | 22     | 25      | 29      | 24      | 21      |
| SR 700x400  | 4                                                      | 7      | 10     | 15     | 22      | 19      | 21      | 18      |
| SR 800x500  | 5                                                      | 6      | 11     | 17     | 21      | 20      | 22      | 20      |
| SR 900x500  | 3                                                      | 6      | 10     | 16     | 20      | 20      | 21      | 15      |
| SR 1000x500 | 4                                                      | 6      | 11     | 16     | 21      | 21      | 23      | 17      |

## **Designation key:**


Series SR


# Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

## **Overall dimensions:**

| Turne       | Dimensions [mm] |      |      |     |     |     |      |      |  |
|-------------|-----------------|------|------|-----|-----|-----|------|------|--|
| Туре        | В               | B1   | B2   | Н   | H1  | H2  | L    | [kg] |  |
| SR 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 950  | 18,5 |  |
| SR 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 950  | 20,5 |  |
| SR 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 950  | 24,5 |  |
| SR 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 950  | 26,5 |  |
| SR 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 950  | 28,7 |  |
| SR 700x400  | 700             | 720  | 740  | 400 | 420 | 440 | 1010 | 36,7 |  |
| SR 800x500  | 800             | 820  | 840  | 500 | 520 | 540 | 1010 | 50,0 |  |
| SR 900x500  | 900             | 920  | 940  | 500 | 520 | 540 | 1010 | 51,7 |  |
| SR 1000x500 | 1000            | 1020 | 1040 | 500 | 520 | 540 | 1010 | 57,3 |  |





10000

# PANEL FILTERS

# Series FB



Series **FBV** 

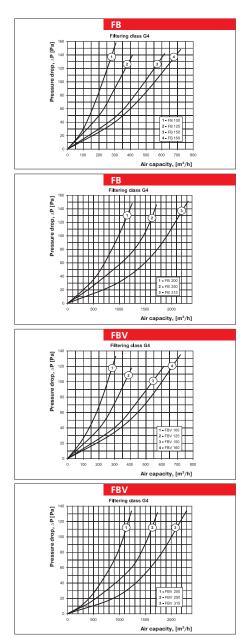


## Applications

Design

Panel type air filters are applied for supply air and sometimes extract air purification in round duct ventilating and conditioning systems. Designed for protection of the air ducts, heat exchangers, control equipment and other ventilating equipment against dusting. The filters minimize wall and ceiling pollution near the air diffuser. Coarse filters can be used as first stage purification filters before more efficient filters.

The casing is made of galvanized steel. The filtering


box has connecting flanges with rubber seals for

airtight connection to the air ducts. The swing-out

access door equipped with lever locks provides easy and quick access to the replaceable filtering element. The filtering element is made of non-woven fabric from synthetic fibers and is fixed on the steel frame. - **FB filter** with flat filtering element (filtering class G4) - **FBV filter** with V-filtering element with increased filtering area (filtering class G4).

## Mounting

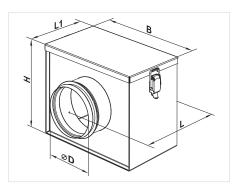
The filter design ensures its mounting on the round ducts by means of clamps with respect to air flow direction indicated with the pointer on the casing. Access for the fan maintenance shall be provided for the filter cleaning or replacement.



**Overall dimensions:** 

**Designation key:** 

Series


FB FBV

SF SFV

| Turne  | [   | Dimensions [mm] |     |     |     |      |  |  |  |  |
|--------|-----|-----------------|-----|-----|-----|------|--|--|--|--|
| Туре   | ØD  | В               | Н   | L   | L1  | [kg] |  |  |  |  |
| FB 100 | 99  | 210             | 175 | 215 | 123 | 1,4  |  |  |  |  |
| FB 125 | 124 | 220             | 209 | 235 | 143 | 1,7  |  |  |  |  |
| FB 150 | 149 | 270             | 237 | 250 | 158 | 2,5  |  |  |  |  |
| FB 160 | 159 | 270             | 237 | 250 | 158 | 2,3  |  |  |  |  |
| FB 200 | 199 | 320             | 279 | 275 | 183 | 3,1  |  |  |  |  |
| FB 250 | 249 | 370             | 327 | 325 | 233 | 4,5  |  |  |  |  |
| FB 315 | 314 | 430             | 392 | 425 | 333 | 6,7  |  |  |  |  |

#### **Overall dimensions:**

| Turne   | [   | Dimensions [mm] |     |     |     |      |  |  |  |
|---------|-----|-----------------|-----|-----|-----|------|--|--|--|
| Туре    | ØD  | В               | Н   | L   | L1  | [kg] |  |  |  |
| FBV 100 | 99  | 233             | 175 | 215 | 123 | 1,4  |  |  |  |
| FBV 125 | 124 | 243             | 209 | 235 | 143 | 1,7  |  |  |  |
| FBV 150 | 149 | 293             | 237 | 250 | 158 | 2,2  |  |  |  |
| FBV 160 | 159 | 293             | 237 | 250 | 158 | 2,2  |  |  |  |
| FBV 200 | 199 | 343             | 279 | 275 | 183 | 3,1  |  |  |  |
| FBV 250 | 249 | 393             | 327 | 325 | 233 | 4,2  |  |  |  |
| FBV 315 | 314 | 453             | 392 | 425 | 333 | 6,3  |  |  |  |



Replaceable filter SF

#### **Replaceable filter SFV**



100; 125; 150; 160; 200; 250; 315

Flange diameter, mm

# **PANEL FILTERS**

# Series FB



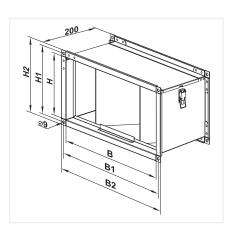

#### Applications

Panel type air filters are applied for supply air and sometimes extract air purification in rectangular duct ventilating and conditioning systems. Designed for protection of the air ducts, heat exchangers, control equipment and other ventilating equipment against dusting. The filters minimize wall and ceiling pollution near the air diffuser. Coarse filters can be used as first stage purification filters before more efficient filters. filtering element is made of non-woven fabric from synthetic fibers and has protecting metal mesh against deformation caused by air flow. Removable cover equipped with lever locks provides easy and quick access to the replaceable filtering element. The filters are small-sized and are suitable even for limited space. Filtering class G4.

## Mounting

The filters are installed at heater and fan inlet along the air flow direction. The air flow direction shall match the designation on the filter. Access for the fan maintenance shall be provided for the filter cleaning or replacement.






## Design

The casing is made of galvanized steel. V-shaped form ensures filtering surface increase. The

## **Overall dimensions:**

| Turne       |      | Mass |      |     |     |     |      |
|-------------|------|------|------|-----|-----|-----|------|
| Туре        | В    | B1   | B2   | Н   | H1  | H2  | [kg] |
| FB 400x200  | 400  | 420  | 440  | 200 | 220 | 240 | 2,4  |
| FB 500x250  | 500  | 520  | 540  | 250 | 270 | 290 | 4,1  |
| FB 500x300  | 500  | 520  | 540  | 300 | 320 | 340 | 4,4  |
| FB 600x300  | 600  | 620  | 640  | 300 | 320 | 340 | 5,2  |
| FB 600x350  | 600  | 620  | 640  | 350 | 370 | 390 | 5,8  |
| FB 700x400  | 700  | 720  | 740  | 400 | 420 | 440 | 6,7  |
| FB 800x500  | 800  | 820  | 840  | 500 | 520 | 540 | 7,9  |
| FB 900x500  | 900  | 920  | 940  | 500 | 520 | 540 | 8,4  |
| FB 1000x500 | 1000 | 1020 | 1040 | 500 | 520 | 540 | 8,9  |



## **Designation key:**



Flange designation (WxH) [mm]

Replaceable SF filter



400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

**PANEL FILTER** 

E S

# **POCKET-TYPE FILTERS**

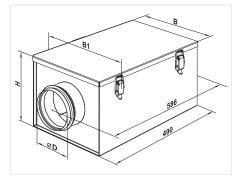
# Series FBK



## Applications

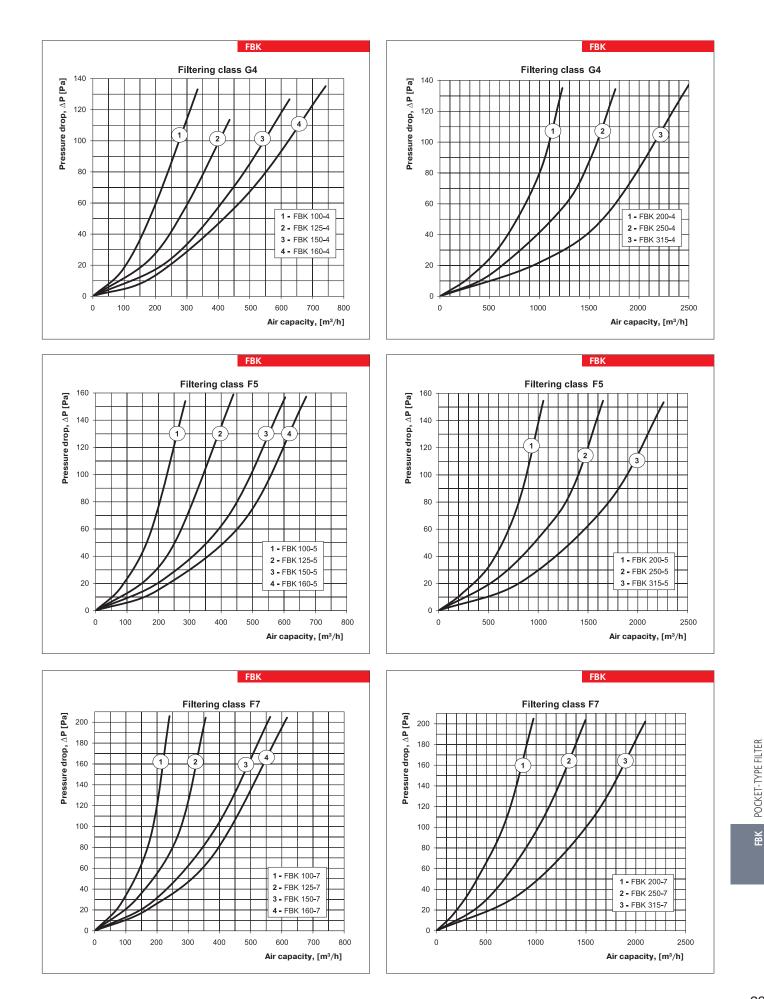
Pocket type air filters are applied for supply air and sometimes extract air purification in round duct ventilating and conditioning systems. Designed for protection of the air ducts, heat exchangers, control equipment and other ventilating equipment against dusting. The filters minimize wall and ceiling pollution near the air diffuser. Coarse filters can be used as first stage purification filters before more efficient filters.

#### Design


The casing is made of galvanized steel. The filtering box has connecting flanges with rubber seals for airtight connection to the air ducts. The swing-out door equipped with lever locks provides easy and quick access to the replaceable filtering element. The filtering element is made of non-woven fabric from synthetic fibers and is fixed on the galvanized steel frame. The filters are available in G4, F5, F7 filtering class.

#### Mounting

The filter design ensures its mounting on the round ducts in any position by means of clamps. The air flow direction shall match the pointer direction on the filter. Both horizontal and vertical mounting is possible. In case of vertical installation the air shall be streamed downwards in such a way as to avoid pockets crumpling. Access fior the filter cleaning or replacement shall be provided.


#### **Overall dimensions:**

| Turne   |     | Mass, |     |     |      |
|---------|-----|-------|-----|-----|------|
| Туре    | ØD  | В     | B1  | Н   | [kg] |
| FBK 100 | 99  | 210   | 230 | 170 | 2,41 |
| FBK 125 | 124 | 220   | 240 | 206 | 2,69 |
| FBK 150 | 149 | 270   | 290 | 236 | 3,20 |
| FBK 160 | 159 | 270   | 290 | 236 | 3,26 |
| FBK 200 | 199 | 320   | 340 | 276 | 3,76 |
| FBK 250 | 249 | 370   | 390 | 386 | 4,39 |
| FBK 315 | 314 | 430   | 450 | 390 | 5,17 |



# Designation key:

| Series     | Flange diameter, mm               |   | Filtering class            | SFK replaceable filter |
|------------|-----------------------------------|---|----------------------------|------------------------|
| FBK<br>SFK | 100; 125; 150; 160; 200; 250; 315 | _ | 4 - G4<br>5 - F5<br>7 - F7 |                        |



# **POCKET-TYPE FILTERS**

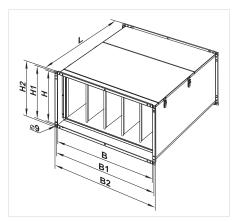
# Series FBK



#### Applications

Pocket type air filters are applied for supply air and sometimes for exhaust air purification in rectangular duct ventilating and conditioning systems. They serve to protect air ducts, heat exchangers, control equipment and other ventilating equipment against dusting. The filters minimize wall and ceiling pollution near the air diffuser. Coarse filters can be used as first stage purification filters before more efficient filters.

#### Design


The casing is made of galvanized steel. The swingout cover equipped with lever locks provides easy and quick access to the replaceable filtering element. The pocket-type filtering element is made of non-woven synthetic fibrous fabric and is fixed on the steel frame. The filters are available in G4, F5, F7 filtering classes.

#### Mounting

Mounting is performed by means of flange connection. The air flow direction shall match the pointer direction on the filter. Both horizontal and vertical installation is possible. In case of vertical installation the air shall be streamed downwards in such a way as to avoid pockets crumpling. Access for the fan maintenance shall be provided for the filter cleaning or replacement.

#### **Overall dimensions:**

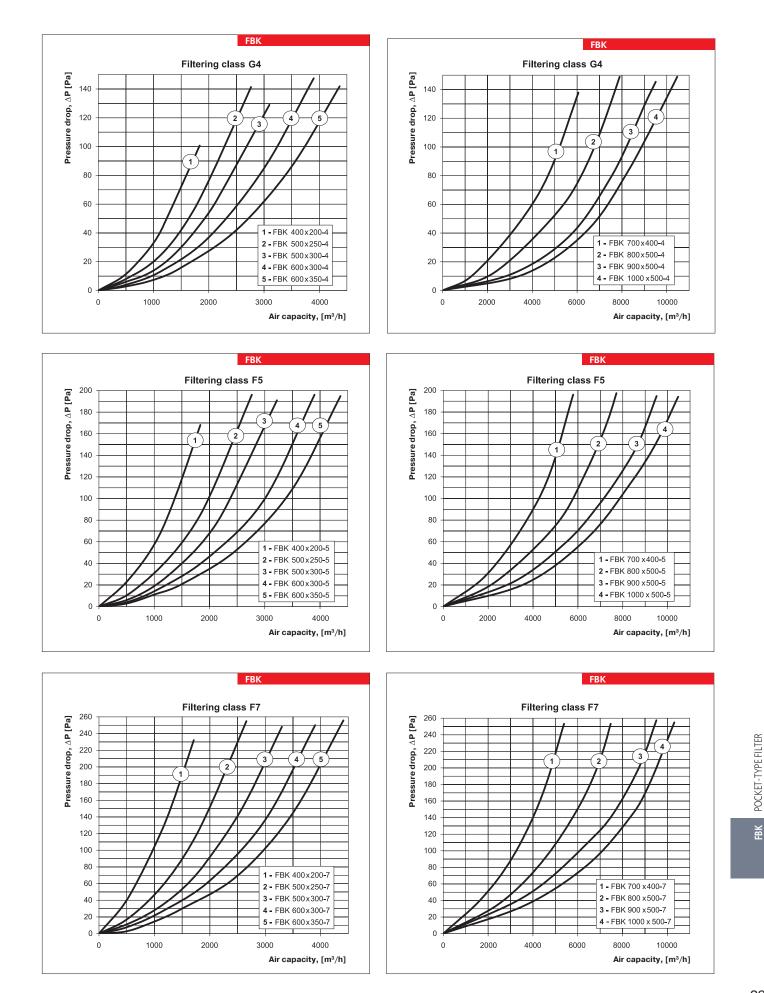
| Turne        |      | Mass, |      |     |     |     |     |      |
|--------------|------|-------|------|-----|-----|-----|-----|------|
| Туре         | В    | B1    | B2   | Н   | H1  | H2  | L   | [kg] |
| FBK 400x200  | 400  | 420   | 440  | 200 | 220 | 240 | 500 | 6,2  |
| FBK 500x250  | 500  | 520   | 540  | 250 | 270 | 290 | 600 | 7,8  |
| FBK 500x300  | 500  | 520   | 540  | 300 | 320 | 340 | 600 | 8,3  |
| FBK 600x300  | 600  | 620   | 640  | 300 | 320 | 340 | 600 | 8,9  |
| FBK 600x350  | 600  | 620   | 640  | 350 | 370 | 390 | 600 | 9,5  |
| FBK 700x400  | 700  | 720   | 740  | 400 | 420 | 440 | 720 | 16,2 |
| FBK 800x500  | 800  | 820   | 840  | 500 | 520 | 540 | 800 | 20,4 |
| FBK 900x500  | 900  | 920   | 940  | 500 | 520 | 540 | 800 | 21,7 |
| FBK 1000x500 | 1000 | 1020  | 1040 | 500 | 570 | 540 | 800 | 23,5 |



#### **Designation key:**

Series FBK SFK

# Flange designation (WxH) [mm]


400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

# Filtering class

| 4 - G4 |  |
|--------|--|
| 5 – F5 |  |
| 7 — F7 |  |









Duct electrical heaters are designed for supply air heating in round duct ventilating system. The heaters are applied in heating, ventilation and air conditioning systems for various premises.

#### Design

The casing and the terminal box are made of galvanized steel and the heating elements are of stainless steel. The heaters are equipped with rubber seals for connection to the air ducts.

NK duct heaters are equipped with two overheating protection thermostats:

basic protection with automatic restart with +50°C operating temperature. After cooling the thermostat closes the control circuit of the heater automatically.

emergency protection with manual restart (operating temperature +90°C). In case of response the power supply to the heater is allowed after the manual emergency reset only.

 the thermostat contacts are located in the terminal box for external connection.

Each standard size has several electric capacity options. The higher capacity can be attained by means of installation of the heaters in series. All the three-phase heaters have star connection.

#### Mounting

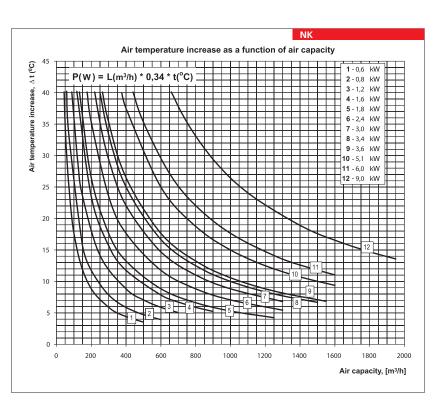
▶ The heater design ensures its mounting on the round ducts in any position by means of clamps. The air flow direction shall match the pointer on the filter. The duct heaters can be installed in any position except for with the electric control unit below to prevent liquid penetration and wiring short circuit.

The mounting shall be performed in such a way as to enable uniform air distribution along the entire cross section. • The air filter shall be installed at heater inlet to protect the heating elements against pollution.

• The minimum distance between the heater and other system elements is no less than two connecting diameters.

▶ The duct heaters are designed for minimum air flow speed 1.5 m/s and the maximum operating outlet temperature 40°C. In case of speed control option ensure the minimum air flow through the heater.

• Power supply to the heater shall be disabled if the fan is not running.


• To ensure the correct and safe heater operation he automation system can be applied to ensure the complex control and protection:

✓ automatic control of heating elements capacity and air heating temperature;

 checking filter condition by means of differential pressure sensor;

✓ power supply disabling in case of supply fan shutdown or airflow speed decrease as well as in case of the built-in overheating thermostats operation;

 shutoff of ventilating system with blowing of electrical heating elements.

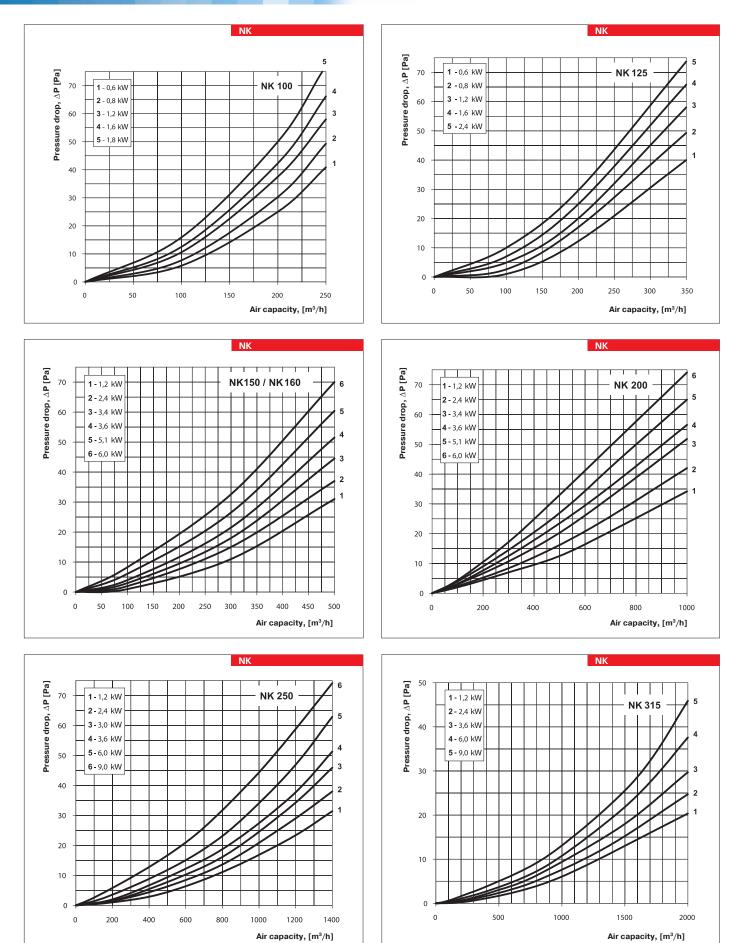


#### **Designation key:**

Series NK

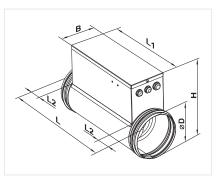
| Flange diameter, mm               | - | Heater power [kW]                                     |
|-----------------------------------|---|-------------------------------------------------------|
| 100; 125; 150; 160; 200; 250; 315 |   | 0,6; 0,8; 1,2; 1,6; 1,8; 2,4; 3,4; 3,6; 5,1; 6,0; 9,0 |

Phase


296

1 - single phase; 3 - three phases

WWW.VENTILATION-SYSTEM.COM


# **Technical data:**

|              | Minimum air capacity [m <sup>3</sup> /h] | Current [A] | Voltage [V] | Power [kW] | Number of heating coils x capacity [kW] | Phase |
|--------------|------------------------------------------|-------------|-------------|------------|-----------------------------------------|-------|
| NK 100-0,6-1 | 60                                       | 2,6         | 230         | 0,6        | 1x0,6                                   | 1     |
| NK 100-0,8-1 | 80                                       | 3,5         | 230         | 0,8        | 1x0,8                                   | 1     |
| NK 100-1,2-1 | 90                                       | 5,2         | 230         | 1,2        | 2x0,6                                   | 1     |
| NK 100-1,6-1 | 120                                      | 7,0         | 230         | 1,6        | 2x0,8                                   | 1     |
| NK 100-1,8-1 | 130                                      | 7,8         | 230         | 1,8        | 3x0,6                                   | 1     |
| NK 125-0,6-1 | 60                                       | 2,6         | 230         | 0,6        | 1x0,6                                   | 1     |
| NK 125-0,8-1 | 80                                       | 3,5         | 230         | 0,8        | 1x0,8                                   | 1     |
| NK 125-1,2-1 | 90                                       | 5,2         | 230         | 1,2        | 2x0,6                                   | 1     |
| NK 125-1,6-1 | 120                                      | 7,0         | 230         | 1,6        | 2x0,8                                   | 1     |
| NK 125-2,4-1 | 150                                      | 7,8         | 230         | 2,4        | 3x0,8                                   | 1     |
| NK 150-1,2-1 | 120                                      | 5,2         | 230         | 1,2        | 1x1,2                                   | 1     |
| NK 150-2,4-1 | 150                                      | 10,4        | 230         | 2,4        | 2x1,2                                   | 1     |
| NK 150-3,4-1 | 220                                      | 14,7        | 230         | 3,4        | 2x1,7                                   | 1     |
| NK 150-3,6-3 | 265                                      | 5,2         | 400         | 3,6        | 3x1,2                                   | 3     |
| NK 150-5,1-3 | 320                                      | 7,4         | 400         | 5,1        | 3x1,7                                   | 3     |
| NK 150-6,0-3 | 360                                      | 8,7         | 400         | 6,0        | 3x2,0                                   | 3     |
| NK 160-1,2-1 | 150                                      | 5,2         | 230         | 1,2        | 1x1,2                                   | 1     |
| NK 160-2,4-1 | 180                                      | 10,4        | 230         | 2,4        | 2x1,2                                   | 1     |
| NK 160-3,4-1 | 250                                      | 14,8        | 230         | 3,4        | 2x1,7                                   | 1     |
| NK 160-3,6-3 | 265                                      | 5,2         | 400         | 3,6        | 3x1,2                                   | 3     |
| NK 160-5,1-3 | 375                                      | 7,4         | 400         | 5,1        | 3x1,7                                   | 3     |
| NK 160-6,0-3 | 440                                      | 8,7         | 400         | 6,0        | 3x2,0                                   | 3     |
| NK 200-1,2-1 | 150                                      | 5,2         | 230         | 1,2        | 1x1,2                                   | 1     |
| NK 200-2,4-1 | 180                                      | 10,4        | 230         | 2,4        | 2x1,2                                   | 1     |
| NK 200-3,4-1 | 250                                      | 14,8        | 230         | 3,4        | 2x1,7                                   | 1     |
| NK 200-3,6-3 | 265                                      | 5,2         | 400         | 3,6        | 3x1,2                                   | 3     |
| NK 200-5,1-3 | 375                                      | 7,4         | 400         | 5,1        | 3x1,7                                   | 3     |
| NK 200-6,0-3 | 440                                      | 8,7         | 400         | 6,0        | 3x2,0                                   | 3     |
| NK 250-1,2-1 | 180                                      | 5,2         | 230         | 1,2        | 1x1,2                                   | 1     |
| NK 250-2,4-1 | 265                                      | 10,4        | 230         | 2,4        | 2x1,2                                   | 1     |
| NK 250-3,0-1 | 375                                      | 13,0        | 230         | 3,0        | 1x3,0                                   | 1     |
| NK 250-3,6-3 | 375                                      | 5,2         | 400         | 3,6        | 3x1,2                                   | 3     |
| NK 250-6,0-3 | 440                                      | 8,7         | 400         | 6,0        | 3x2,0                                   | 3     |
| NK 250-9,0-3 | 660                                      | 13,0        | 400         | 9,0        | 3x3,0                                   | 3     |
| NK 315-1,2-1 | 180                                      | 5,2         | 230         | 1,2        | 1x1,2                                   | 1     |
| NK 315-2,4-1 | 265                                      | 10,4        | 230         | 2,4        | 2x1,2                                   | 1     |
| NK 315-3,6-3 | 375                                      | 5,2         | 400         | 3,6        | 3x1,2                                   | 3     |
| NK 315-6,0-3 | 440                                      | 8,7         | 400         | 6,0        | 3x2,0                                   | 3     |
| NK 315-9,0-3 | 660                                      | 13,0        | 400         | 9,0        | 3x3,0                                   | 3     |



**Overall dimensions:** 

|              | Dimensions [mm] |     |     |     |     |    |              |  |
|--------------|-----------------|-----|-----|-----|-----|----|--------------|--|
| Туре         | ØD              | В   | Н   | L   | L1  | L2 | Mass<br>[kg] |  |
| NK-100-0,6-1 | 99              | 94  | 207 | 306 | 226 | 40 | 2,6          |  |
| NK-100-0,8-1 | 99              | 94  | 207 | 306 | 226 | 40 | 2,6          |  |
| NK-100-1,2-1 | 99              | 94  | 207 | 306 | 226 | 40 | 2,9          |  |
| NK-100-1,6-1 | 99              | 94  | 207 | 306 | 226 | 40 | 2,9          |  |
| NK-100-1,8-1 | 99              | 94  | 207 | 376 | 296 | 40 | 3,1          |  |
| NK-125-0,6-1 | 124             | 103 | 230 | 306 | 226 | 40 | 2,4          |  |
| NK-125-0,8-1 | 124             | 103 | 230 | 306 | 226 | 40 | 2,4          |  |
| NK-125-1,2-1 | 124             | 103 | 230 | 306 | 226 | 40 | 2,7          |  |
| NK-125-1,6-1 | 124             | 103 | 230 | 306 | 226 | 40 | 2,7          |  |
| NK-125-2,4-1 | 124             | 103 | 230 | 376 | 296 | 40 | 3,0          |  |
| NK-150-1,2-1 | 149             | 120 | 255 | 306 | 226 | 40 | 2,5          |  |
| NK-150-2,4-1 | 149             | 120 | 255 | 306 | 226 | 40 | 3,1          |  |
| NK-150-3,4-1 | 149             | 120 | 255 | 306 | 226 | 40 | 3,1          |  |
| NK-150-3,6-3 | 149             | 120 | 255 | 376 | 296 | 40 | 4,1          |  |
| NK-150-5,1-3 | 149             | 120 | 255 | 376 | 296 | 40 | 4,1          |  |
| NK-150-6,0-3 | 149             | 120 | 255 | 376 | 296 | 40 | 4,1          |  |
| NK-160-1,2-1 | 159             | 120 | 267 | 306 | 226 | 40 | 2,1          |  |
| NK-160-2,4-1 | 159             | 120 | 267 | 306 | 226 | 40 | 2,9          |  |
| NK-160-3,4-1 | 159             | 120 | 267 | 306 | 226 | 40 | 3,2          |  |
| NK-160-3,6-3 | 159             | 120 | 267 | 376 | 296 | 40 | 3,9          |  |
| NK-160-5,1-3 | 159             | 120 | 267 | 376 | 296 | 40 | 3,9          |  |
| NK-160-6,0-3 | 159             | 120 | 267 | 376 | 296 | 40 | 3,9          |  |
| NK-200-1,2-1 | 199             | 150 | 302 | 294 | 214 | 40 | 2,4          |  |
| NK-200-2,4-1 | 199             | 150 | 302 | 294 | 214 | 40 | 3,2          |  |
| NK-200-3,4-1 | 199             | 150 | 302 | 294 | 214 | 40 | 3,3          |  |
| NK-200-3,6-3 | 199             | 150 | 302 | 376 | 296 | 40 | 4,1          |  |
| NK-200-5,1-3 | 199             | 150 | 302 | 376 | 296 | 40 | 4,1          |  |
| NK-200-6,0-3 | 199             | 150 | 302 | 376 | 296 | 40 | 4,1          |  |
| NK-250-1,2-1 | 249             | 150 | 356 | 306 | 226 | 40 | 2,4          |  |
| NK-250-2,4-1 | 249             | 150 | 356 | 306 | 226 | 40 | 2,6          |  |
| NK-250-3,0-1 | 249             | 150 | 356 | 306 | 226 | 40 | 2,4          |  |
| NK-250-3,6-3 | 249             | 150 | 356 | 376 | 296 | 40 | 2,9          |  |
| NK-250-6,0-3 | 249             | 150 | 356 | 376 | 296 | 40 | 2,9          |  |
| NK-250-9,0-3 | 249             | 150 | 356 | 376 | 296 | 40 | 2,9          |  |
| NK-315-1,2-1 | 313             | 150 | 425 | 294 | 214 | 40 | 2,6          |  |
| NK-315-2,4-1 | 313             | 150 | 425 | 294 | 214 | 40 | 2,8          |  |
| NK-315-3,6-3 | 313             | 150 | 425 | 376 | 296 | 40 | 3,1          |  |
| NK-315-6,0-3 | 313             | 150 | 425 | 376 | 296 | 40 | 3,1          |  |
| NK-315-9,0-3 | 313             | 150 | 425 | 376 | 296 | 40 | 3,1          |  |







## Applications

Duct electrical heaters are designed for heating of intake air in rectangular ventilating system. The heaters are applied for air heating in ventilation and air conditioning systems in various premises.

#### Design

The casing and the terminal box are made of galvanized steel plate and the heating elements are of stainless steel. Additional ribbing is provided to increase the heat exchange surface. NK duct heaters are equipped with two overheating protection thermostats:  basic protection with automatic restart (operating temperature +50°C). After cooling the thermostat closes the control circuit of the heater automatically.

emergency protection with manual restart (operating temperature above +90°C). In case of response the power supply to the heater is allowed after the manual emergency reset only.

• the thermostat contacts are located in the terminal box for external connection.

Each standard size has several electric power capacity options. Higher capacity can be attained by means of installation of the heaters in series. In the heaters with heating capacity above 27 kW the tubular heating elements are grouped per 9 kW each. Each group consists of three  $\Delta$  connected tubular elements.

#### Mounting

▶ The heater design ensures its mounting by means of flange connection. The air flow direction shall match the pointer on the filter. The duct heaters can be installed in any position except for with the electric control unit below to prevent condensate penetration and wiring short circuit.

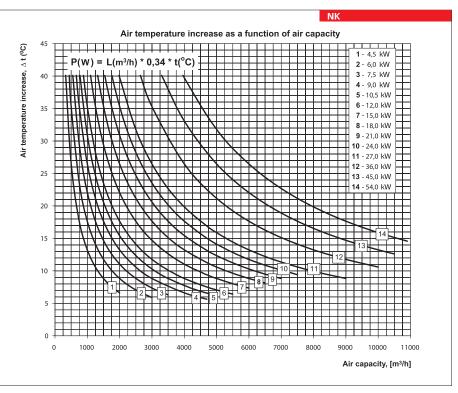
• The mounting shall be performed in such a way as to enable the uniform air stream distribution along the entire cross section.

• The air filter shall be installed at the heater inlet to protect the heating elements against pollution.

• We recommend to keep such distance between the heater and other system elements which is no less than the heater diagonal, i.e. the distance from one angle to another in its air passage part.

The duct heaters are designed for the minimum air flow 1.5 m/s and the operating air temperature 40 °C. In case of speed control option ensure the minimum air flow through the heater.

• Power supply to the heater shall be disabled if the fan is not running.


• To ensure the correct and safe heater operation the automation system can be applied to ensure the complex control and protection:

 automatic control of heating elements capacity and air heating temperature;

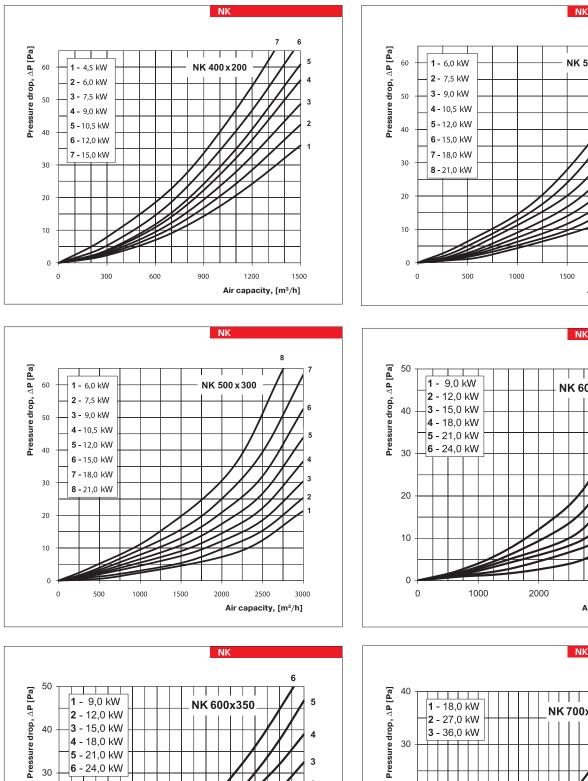
 checking filter condition by means of differential pressure sensor;

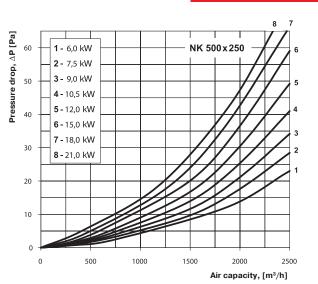
✓ power supply disabling in case of the supply fan shutdown or airflow speed decrease as well as in case of the built-in overheating thermostats operation;

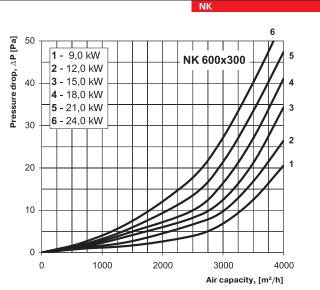
 shutoff of ventilating system with blowing of electrical heating elements.

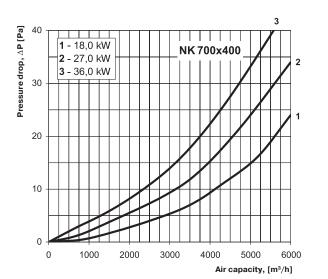


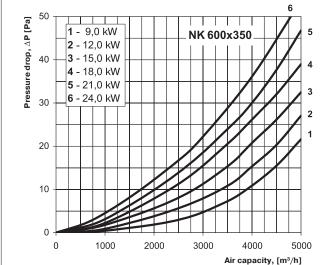
#### **Designation key:**


| Series | Flange designation<br>(WxH) [mm]                                                        | - Heater power [kW]                                     | - | Phase            |
|--------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---|------------------|
| NK     | 400x200; 500x250; 500x300;<br>600x300; 600x350; 700x400;<br>800x500; 900x500; 1000x500. | 4,5; 6; 7,5; 9; 10,5; 12; 18; 21;<br>24; 27; 36; 45; 54 |   | 3 – three phases |

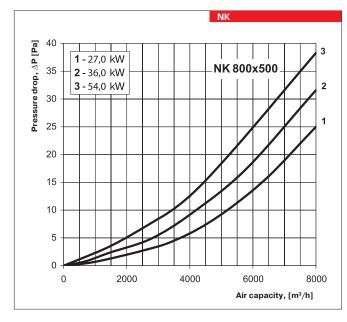

300

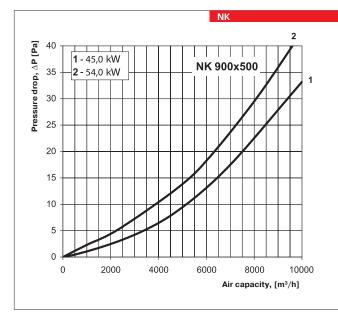

WWW.VENTILATION-SYSTEM.COM

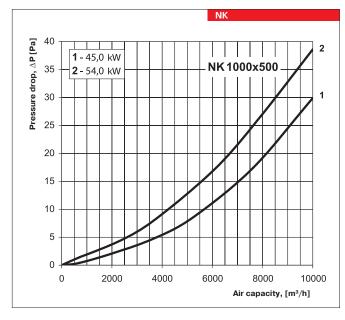

# Technical data:


|                                       | Minimum air<br>capacity [m³/h] | Current [A]  | Voltage [V] | Power [kW]  | Number of heating coils x capacity [kW] | Connection diagram for tubular heating elements |
|---------------------------------------|--------------------------------|--------------|-------------|-------------|-----------------------------------------|-------------------------------------------------|
| NK 400x200-4,5-3                      | 330                            | 6,5          | 400         | 4,5         | 3x1,5                                   | Y                                               |
| NK 400x200-6,0-3                      | 440                            | 8,7          | 400         | 6,0         | 3x2,0                                   | Y                                               |
| NK 400x200-7,5-3                      | 550                            | 10,9         | 400         | 7,5         | 3x2,5                                   | Y                                               |
| NK 400x200-9,0-3                      | 660                            | 13,0         | 400         | 9,0         | 3x3,0                                   | Y                                               |
| NK 400x200-10,5-3                     | 770                            | 15,2         | 400         | 10,5        | 3x3,5                                   | Y                                               |
| NK 400x200-12,0-3                     | 880                            | 17,4         | 400         | 12,0        | 3x4,0                                   | Y                                               |
| NK 400x200-15,0-3                     | 1100                           | 21,7         | 400         | 15,0        | 3x5,0                                   | Y                                               |
| NK 500x250-6,0-3                      | 440                            | 8,7          | 400         | 6,0         | 3x2,0                                   | Y                                               |
| NK 500x250-7,5-3                      | 550                            | 10,9         | 400         | 7,5         | 3x2,5                                   | Y                                               |
| NK 500x250-9,0-3                      | 660                            | 13,0         | 400         | 9,0         | 3x3,0                                   | Y                                               |
| NK 500x250-10,5-3                     | 770                            | 15,2         | 400         | 10,5        | 3x3,5                                   | Y                                               |
| NK 500x250-12,0-3                     | 880                            | 17,4         | 400         | 12,0        | 3x4,0                                   | Y                                               |
| NK 500x250-15,0-3                     | 1100                           | 21,7         | 400         | 15,0        | 3x5,0                                   | Y                                               |
| NK 500x250-18,0-3                     | 1320                           | 26,0         | 400         | 18,0        | 3x6,0                                   | Y                                               |
| NK 500x250-21,0-3                     | 1540                           | 30,0         | 400         | 21,0        | 3x7,0                                   | Y                                               |
| NK 500x300-6,0-3                      | 440                            | 8,7          | 400         | 6,0         | 3x2,0                                   | Y                                               |
| NK 500x300-7,5-3                      | 550                            | 10,9         | 400         | 7,5         | 3x2,5                                   | Y                                               |
| NK 500x300-9,0-3                      | 660                            | 13,0         | 400         | 9,0         | 3x3,0                                   | Y                                               |
| NK 500x300-10,5-3                     | 770                            | 15,2         | 400         | 10,5        | 3x3,5                                   | Y                                               |
| NK 500x300-12,0-3                     | 880                            | 17,4         | 400         | 12,0        | 3x4,0                                   | Y                                               |
| NK 500x300-15,0-3                     | 1100                           | 21,7         | 400         | 15,0        | 3x5,0                                   | Y                                               |
| NK 500x300-18,0-3                     | 1320                           | 26,0         | 400         | 18,0        | 3x6,0                                   | Δ                                               |
| NK 500x300-21,0-3                     | 1540                           | 30,0         | 400         | 21,0        | 3x7,0                                   | Δ                                               |
| NK 600x300-9,0-3                      | 660                            | 13,0         | 400         | 9,0         | 3x3,0                                   | Y                                               |
| NK 600x300-12,0-3                     | 880                            | 17,4         | 400         | 12,0        | 3x4,0                                   | Y                                               |
| NK 600x300-15,0-3                     | 1100                           | 21,7         | 400         | 15,0        | 3x5,0                                   | Y                                               |
| NK 600x300-18,0-3                     | 1320                           | 26,0         | 400         | 18,0        | 3x6,0                                   | Δ                                               |
| NK 600x300-21,0-3                     | 1540                           | 30,0         | 400         | 21,0        | 3x7,0                                   | Δ                                               |
| NK 600x300-24,0-3<br>NK 600x350-9,0-3 | 1760<br>660                    | 34,7         | 400<br>400  | 24,0<br>9,0 | 3x8,0<br>3x3,0                          | Y                                               |
| NK 600x350-9,0-3                      | 880                            | 13,0<br>17,4 | 400         | 9,0         | 3x4,0                                   | Y                                               |
| NK 600x350-12,0-3                     | 1100                           | 21,7         | 400         | 15,0        | 3x5,0                                   | Y                                               |
| NK 600x350-18,0-3                     | 1320                           | 26,0         | 400         | 18,0        | 3x6,0                                   | Δ                                               |
| NK 600x350-21,0-3                     | 1540                           | 30,0         | 400         | 21,0        | 3x7,0                                   | Δ                                               |
| NK 600x350-24,0-3                     | 1760                           | 34,7         | 400         | 24,0        | 3x8,0                                   | Δ                                               |
| NK 700x400-18-3                       | 1320                           | 26,0         | 400         | 18,0        | 6x3,0                                   | Δ                                               |
| NK 700x400-27-3                       | 1980                           | 39,0         | 400         | 27,0        | 9x3,0                                   | Δ X 3 groups                                    |
| NK 700x400-36-3                       | 2640                           | 52,0         | 400         | 36,0        | 12x3,0                                  | $\Delta$ X 4 groups                             |
| NK 800x500-27-3                       | 1980                           | 39,0         | 400         | 27,0        | 9x3,0                                   | $\Delta$ X 3 groups                             |
| NK 800x500-36-3                       | 2640                           | 52,0         | 400         | 36,0        | 12x3,0                                  | $\Delta$ X 4 groups                             |
| NK 800x500-54-3                       | 3960                           | 78,0         | 400         | 54,0        | 18x3,0                                  | $\Delta$ X 6 groups                             |
| NK 900x500-45-3                       | 3300                           | 65,0         | 400         | 45,0        | 15x3,0                                  | $\Delta$ X 5 groups                             |
| NK 900x500-54-3                       | 3960                           | 78,0         | 400         | 54,0        | 18x3,0                                  | $\Delta$ X 6 groups                             |
| NK 1000x500-45-3                      | 3300                           | 65,0         | 400         | 45,0        | 15x3,0                                  | ∆ X 5 groups                                    |
| NK 1000x500-54-3                      | 3960                           | 78,0         | 400         | 54,0        | 18x3,0                                  | ∆ X 6 groups                                    |

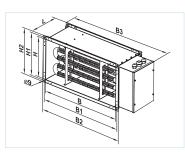








# INTS







| -                 | Dimensions [mm] |      |      |      |     |     |     |     |      |
|-------------------|-----------------|------|------|------|-----|-----|-----|-----|------|
| Туре              | В               | B1   | B2   | В3   | Н   | H1  | H2  | L   | [kg] |
| NK 400x200-4,5-3  | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-6,0-3  | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-7,5-3  | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-9,0-3  | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-10,5-3 | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-12,0-3 | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 400x200-15,0-3 | 400             | 420  | 440  | 540  | 200 | 220 | 240 | 200 | 6,5  |
| NK 500x250-6,0-3  | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-7,5-3  | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-9,0-3  | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-10,5-3 | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-12,0-3 | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-15,0-3 | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-18,0-3 | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x250-21,0-3 | 500             | 520  | 540  | 640  | 250 | 270 | 290 | 200 | 7,65 |
| NK 500x300-6,0-3  | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-7,5-3  | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-9,0-3  | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-10,5-3 | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-12,0-3 | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-15,0-3 | 500             | 520  | 540  | 640  | 300 | 320 | 340 | 200 | 8,2  |
| NK 500x300-18,0-3 | 500             | 520  | 540  | 640  | 300 | 320 | 340 |     | 8,2  |
| NK 500x300-21,0-3 | 500             | 520  | 540  | 640  | 300 | 320 |     | 200 | 8,2  |
| NK 600x300-9,0-3  | 600             | 620  | 640  | 740  | 300 | 320 | 340 |     | 9,4  |
| NK 600x300-12,0-3 | 600             | 620  | 640  | 740  | 300 | 320 |     | 200 | 9,4  |
| NK 600x300-15,0-3 | 600             | 620  | 640  | 740  | 300 | 320 | 340 |     | 9,4  |
| NK 600x300-18,0-3 | 600             | 620  | 640  | 740  | 300 | 320 | 340 |     | 9,4  |
| NK 600x300-21,0-3 | 600             | 620  | 640  | 740  | 300 | 320 | 340 |     | 9,4  |
| NK 600x300-24,0-3 | 600             | 620  | 640  | 740  | 300 | 320 |     | 200 | 9,4  |
| NK 600x350-9,0-3  | 600             | 620  | 640  | 740  | 350 | 370 | 390 |     | 9,75 |
| NK 600x350-12,0-3 | 600             | 620  | 640  | 740  | 350 | 370 |     | 200 | 9,75 |
| NK 600x350-15,0-3 |                 | 620  | 640  | 740  | 350 | 370 | 390 |     | 9,75 |
| NK 600x350-18,0-3 |                 | 620  | 640  | 740  | 350 | 370 | 390 |     | 9,75 |
| NK 600x350-21,0-3 |                 | 620  | 640  | 740  | 350 | 370 |     | 200 | ,    |
| NK 600x350-24,0-3 | 600             | 620  | 640  | 740  |     |     |     |     | 9,75 |
| NK 700x400-18-3   | 700             | 720  | 740  | 840  | 400 |     | 440 |     | 14   |
| NK 700x400-27-3   | 700             | 720  | 740  | 840  | 400 |     |     |     | 18,5 |
| NK 700x400-36-3   | 700             | 720  | 740  | 840  | 400 |     | 440 |     | 25   |
| NK 800x500-27-3   | 800             | 820  | 840  | 940  | 500 | 520 |     |     | 19   |
| NK 800x500-36-3   | 800             | 820  | 840  | 940  | 500 |     |     |     | 23,5 |
| NK 800x500-54-3   | 800             | 820  | 840  | 940  | 500 |     | 540 |     | 30   |
| NK 900x500-45-3   | 900             | 920  | 940  | 1040 | 500 | 520 |     |     | 31   |
| NK 900x500-54-3   | 900             | 920  | 940  | 1040 | 500 | 520 |     |     | 33,5 |
| NK 1000x500-45-3  |                 | 1020 |      | 1140 | 500 | 520 |     |     | 33   |
| NK 1000x500-54-3  | 1000            | 1020 | 1040 | 1140 | 500 | 520 | 540 | /50 | 36   |



# Series



## Applications

Duct water heaters are designed for heating of supply air in round ventilation systems. They can be also applied in supply or supply and exhaust ventilating units.

## Design

The heater casing is made of galvanized steel, the tubular coils are of copper tubes and the heat exchange surface is made of aluminium plates. The heaters are equipped with rubber seals for airtight connection to the air ducts. The heaters are ailable in 2 and 4 rows modifications and are designed for maximum operating pressure 1.6 MPa (16 bar) and maximum water operating temperature +100°C. The outlet manifold has a branch pipe for installation of submersible temperature probe or icing protecting device. The heater is equipped with a nipple for the system deaeration.

#### Mounting

▶ The heater design ensures its mounting on the round ducts in any position by means of clamps. The water heating coils can be installed in any position that enables the heater deaeration. The air flow direction shall match the pointer designation on the heater.

• The mounting shall be performed in such a way as to enable the uniform air stream distribution along the whole cross section.

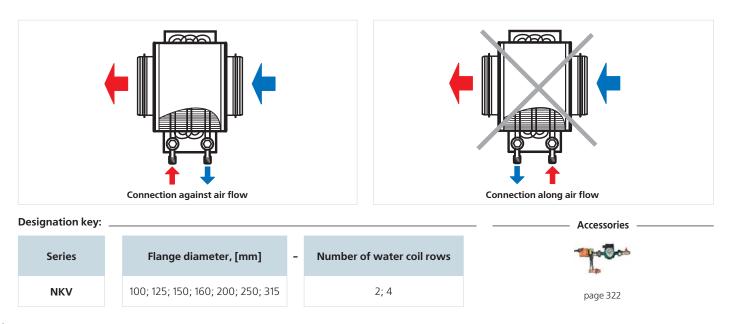
• The air filter shall be installed at the heater inlet to protect the heating elements against pollution.

▶ The heater can be installed at the fan inlet ot outlet. If the heater is located at the filter outlet the air duct between the heater and the filter shall have the length of at least two connecting diameters to ensure the air flow stabilization as well as permissible air temperature level inside the fan.

 The heater shall be connected on the counterflow principle, otherwise its efficiency can drop by 5-15%. All the nomographic charts in the catalogue are valid for such connection.

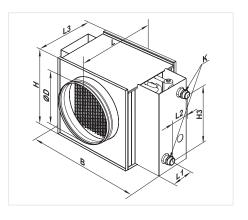
• If water serves as a heat medium the heaters are suitable for indoor installation only. For outdoor installation use antifreeze mixture, i.e. ethylene glycol solution.

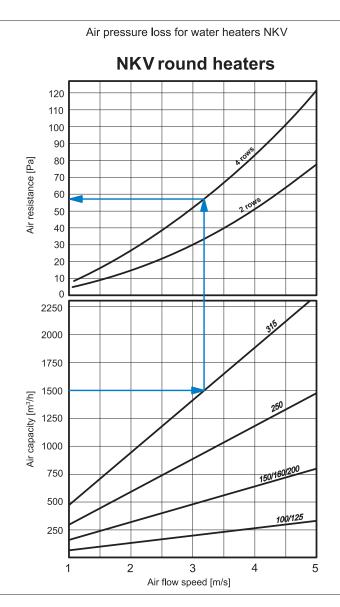
• To ensure the correct and safe heater operation use the automation system that provides complex control and freezing protection:

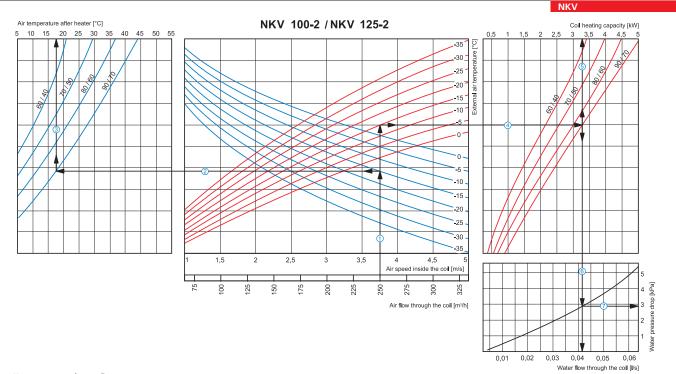

✓ automatic control of heating elements capacity and air heating temperature;

✓ Switching ventilating system on after preliminary heating with the heater;

✓ use of air curtains equipped with spring-loaded actuator;


✓ filter checking by means of differential pressure sensor;


✓ fan shutdown in case of the heater freezing danger.



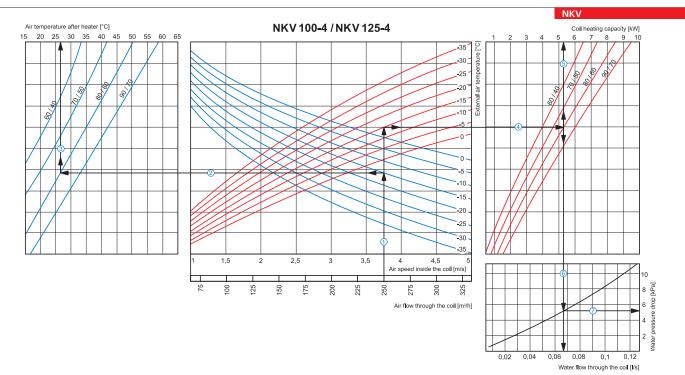

## **Overall dimensions:**

|           |     | Number | Mass |     |     |    |    |     |        |                       |      |
|-----------|-----|--------|------|-----|-----|----|----|-----|--------|-----------------------|------|
| Туре      | ØD  | В      | Н    | H3  | L   | L1 | L2 | L3  | К      | of water<br>coil rows | [kg] |
| NKV 100-2 | 99  | 350    | 230  | 150 | 300 | 32 | 43 | 220 | G 3/4" | 2                     | 3,9  |
| NKV 100-4 | 99  | 350    | 230  | 150 | 300 | 28 | 65 | 220 | G 3/4" | 4                     | 5,2  |
| NKV 125-2 | 124 | 350    | 230  | 150 | 300 | 32 | 43 | 220 | G 3/4" | 2                     | 4,0  |
| NKV 125-4 | 124 | 350    | 230  | 150 | 300 | 28 | 65 | 220 | G 3/4" | 4                     | 5,3  |
| NKV 150-2 | 149 | 400    | 280  | 200 | 300 | 32 | 43 | 220 | G 3/4" | 2                     | 7,5  |
| NKV 150-4 | 149 | 400    | 280  | 200 | 300 | 28 | 65 | 220 | G 3/4" | 4                     | 8,2  |
| NKV 160-2 | 159 | 400    | 280  | 200 | 300 | 32 | 43 | 220 | G 3/4" | 2                     | 7,5  |
| NKV 160-4 | 159 | 400    | 280  | 200 | 300 | 28 | 65 | 220 | G 3/4" | 4                     | 8,2  |
| NKV 200-2 | 198 | 400    | 280  | 200 | 300 | 32 | 43 | 220 | G 3/4" | 2                     | 7,5  |
| NKV 200-4 | 198 | 400    | 280  | 200 | 300 | 28 | 65 | 220 | G 3/4" | 4                     | 8,2  |
| NKV 250-2 | 248 | 470    | 350  | 270 | 350 | 32 | 43 | 270 | G 1"   | 2                     | 10,3 |
| NKV 250-4 | 248 | 470    | 350  | 270 | 350 | 28 | 65 | 270 | G 1"   | 4                     | 10,8 |
| NKV 315-2 | 313 | 550    | 430  | 350 | 450 | 57 | 43 | 370 | G 1"   | 2                     | 12,6 |
| NKV 315-4 | 313 | 550    | 430  | 350 | 450 | 53 | 65 | 370 | G 1"   | 4                     | 13,4 |







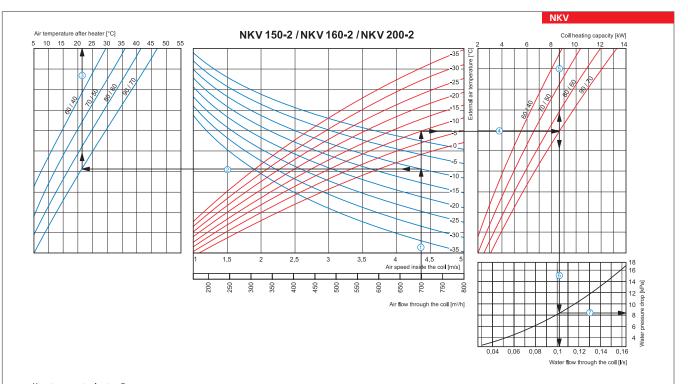

#### How to use water heater diagrams

Air Speed. Starting from 250 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -15\*C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+17,5°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature -15°C (red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (90/70 °C). from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (3.25 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.042 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (2.9 kPa).



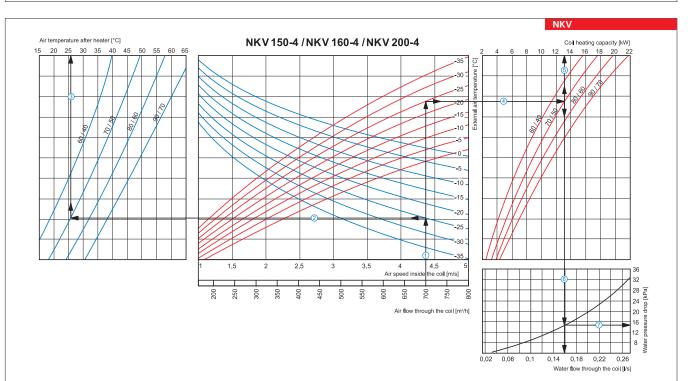

#### How to use water heater diagrams

Air Speed. Starting from 250 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line 🕲 from this point to the left till crossing water in/out temperature curve (80/60°C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+27°C).

• Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line 🛈 from this point to the right to the intersection of water in/out temperature curve (e.g., 80/60 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (5.2 kW). Water flow. Prolong the line (6) down to water flow axis at the bottom of the graphic (0.067 l/s). Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (5.2 kPa).




#### How to use water heater diagrams

Air Speed. Starting from 700 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.4 m/s.

Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -10°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+21 °C).
Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -10°C) and draw a horizontal line ④ from this point to the right

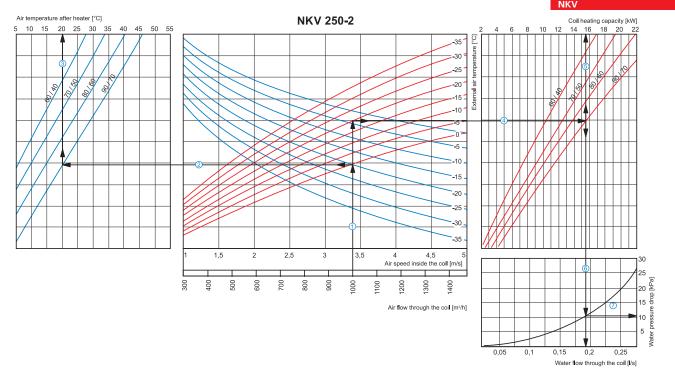
Heating Contexpects, Froducts, Product and Product an

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (8.2 kPa).



#### How to use water heater diagrams

Air Speed. Starting from 700  $m^3/h$  on the air flow scale draw a vertical line 0 till the air speed axis which makes about 4.4 m/s.


Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -25°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line (1) to the supply air temperature axis on top of the graphic (+26 °C). Heating coil capacity. Prolong the line (1) up to the point where it crosses the outside air temperature indicated as red curve (e.g., -25 °C) and draw a horizontal line (3) from this point to the right

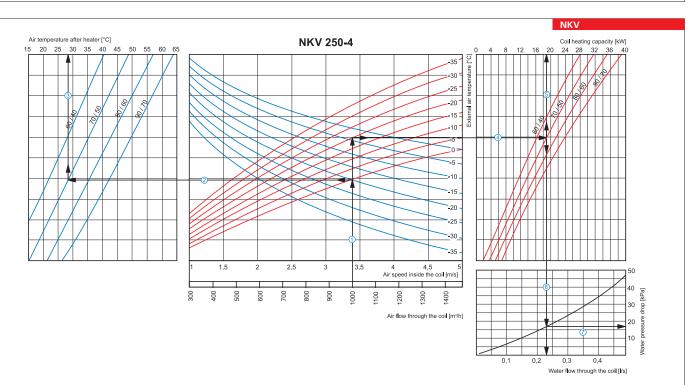
to the intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (13.0 kW).

Water flow. Prolong the line (1) down to water flow axis at the bottom of the graphic (0.16 l/s).
 Water pressure drop. Draw the line (2) from the point where line (6) crosses the black curve to the pressure drop axis. (15 kPa).

HEATER

<del>ال</del>ا




#### How to use water heater diagrams

Air Speed. Starting from 1000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.4 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+20 °C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line ⑤ up to the scale of heating coil capacity (15.5 kW).
 Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.191/s).


- Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (11.0 kPa)

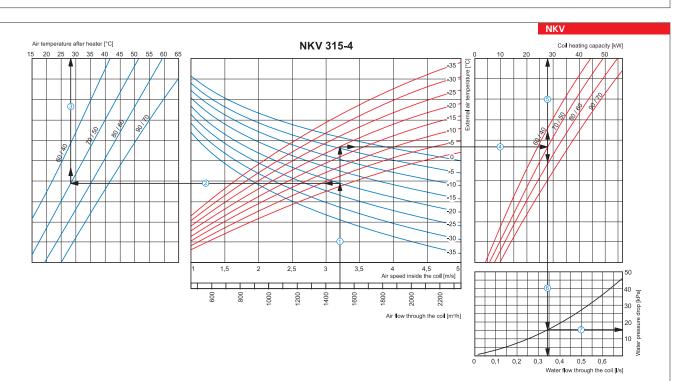


#### How to use water heater diagrams

Air Speed. Starting from 1000  $m^3/h$  on the air flow scale draw a vertical line 0 till the air speed axis which makes about 3.4 m/s.

- Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line 🖉 from this point to the left till crossing water
- in/out temperature curve (70/50 °C). From this point draw a vertical line (1) to the supply air temperature axis on top of the graphic (+28 °C). Heating coil capacity. Prolong the line (1) up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line (4) from this point to the right to the Reading concapacity, robong the line O up to the point where it closes the outside an temperature indicated as ted curve (e.g., -20 C) and draw a intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line O up to the scale of heating coil capacity (19.0 kW).
   Water flow. Prolong the line O down to water flow axis at the bottom of the graphic O (0.231/s).
- Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (17.0 kPa).




#### How to use water heater diagrams

Air Speed. Starting from 1500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.2 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line 🖉 from this point to the left till crossing

a spp) on temperature (From the point where it closes the outside an emperature (one control as point of the print where it closes the outside an emperature (one control as point of the print where it closes the outside an emperature axis on top of the graphic (+21 \* C).
Heating coil capacity, Prolong the line ① up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 \*C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (23.0 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.28 l/s)

- Water pressure drop. Draw the line 🗇 from the point where line 🌀 crosses the black curve to the pressure drop axis. (12.5 kPa).



#### How to use water heater diagrams

 Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+28 °C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -20°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line <sup>(5)</sup>/<sub>3</sub> up to the scale representing the heating coil capacity (28.0 kW).
Water flow. Prolong the line <sup>(5)</sup>/<sub>3</sub> down to water flow axis at the bottom of the graphic <sup>(6)</sup>/<sub>3</sub> (0.34 l/s).
Water pressure drop. Draw the line <sup>(7)</sup>/<sub>2</sub> from the point where line <sup>(6)</sup>/<sub>3</sub> crosses the black curve to the pressure drop axis. (16.0 kPa).

# Heater series

# NKV



#### Applications

Duct water heaters are designed for heating of supply air in rectangular ventilating system and are applicable in supply or supply and exhaust units.

#### Design

The heater casing is made of galvanized steel, the manifold is made of copper tubes and the heat exchange surface is made of aluminium plates. The heaters are available in 2, 3 or 4 rows modifications and designed for operation at maximum operating pressure 1,6 MPa (16 bar) and maximum operating temperature +100°C. The exhaust manifold of the heater has a branch pipe for submersible temperature sensor or iicng protecting device. The heater has a nipple to provide the system deaeration.

## Mounting

The heater design ensures its mounting by means of a flange connection. The water heater can be installed in any position to enable its deaeration. The air stream shall match the pointer on the heater;

• The heater shall be installed in such a way as to enable the uniform air distribution along the entire cross section;

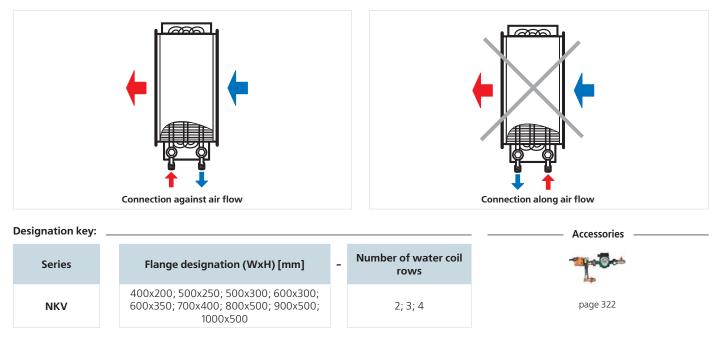
• the air filter shall be installed at the heater inlet to provide protection against dust and dirt;

• the heater can be installed both at the fan inlet or outlet. If the heater is located at the fan outlet the air duct length between the heater and the fan shall be at least 1-1.5 m to ensure the air flow stabilization as well as permissible air temperature level inside the fan;

• The heater shall be connected on the counterflow principle, otherwise its efficiency can drop by 5-15%. All the nomographic charts in the catalogue are valid for such connection;

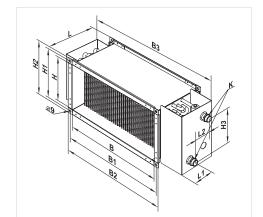
 If waters serves as a heat transfer agent the heaters are designed for indoor installation only.
 For outdoor installation use antifreeze mixture (i.e. ethylene glycol solution);

• To ensure the correct and safe heater operation use the automation system that provides the complex control and freezing protection:

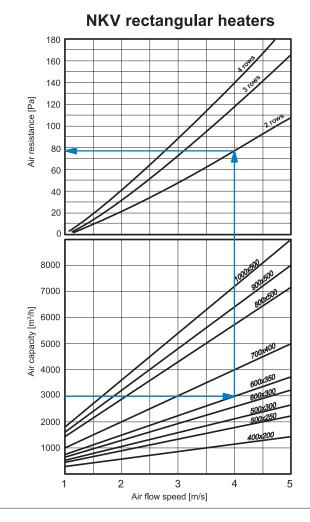

✓ automatic control of heating elements capacity and air heating temperature;

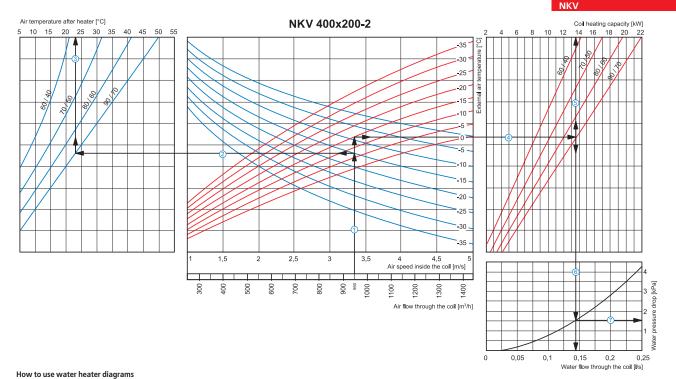
✓ Switching ventilating system on with preliminary heating by the heater;

 $\checkmark$  use of air curtains equipped with spring-loaded actuator;


✓ filter checking by means of differential pressure sensor;

 $\checkmark$  fan shutdown in case of water coils freezing danger.



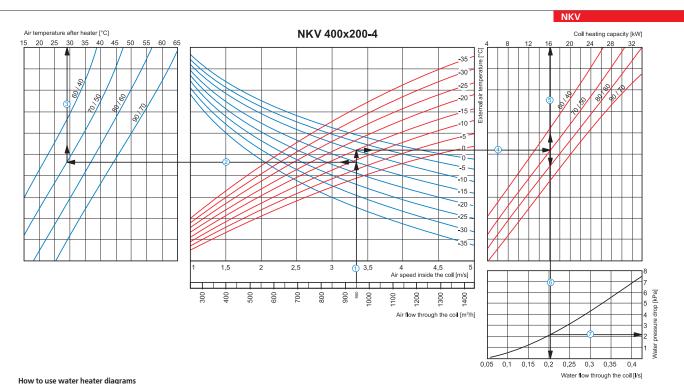


## **Overall dimensions:**

| _              | Dimensions [mm] |      |      |      |     |     |     |     |     |    | Number | Mass   |                    |      |
|----------------|-----------------|------|------|------|-----|-----|-----|-----|-----|----|--------|--------|--------------------|------|
| Туре           | В               | B1   | B2   | B3   | н   | H1  | H2  | H3  | L   | L1 | L2     | К      | of water coil rows | [kg] |
| NKV 400x200-2  | 400             | 420  | 440  | 565  | 200 | 220 | 240 | 150 | 200 | 43 | 43     | G 3/4" | 2                  | 7,6  |
| NKV 400x200-4  | 400             | 420  | 440  | 565  | 200 | 220 | 240 | 150 | 200 | 38 | 65     | G 3/4" | 4                  | 8,1  |
| NKV 500x250-2  | 500             | 520  | 540  | 665  | 250 | 270 | 290 | 200 | 200 | 43 | 43     | G 3/4" | 2                  | 15,8 |
| NKV 500x250-4  | 500             | 520  | 540  | 665  | 250 | 270 | 290 | 200 | 200 | 38 | 65     | G 3/4" | 4                  | 16,3 |
| NKV 500x300-2  | 500             | 520  | 540  | 665  | 300 | 320 | 340 | 250 | 200 | 43 | 43     | G 1"   | 2                  | 11,5 |
| NKV 500x300-4  | 500             | 520  | 540  | 665  | 300 | 320 | 340 | 250 | 200 | 38 | 65     | G 1"   | 4                  | 12,0 |
| NKV 600x300-2  | 600             | 620  | 640  | 765  | 300 | 320 | 340 | 250 | 200 | 43 | 43     | G 1"   | 2                  | 21,8 |
| NKV 600x300-4  | 600             | 620  | 640  | 765  | 300 | 320 | 340 | 250 | 200 | 38 | 65     | G 1"   | 4                  | 22,3 |
| NKV 600x350-2  | 600             | 620  | 640  | 765  | 350 | 370 | 390 | 300 | 200 | 43 | 43     | G 1"   | 2                  | 22,4 |
| NKV 600x350-4  | 600             | 620  | 640  | 765  | 350 | 370 | 390 | 300 | 200 | 38 | 65     | G 1"   | 4                  | 22,9 |
| NKV 700x400-2  | 700             | 720  | 740  | 865  | 400 | 420 | 440 | 350 | 200 | 36 | 47     | G 1"   | 2                  | 27,8 |
| NKV 700x400-3  | 700             | 720  | 740  | 865  | 400 | 420 | 440 | 350 | 200 | 42 | 58     | G 1"   | 3                  | 28,4 |
| NKV 800x500-2  | 800             | 820  | 840  | 965  | 500 | 520 | 540 | 450 | 200 | 36 | 47     | G 1"   | 2                  | 36,5 |
| NKV 800x500-3  | 800             | 820  | 840  | 965  | 500 | 520 | 540 | 450 | 200 | 42 | 58     | G 1"   | 3                  | 37,2 |
| NKV 900x500-2  | 900             | 920  | 940  | 1065 | 500 | 520 | 540 | 450 | 200 | 36 | 47     | G 1"   | 2                  | 40,4 |
| NKV 900x500-3  | 900             | 920  | 940  | 1065 | 500 | 520 | 540 | 450 | 200 | 42 | 58     | G 1"   | 3                  | 41,2 |
| NKV1000x500-2  | 1000            | 1020 | 1040 | 1165 | 500 | 520 | 540 | 450 | 200 | 36 | 47     | G 1"   | 2                  | 44,3 |
| NKV 1000x500-3 | 1000            | 1020 | 1040 | 1165 | 500 | 520 | 540 | 450 | 200 | 42 | 58     | G 1"   | 3                  | 45,2 |



Air pressure loss for water heaters NKV



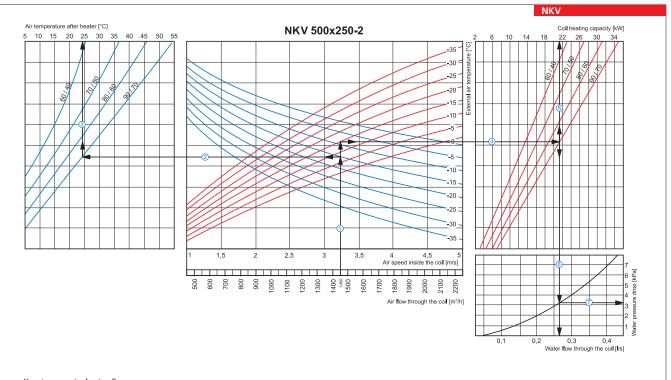



Air Speed. Starting from 950  $\overline{m^3}$ /h on the air flow scale draw a vertical line  $\bigcirc$  till the air speed axis which makes about 3.35 m/s.

Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -15<sup>+</sup>C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 \*C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23\*C).
Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15<sup>+</sup>C) and draw a horizontal line ④ from this point to the right to the

Intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (b) up to the scale of heating coil capacity (13.5 kW).
 Water flow. Prolong the line (b) down to water flow axis at the bottom of the graphic (0.14 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (1.5 kPa).

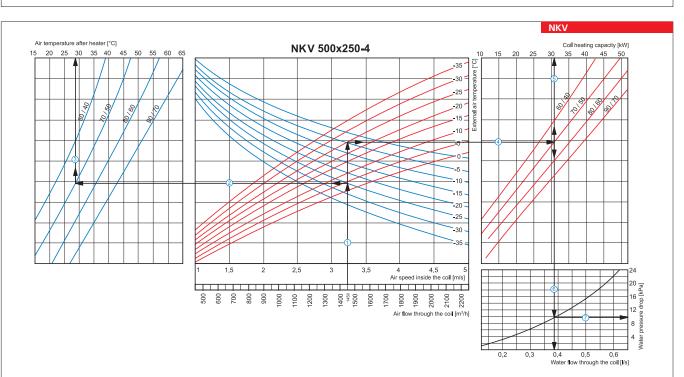



Air Speed. Starting from 950  $m^3/h$  on the air flow scale draw a vertical line  $\bigcirc$  till the air speed axis which makes about 3.35 m/s.

= Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line (1) to the supply air temperature axis on top of the graphic (+29°C). Heating coil capacity. Prolong the line (1) up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line (4) from this point to the right to the

Reading coll capacity. Prolong the line S of the point where it closes the obtaine an temperature indicated as ted clove (e.g., -15 C and draw a intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line S up to the scale of heating coil capacity (16.0 kW).
 Water flow. Prolong the line S down to water flow axis at the bottom of the graphic S (0.2 l/s).

Vater pressure drop. Draw the line 🖉 from the point where line 6 crosses the black curve to the pressure drop axis. (2.1 kPa).




#### How to use water heater diagrams

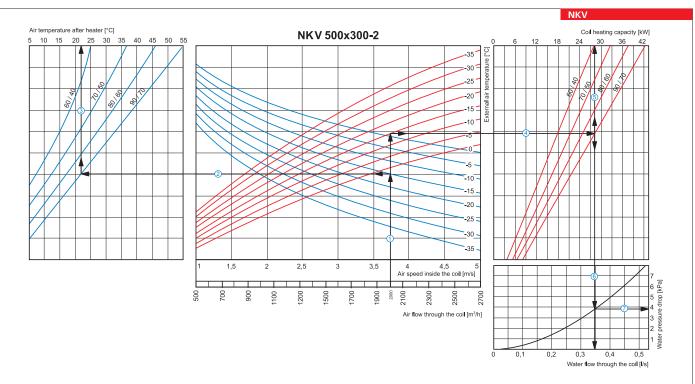
Air Speed. Starting from 1450 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.2 m/s.

Supply air temperature (b) - Profine fine  $\mathbb{O}$  up to the point where it crosses the outside air temperature (b) equation (2, 15°C; then draw a horizontal line  $\mathbb{O}$  from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line  $\mathbb{O}$  to the supply air temperature axis on top of the graphic (+24°C).

- Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line 🟵 from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70°C). From this point draw a vertical line (5) up to the scale of heating coil capacity (21.5 kW).
  water flow . Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.27 l/s).
  Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (3.2 kPa).



#### How to use water heater diagrams


Air Speed. Starting from 1450 m<sup>3</sup>/h on the air flow scale draw a vertical line 0 till the air speed axis which makes about 3.2 m/s.

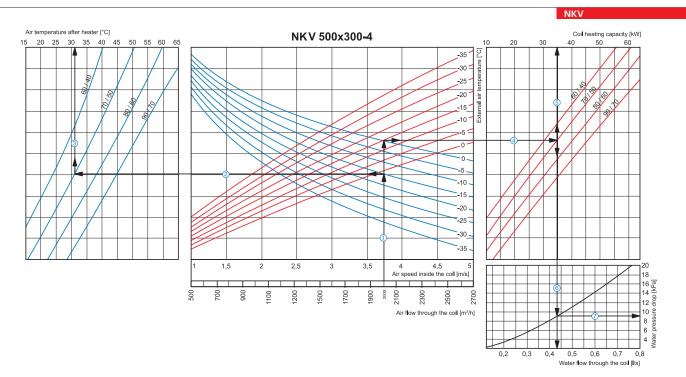
• Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -25°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50°C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+28°C).

 Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -25°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 70/50 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (31.0 kW).

• water flow . Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.38 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (9.8 kPa).




#### How to use water heater diagrams

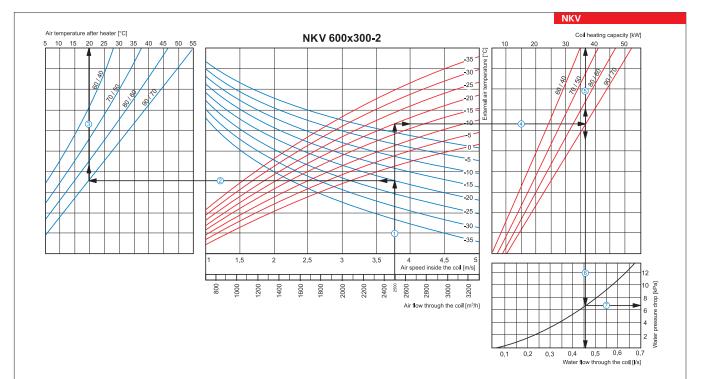
Air Speed. Starting from 2000  $m^3$ /h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis which makes about 3.75 m/s.

Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).
 Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line ④ from this point to the right to the right to the

Treading Contractions for water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (S) up to the scale of heating coil capacity (28.0 kW).
 Water flow . Prolong the line (S) down to water flow axis at the bottom of the graphic (S) (0.35 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (3.8 kPa).



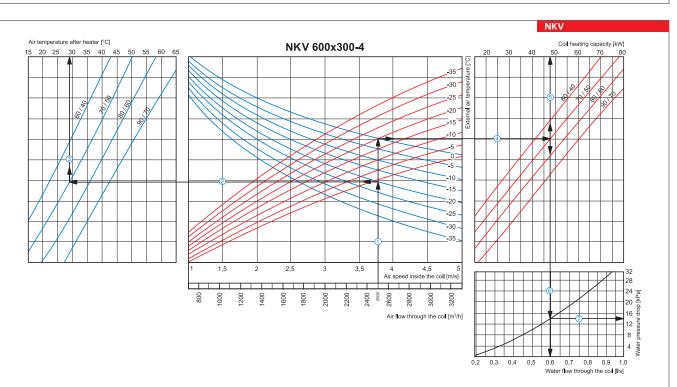

#### How to use water heater diagrams

Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s.

• Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -15°C, then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).

Heating coil capacity. Prolong the line <sup>①</sup> up to the point where it crosses the outside air temperature indicated as red curve (e.g., -15°C) and draw a horizontal line <sup>④</sup> from this point to the right to the intersection of water in/out temperature curve (e.g., 70°C) and draw a horizontal line <sup>④</sup> from this point to the right to the intersection of water in/out temperature curve (e.g., 70°C). From this point draw a vertical line <sup>⑤</sup> up to the scale of heating coil capacity (35.0 kW).
 water flow . Prolong the line <sup>⑤</sup> down to water flow axis at the bottom of the graphic <sup>⑥</sup> (0.431/s).

Water pressure drop. Draw the line 🗇 from the point where line 🌀 crosses the black curve to the pressure drop axis. (9.0 kPa).



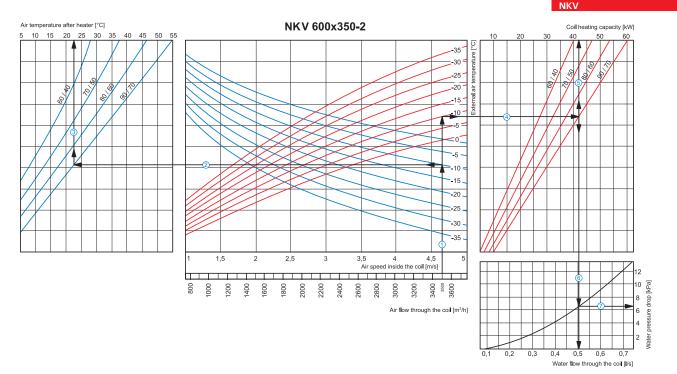

#### How to use water heater diagrams

Air Speed. Starting from 2500 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\mathbb{O}$  till the air speed axis which makes about 3.75 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line 🖉 from this point to the left till crossing

Supply an temperature. Proofing the line (5) up to the point where it closes the outside an temperature (0.0c clore), e.g. -20 c, ther draw a horizontal line (9) rom this point to the left thir closes the outside an temperature (0.0c clore), e.g. -20 c, ther draw a horizontal line (9) rom this point to the left thir closes the outside an temperature so to op the graphic (+20°C).
Heating coil capacity. Prolong the line (1) up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line (4) from this point to the right to the intersection of water in/out temperature curve (e.g., -90°C). From this point draw a vertical line (5) up to the scale of heating coil capacity (37.0 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.46 l/s).
Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (6.7 kPa).



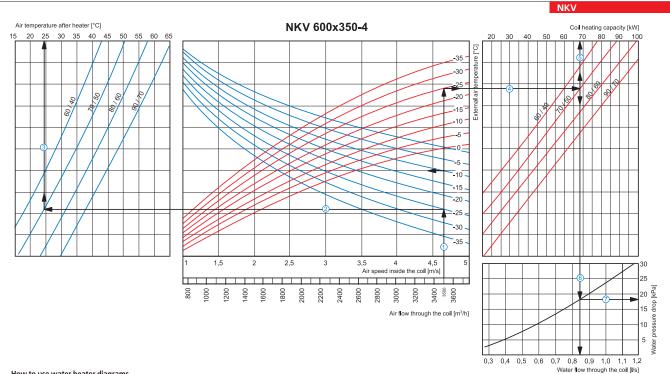

#### How to use water heater diagrams

How to use water heater diagrams Air Speed. Starting from 2500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.75 m/s. ■ Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+29°C).

• Heating coil capacity. Prolong the line O up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the intersection of water in /out temperature curve (e.g., 70/50 °C). From this point draw a vertical line 🕄 up to the scale of heating coil capacity (48.0 kW).

Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.6 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (14.0 kPa)



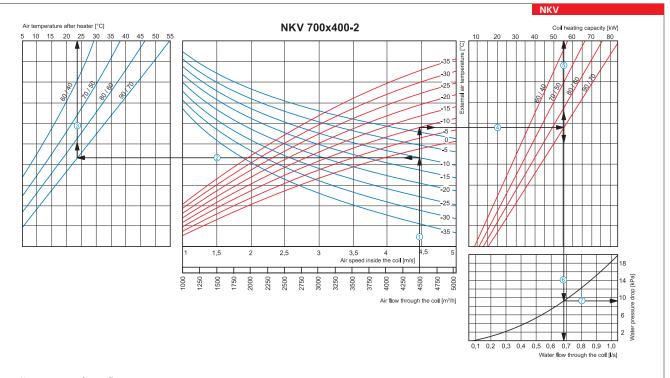

#### How to use water heater diagrams

Air Speed. Starting from 3500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.65 m/s.

Supply air temperature. Prolong the line  $\hat{\mathbb{O}}$  up to the point where it crosses the outside air temperature (blue curve), e.g. -10°C; then draw a horizontal line  $\hat{\mathbb{O}}$  from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22.5°C).

- Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -10°C) and draw a horizontal line 🕘 from this point to the right to the Intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line <sup>(5)</sup> up to the scale of heating coil capacity (42.0 kW).
  water flow . Prolong the line <sup>(5)</sup> down to water flow axis at the bottom of the graphic <sup>(6)</sup> (0.5 l/s).
  Water pressure drop. Draw the line <sup>(7)</sup> from the point where line <sup>(6)</sup> crosses the black curve to the pressure drop axis. (6.5 kPa).




#### How to use water heater diagrams

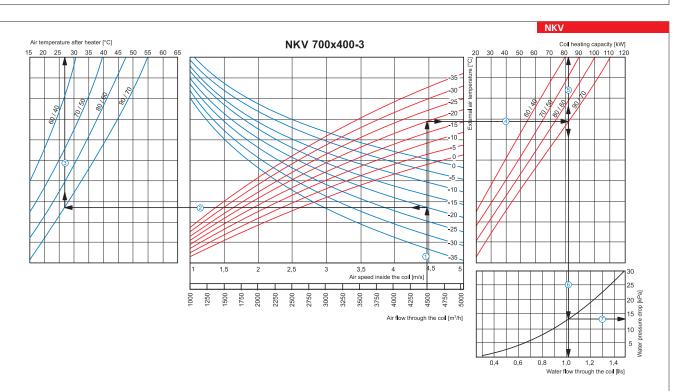
Air Speed. Starting from 3500 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\mathbb{O}$  till the air speed axis which makes about 4.65 m/s.

Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -25°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+24°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -25°C) and draw a horizontal line ④ from this point to the right to the intersection of water in /out temperature curve (e.g., 70/50 °C). From this point draw a vertical line () up to the scale of heating coil capacity (68.0 kW). water flow . Prolong the line () down to water flow axis at the bottom of the graphic () (0.84 l/s).

• Water pressure drop. Draw the line  $\bigcirc$  from the point where line  $\bigcirc$  crosses the black curve to the pressure drop axis. (18.0 kPa).




#### How to use water heater diagrams

Air Speed. Starting from 4500 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis which makes about 4.45 m/s.

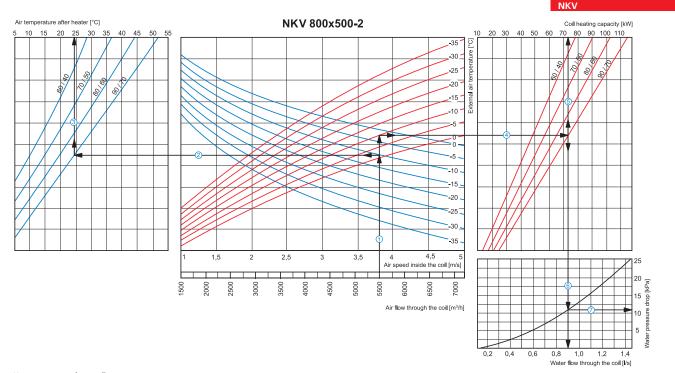
Bupped, statuting from 400 m. From the an new scale unaw a vertical line. O us to be outside air temperature (blue curve), e.g. -10°C; then draw a horizontal line. O us to the point where it crosses the outside air temperature (curve), e.g. -10°C; then draw a horizontal line. O is to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line. O to the supply air temperature axis on top of the graphic (+24°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -10°C) and draw a horizontal line 🕘 from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (55.0 kW).

Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.681/s).
Water pressure drop. Draw the line (2) from the point where line (6) crosses the black curve to the pressure drop axis. (9.2 kPa).



#### How to use water heater diagrams

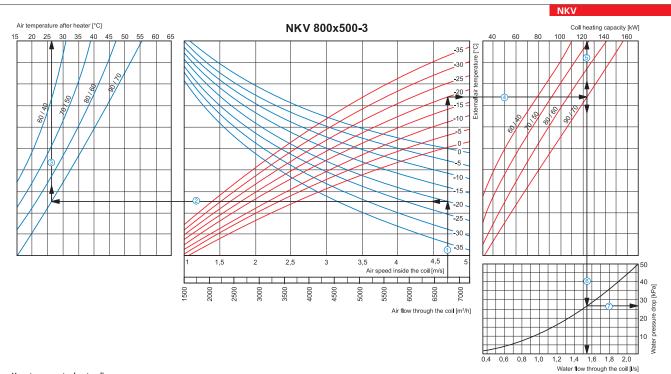

Air Speed. Starting from 4500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 4.45 m/s. Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+27°C). Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to

the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (82.0 kW).

■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (1.02 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (13.0 kPa).

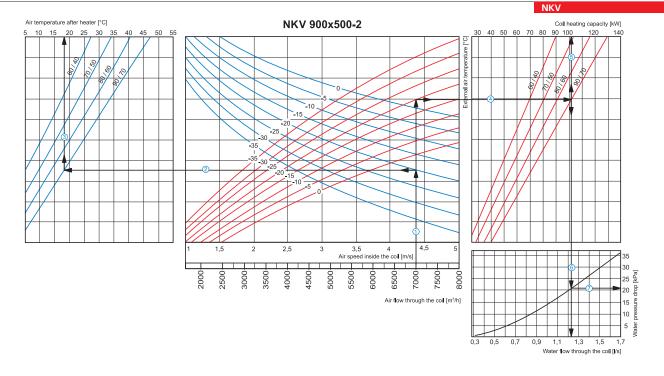
HEATER




#### How to use water heater diagrams

Air Speed. Starting from 5500  $m^3$ /h on the air flow scale draw a vertical line  $\bigcirc$  till the air speed axis. It makes 3.8 m/s.

Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -10°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+24.5°C).

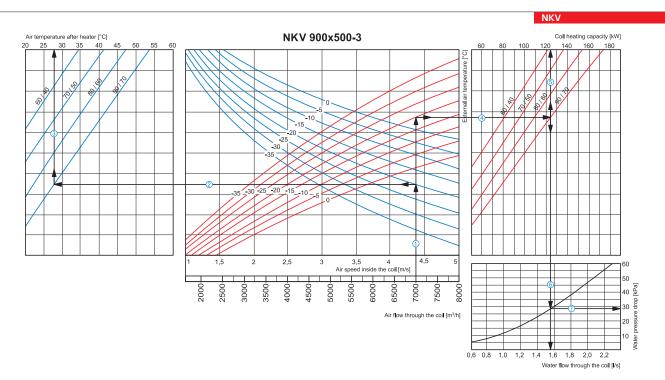

- Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -10°C) and draw a horizontal line 🕘 from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating (c) collection (73.0 kW).
  water flow . Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.9 l/s).
  Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (11.0 kPa).



#### How to use water heater diagrams

Air Speed. Starting from 6750 m<sup>3</sup>/h on the air flow scale draw a vertical line 0 till the air speed axis. It makes 4.7 m/s.

- Supply air temperature. Prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+26°C).
- Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70°C). From this point draw a vertical line ⑤ up to the scale of heating coil capacity (123.0 kW).
  Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (1.54 l/s).
  Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (27.0 kPa).

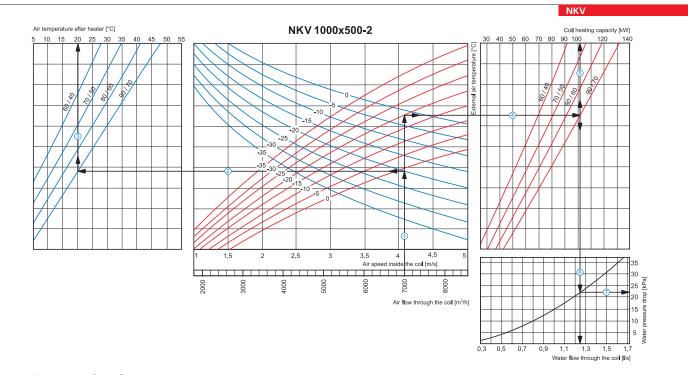



#### How to use water heating coils diagrams

Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.4 m/s. ■ Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+18°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line 🕚 from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line 🕲 up to the scale of heating coil capacity (102.0 kW).

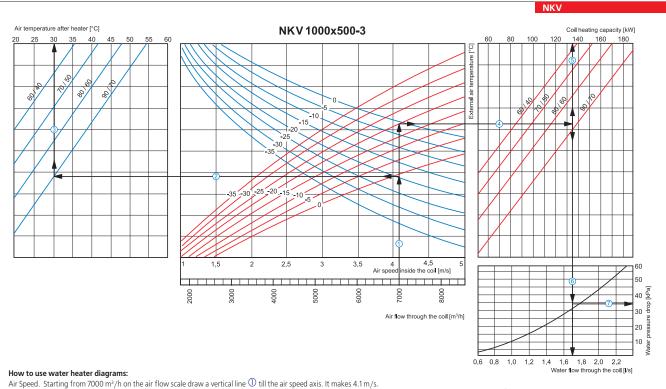
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (1.231/s).
Water pressure drop. Draw the line (2) from the point where line (6) crosses the black curve to the pressure drop axis. (21.0 kPa).




#### How to use water heater diagrams

How to use water neater diagrams Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.4 m/s. ■ Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+28°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (124.0 kW).


- Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (1.55 l/s).
- Water pressure drop. Draw the line  $\overline{O}$  from the point where line  $\overline{O}$  crosses the black curve to the pressure drop axis. (28.0 kPa).



#### How to use water heater diagrams

Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.1 m/s. Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature curve (90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+20°C). Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to

the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line (5) up to the scale of heating coil capacity (101.0 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (1.25 l/s).
Water pressure drop. Draw the line (7) from the point where line (6) crosses the black curve to the pressure drop axis. (22.0 kPa).



Air speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.1 m/s. ■ Supply air temperature. Prolong the line ① up to the point where it crosses the outside air temperature (blue curve), e.g. -20°C; then draw a horizontal line ② from this point to the left till crossing water in/out temperature (or 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+30°C). Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature indicated as red curve (e.g., -20°C) and draw a horizontal line ④ from this point to the right to the intersection of water in/out temperature curve (e.g., 90/70 °C). From this point draw a vertical line ⑤ up to the scale of heating coil capacity (135.0 kW). ■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑤ (1.7 l/s). ■ Water pressure drop. Draw the line ⑦ from the point where line ⑥ crosses the black curve to the pressure drop axis. (34.0 kPa).

# **MIXING SETS**



## Application

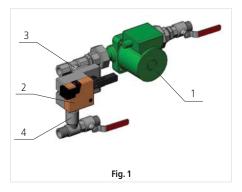
The mixing unit USWK is designed for smooth heat medium flow control in ventilation systems equipped with water heaters or coolers for supply air temperature regulation. The mixing unit controls heat medium flow supplied to the water heat exchanger and in such a way maintains the supply air temperature. The mixing unit USWK is compatible with NKV water heaters, duct coolers OKW as well as all water heat exchangers (both heaters and coolers) integrated into air handling units.

## Design and operating logic

Design of the mixing unit USWK is shown in fig. 1. The circulation pump (1) of the mixing unit ensures ongoing heat medium circulation through the water heat exchanger. The heat medium regulating threeway valve (3) with electric actuator (2) is installed before the circulation pump to mix the water supplied from the heating (cooling) system with the return water supplied through the recirculation pipe (4). The three-way valve is designed to provide the mixing ratio of two water streams and thus to control the heat medium temperature supplied to the water heat exchanger. The three-way valve actuator is controlled by 0-10 V output signal from the ventilation control system.

#### Connection to water mains

The mixing set is connected directly to the water heat exchanger and water mains through rigid and/or flexible pipes.


In case of flexible pipe connection, fix the mixing unit firmly to the wall or another rigid surface with clapms. While installing the mixing set keep the motor horizontal position to disable any distortions and mechanical loads from the connected pipelines to USWK unit. While connecting the mixing set to water mains make sure of no loads and distortions that may damage the unit structure and provoke USWK airtightness breach. While connecting the pipelines ensure their quick detachment for scheduledf servicing and maintenance operations.

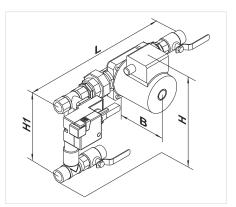
#### Electric connection

All electric connections are allowed by qualified electricians with valid permit for electric operations. Before connecting the pump make sure to have grounded it. Make steps to prevent contact with rotating pats of the unit and power cables.

## Operating conditions

The pump motor bearings are greased by the pumped medium. The single-phase pumps do not require extra overload protection and the three-phase pumps must be provided with external overload protection. The maximum allowable heat medium pressure in the unit is 10 bar.




## **Overall dimensions:**

| Turpo         |     | Mass [kg] |     |     |             |  |
|---------------|-----|-----------|-----|-----|-------------|--|
| Туре          | В   | Н         | H1  | L   | iviass [Ky] |  |
| USWK-3/4-4    | 150 | 290       | 180 | 460 | 4,1         |  |
| USWK-1-6      | 175 | 320       | 210 | 490 | 6,8         |  |
| USWK-1 1/4-10 | 175 | 355       | 240 | 500 | 7,4         |  |
| USWK-1 1/2-16 | 266 | 420       | 255 | 610 | 23,0        |  |
| USWK-2-25     | 312 | 474       | 290 | 660 | 31,0        |  |

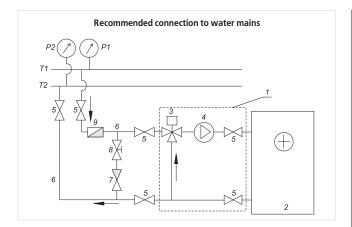
\*3-way valve  $K_{vs} = \frac{V_{100}}{\sqrt{\Delta p V_{100}}}$  , where

 $\Delta pv_{100}$  – pressure loss at fully opened valve;

$$V_{100}$$
 – rated water flow at  $\Delta pv_{100}$ 

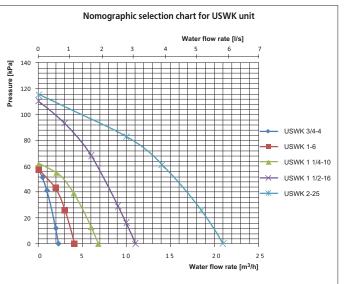


#### **Designation key:**


Series USWK

Connecting diameter 3/4"; 1"; 1 1/4"; 1 1/2"; 2" 3-way valve [Kvs]

4; 6; 10; 16; 25


#### **Technical data:**

|                                           | value | USWK<br>3/4-4      | USWK<br>1-6        | USWK<br>1 1/4-10   | USWK<br>1 1/2-16       | USWK<br>2-25           |
|-------------------------------------------|-------|--------------------|--------------------|--------------------|------------------------|------------------------|
| Circulation pump                          | -     | DAB<br>VA65/180    | DAB<br>A50/180XM   | DAB<br>A56/180XM   | DAB BPH<br>120/250.40M | DAB BPH<br>120/280.50T |
| Three-way valve regulation mode           | -     | smooth<br>010 V    | smooth<br>010 V    | smooth<br>010 V    | smooth<br>010 V        | smooth<br>010 V        |
| Three-way valve with<br>electric actuator | -     | Belimo R317        | Belimo R322        | Belimo R329        | Belimo R338            | Belimo R348            |
| Three-way valve actuator                  | -     | Belimo<br>LR24A-SR | Belimo<br>LR24A-SR | Belimo<br>LR24A-SR | Belimo<br>NR24A-SR     | Belimo<br>NR24A-SR     |
| Connection                                | -     | Thread             | Thread             | Thread             | Flange                 | Flange                 |
| Three-way valve nominal diameter          | -     | DN 20              | DN 25              | DN 32              | DN 40                  | DN 50                  |
| Three-way valve $\rm K_{\rm vs}$          | -     | 4                  | 6.3                | 10                 | 16                     | 25                     |
| Max. capacity                             | m³/h  | 2.3                | 4.1                | 6.8                | 11                     | 21                     |
| Max. developed head                       | kPa   | 57                 | 57                 | 62                 | 110                    | 115                    |
| Connecting pipe diameter                  | inch  | 3/4"               | 1"                 | 1 1/4"             | 1 1/2"                 | 2"                     |
| Pumped medium temperature                 | °C    | -10+110            | -10+110            | -10+110            | -10+120                | -10+120                |
| Max. glycol content in<br>pumped medium   | %     | 30                 | 30                 | 30                 | 30                     | 30                     |
| Number of pump speeds                     | -     | 3                  | 3                  | 3                  | 3                      | 3                      |
| Phase/ Pump voltage                       | V     | 1 x 230 V ~            | 3 x 400 V ~            |
| Max. pump power                           | W     | 78                 | 184                | 271                | 510                    | 898                    |



T1 and T2 - supply and return pipeline; P1 and P2 - manometers for supply and return pipelines in the water mains;

- 1 USWK (mixing set);
- 2 Water heater;
- 3 Three-way valve with actuator;
- 4 Circulation pump;
- 5 Shutoff valve;
- 6 Supply and return pipeline from water mains to the water heater;
- 7 Non-return valve;
- 8 Balancing valve;
- 9 Coarse filter.



To select the mixing set according to the nomographic chart, calculate the required heat medium flow through the water heat exchanger and water pressure drop (water head). These parameters are calculated according to the heating/cooling diagrams specifically for each water heat exchanger stated specifically herein.

### WATER COOLERS

# Series OKW



### Applications

Duct water coil air coolers are designed for cooling of supply air in rectangular ventilation systems and can be applied in supply or supply and exhaust ventilation systems.

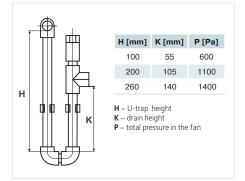
### Design

The cooler casing is made of galvanized sheet steel, the manifold is made of copper tubes and the heat exchange surface is made of aluminium plates. The cooling coils are available in 3 rows modification and designed for the maximum operating pressure 1,5 MPa (15 bar). It is equipped with a droplet separator and a drain pan for condensate collection and removal.

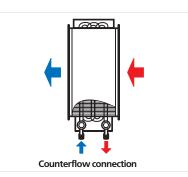
### Mounting

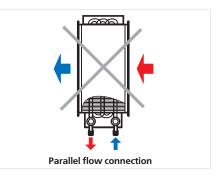
Mounting is effected by means of flange connection. The water cooling coils can be installed only horizontally to enable the unit deaeration and condensate draining.

The installation shall be performed in such a way as to enable the uniform air distribution along the entire cross section.


The air filter shall be installed at the cooler inlet to protect the cooler against dirt and dusting.

The cooler can be installed both at the fan inlet or outlet. If the cooling coils are located at the fan outlet the air duct between the cooler and the fan shall have the lehgth 1 to 1.5 m to ensure the air flow stabilization.


The cooling coils shall be connected on the counterflow basis to provide the maximum cooling capacity. All the nomographic charts in the catalogue are valid for such connection.


 If water serves as a cooling agent, the coolers are suitable for indoor installation only in the premises with the indoor temperature not below 0 °C. For outdoor installation use an antifreeze mixture, i.e.ethylene glycol solution. • The droplet separator is made of polypropylene profile and prevents condensate dripping from the cooling tubes by the cooling air flow. While selecting a cooler type consider that the most suitable speed of the air flow for the efficient droplet separator operation is up to 4 m/s.

• Condensate drain from the cooler shall be performed through the U-trap. The U-trap height depends on the total pressure in the fan and can be calculated using the figures and the table below.

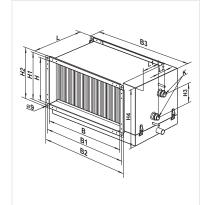


• To ensure the correct and safe cooler operation use the automation system providing the complex control and automatic regulation of the cooling capacity and air cooling temperature.





### **Overall dimensions:**


**Designation key:** 

Series

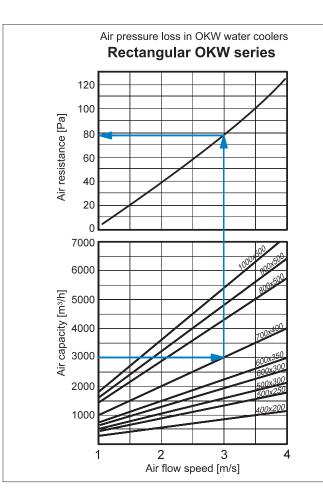
окw

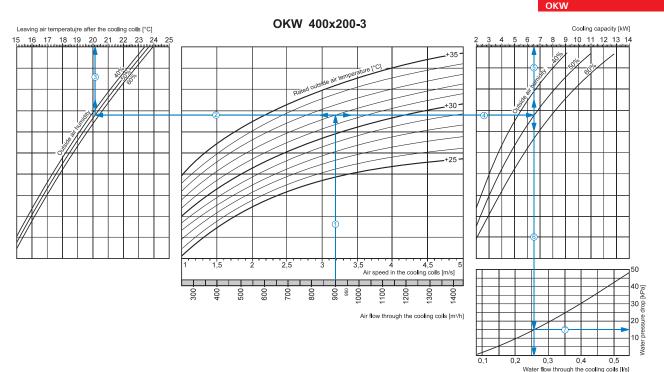
| Turne          | Dimensions [mm] |      |      |      |     |     |     |     |     |     |     |    |        |
|----------------|-----------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|----|--------|
| Туре           | В               | B1   | B2   | B3   | Н   | H1  | H2  | H3  | H4  | L   | L1  | L2 | K      |
| OKW 400×200-3  | 400             | 420  | 438  | 528  | 200 | 220 | 238 | 70  | 273 | 395 | 176 | 43 | G 3/4" |
| OKW 500×250-3  | 500             | 520  | 538  | 628  | 250 | 270 | 288 | 120 | 323 | 395 | 176 | 43 | G 3/4" |
| OKW 500×300-3  | 500             | 520  | 538  | 628  | 300 | 320 | 338 | 175 | 373 | 395 | 176 | 43 | G 3/4" |
| OKW 600x300-3  | 600             | 620  | 638  | 728  | 300 | 320 | 338 | 170 | 373 | 395 | 176 | 43 | G 3/4" |
| OKW 600×350-3  | 600             | 620  | 638  | 728  | 350 | 370 | 388 | 220 | 423 | 395 | 176 | 43 | G 3/4" |
| OKW 700×400-3  | 700             | 720  | 738  | 828  | 400 | 420 | 438 | 250 | 473 | 395 | 170 | 55 | G 3/4" |
| OKW 800×500-3  | 800             | 820  | 838  | 928  | 500 | 520 | 538 | 340 | 573 | 395 | 170 | 55 | G 3/4" |
| OKW 900×500-3  | 900             | 920  | 938  | 1028 | 500 | 520 | 538 | 350 | 573 | 395 | 170 | 55 | G 1"   |
| OKW 1000x500-3 | 1000            | 1020 | 1038 | 1128 | 500 | 520 | 538 | 350 | 573 | 395 | 170 | 55 | G 1"   |

Flange designation (WxH) [mm]



Accessories


Number of


cooling coils

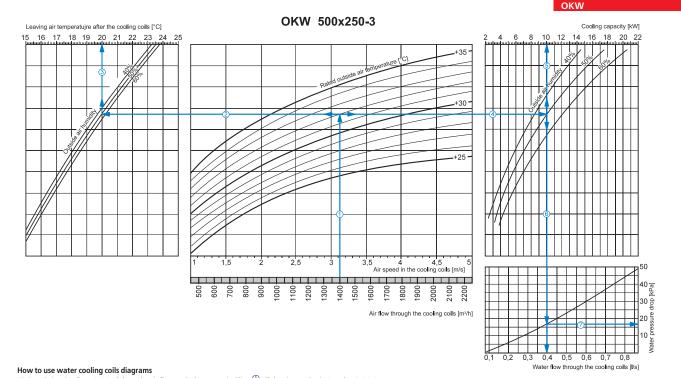
3

```
page 322
```

400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500



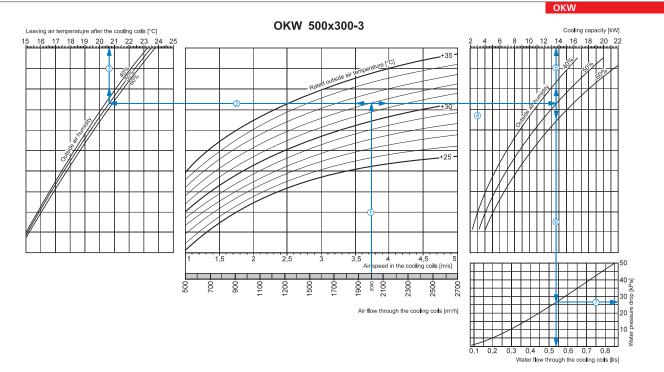



### How to use water cooler diagrams

Air Speed. Starting from 900  $m^3/h$  on the air flow scale draw a vertical line 0 till the air speed axis. It makes 3.2 m/s.

Air Speed. Starting from 900 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.2 m/s. Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside air temperature (e.g. +32°C); then draw a horizontal line ③ from this point to the left till crossing the outside air temperature (e.g. +32°C); then draw a horizontal line ③ from this point to the left till crossing the outside air temperature (e.g. +32°C); then draw a horizontal line ④ from this point to the left till crossing the outside air temperature (e.g. +32°C); then draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line ⑤ up to the scale representing the cooler capacity (6.5 kW). Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.26 l/s). Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (15.0 kPa).

WATER COOLER


### WATER COOLERS



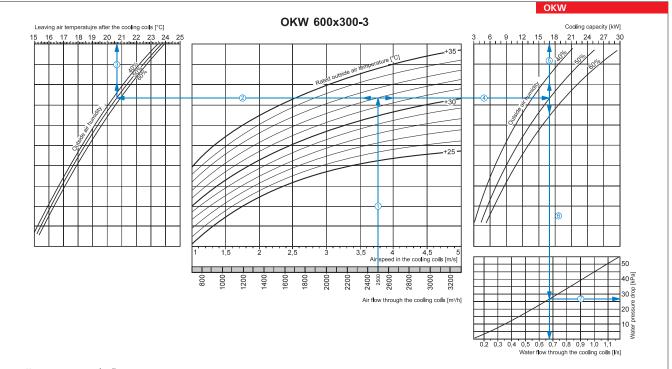
Air Speed. Starting from 1400 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.1 m/s. Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+20°C). ■ Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g., 50%), from here draw a vertical line ⑤ up to the scale representing the cooling capacity (10.0 kW).

■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.4 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (17.0 kPa).



### How to use water cooler diagrams

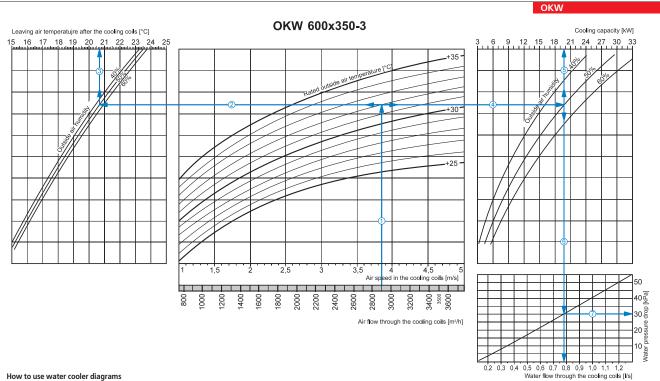

Air Speed. Starting from 2000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.75 m/s.

Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside a supply an temperature, proong the line  $\bigcirc$  up to the point where it crosses the outside air temperature (e.g. +32 c), then draw a notizontal line  $\bigcirc$  from this point to the right unit of the supply are temperature at cooler outlet axis on top of the graphic (+2.0.6°C). a cooling capacity. Prolong the line  $\bigcirc$  up to the point where it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air

humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (13.6 kW).

■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.54 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (27.0 kPa).




### How to use water cooler diagrams

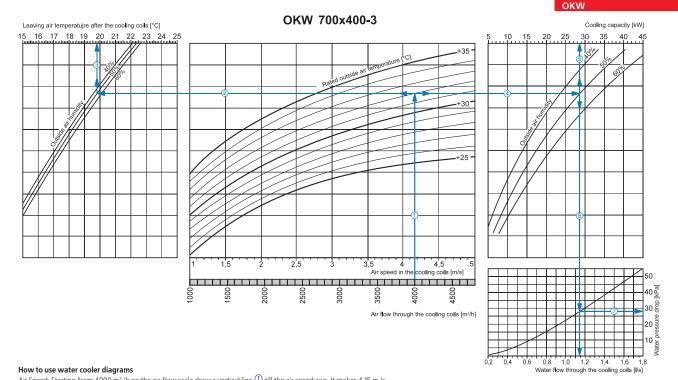
Air Speed. Starting from 2500 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 3.75 m/s.

Supply air temperature. prolong the line  $\mathbb{O}$  up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line  $\mathbb{O}$  from this point to the left till crossing the outside Supply an emperature protong the me O up to the point where it crosses the outside air temperature at cooler outlet axis on top of the graphic (+20,7°C).
 Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ③ from this point to the right until it crosses the outside air temperature (e.g. +32°C).

humidity curve (e.g., 50%), from here draw a vertical line (\$) up to the scale representing the cooling capacity (17.0 kW).
Water flow. Prolong the line (\$) down to water flow axis at the bottom of the graphic (\$) (0.68 l/s).
Water pressure drop. Draw the line (\$) from the point where the line (\$) crosses the black curve to the pressure drop axis. (27.0 kPa).



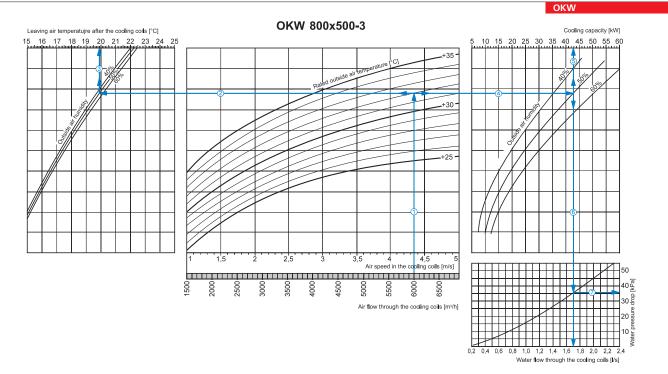
### How to use water cooler diagrams


Air Speed. Starting from 2850 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.85 m/s. ■ Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+20.7°C).

E Cooling capacity. Professional the profession of the scale representing the cooling capacity (19, 50%), from there draw a vertical line (1) up to the point where it crosses the outside air temperature (e.g. + 32°C) and draw a horizontal line (1) for this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (19, 8 kW).

■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.78 l/s).

■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (30.0 kPa).


### WATER COOLERS

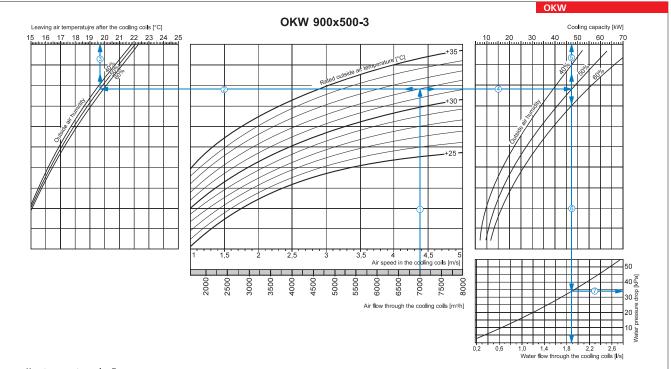


Air Speed. Starting from 4000 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 4.15 m/s.

Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature (e.g. +32°C); then draw a horizontal line ③ from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature (e.g. +32°C); then draw a horizontal line ④ from this point to the left till crossing the outside air humidity.
Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity.

curve (e.g., 50%), from here draw a vertical line <sup>(5)</sup> up to the scale representing the cooling capacity (28.5 kW).
water flow. Prolong the line <sup>(5)</sup> down to water flow axis at the bottom of the graphic <sup>(6)</sup> (1.14 l/s).
Water pressure drop. Draw the line <sup>(7)</sup> from the point where the line <sup>(6)</sup> crosses the black curve to the pressure drop axis. (28.0 kPa).

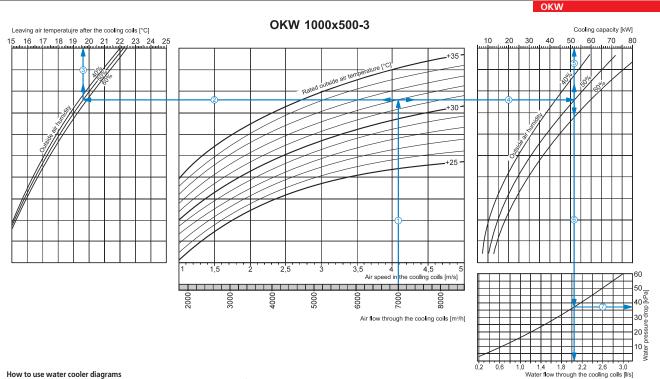



### How to use water cooler diagrams

Air Speed. Starting from 6000  $m^3/h$  on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 4.35 m/s.

Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. +32\*C); then draw a horizontal line 🖉 from this point to the left till crossing the outside

Supply an emperature (a.g. 50%). From this point to the point where it crosses the outside air temperature (e.g. 12 C), then draw a horizontal line (a) to the right until it crosses the outside air temperature (e.g. 12 C), then draw a horizontal line (b) to the right until it crosses the outside air temperature (e.g. 12 C), then draw a horizontal line (b) to the right until it crosses the outside air temperature (e.g. 12 C), then draw a horizontal line (b) to the right until it crosses the outside air temperature (e.g. 12 C), then draw a horizontal line (b) to the right until it crosses the outside air humidity curve (e.g., 50%), from the draw a vertical line (c) up to the scale representing the cooling capacity (43 kW).
 Water flow. Prolong the line (c) down to water flow axis at the bottom of the graphic (c) (1.71/s).


Water pressure drop. Draw the line 🗇 from the point where the line 🌀 crosses the black curve to the pressure drop axis. (36.0 kPa).



### How to use water cooler diagrams

 Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line 3 to the supply air temperature at cooler outlet axis on top of the graphic (+19.7°C).

Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity curve (e.g., +50%), from here draw a vertical line ⑤ up to the scale representing the cooling capacity (47.0 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (1.9 l/s).
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (34.0 kPa).



### How to use water cooler diagrams

Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 4.1 m/s.

Supply as the measurement of the one has been as the outside as the mass (1,1) the one has (2,1) the outside as the mass (1,1) the outside as the outside as the outside as the mass (2,1) the draw a horizontal line 2 from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line 3 to the supply air temperature et cooler outlet axis on top of the graphic (+19.6°C).

Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. + 32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity curve (e.g. + 53°C).
Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. + 32°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity curve (e.g. + 53°C).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (2.051/s).
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (37.0 kPa).

WATER COOLER

OKW

### **FREON COOLERS**



### Applications

Direct-expansion duct coolers are designed for cooling of supply air in rectangular ventilation systems and can be used either for supply or supply and exhaust units.

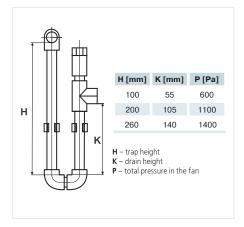
### Design

The cooler casing is made of galvanized sheet steel, the piping is made of copper tubes and the heat exhange surface is made of aluminium plates. The coolers are available in 3 rows modification and designed for operation with R123, R134a, R152a, R404a, R407c, R410a, R507, R12, R22 cooling agents. It is equipped with a droplet separator and a drain pan for condensate collection and removal.

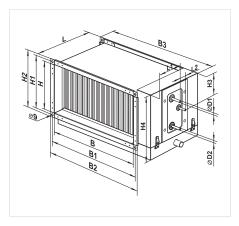
### Mounting

• Mounting is effected by means of flange connection. Direct-expansion cooling coils, can be installed horizontally only to enable the condensate draining.

 Installation shall be performed in such a way as to provide the uniform air srteam distribution along the entire cross section.


• The air filter shall be installed at the cooler inlet to ensure the cooler protection against dirt and dusting.

The cooler can be installed at the fan inlet or outlet. If the cooler is located at the fan outlet the air duct between the cooler and the fan shall be at least 1-1,5 m long to ensure the air stream stabilization.


The cooler shall be connected on the counterflow basis to provide its maximum cooling capacity. All the nomographic charts in the catalogue are valid for such connection.

The droplet separator is made of polypropylene profile and prevents condensate dripping from the cooling tubes by the cooling air flow. While selecting a cooler type consider that the most suitable speed of the air flow for the efficient droplet separator operation is up to 4 m/s.

Condensate draining from the cooler shall be performed through the U-trap. The U-trap height depends on the total pressure in the fan. The trap height can be calculated using the figure and the table below.



To ensure the correct and safe cooler operation use the automation system providing the complex control and automatic regulation of the cooling capacity and air cooling temperature.

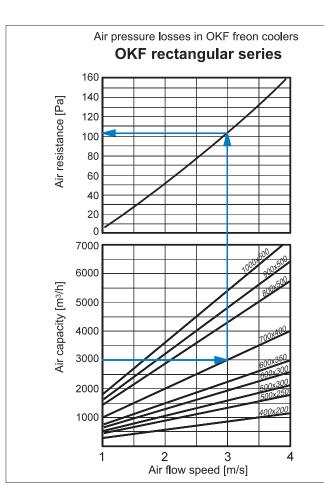


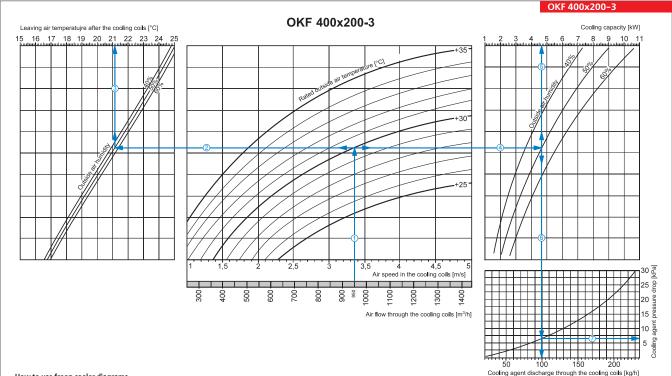
### **Overall dimensions:**

| Turce          |     | Dimensions [mm] |      |      |      |      |     |     |     |     |     |     |     |    |  |
|----------------|-----|-----------------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|----|--|
| Туре           | ØD1 | ØD2             | В    | B1   | B2   | B3   | Н   | H1  | H2  | H3  | H4  | L   | L1  | L2 |  |
| OKF 400x200-3  | 12  | 22              | 400  | 420  | 438  | 528  | 200 | 220 | 238 | 70  | 273 | 395 | 165 | 60 |  |
| OKF 500x250-3  | 12  | 22              | 500  | 520  | 538  | 628  | 250 | 270 | 288 | 120 | 323 | 395 | 165 | 60 |  |
| OKF 500x300-3  | 12  | 22              | 500  | 520  | 538  | 628  | 300 | 320 | 338 | 175 | 373 | 395 | 165 | 60 |  |
| OKF 600x300-3  | 18  | 28              | 600  | 620  | 638  | 728  | 300 | 320 | 338 | 170 | 373 | 395 | 165 | 60 |  |
| OKF 600x350-3  | 18  | 28              | 600  | 620  | 638  | 728  | 350 | 370 | 388 | 220 | 423 | 395 | 165 | 60 |  |
| OKF 700x400-3  | 22  | 28              | 700  | 720  | 738  | 858  | 400 | 420 | 438 | 250 | 473 | 395 | 160 | 75 |  |
| OKF 800x500-3  | 22  | 28              | 800  | 820  | 838  | 958  | 500 | 520 | 538 | 340 | 573 | 395 | 160 | 75 |  |
| OKF 900x500-3  | 22  | 28              | 900  | 920  | 938  | 1058 | 500 | 520 | 538 | 350 | 573 | 395 | 160 | 75 |  |
| OKF 1000×500-3 | 22  | 28              | 1000 | 1020 | 1038 | 1158 | 500 | 520 | 538 | 350 | 573 | 395 | 160 | 75 |  |

### **Designation key:**

Series OKF


### Flange designation (WxH) [mm]


400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

### Number of cooling coils

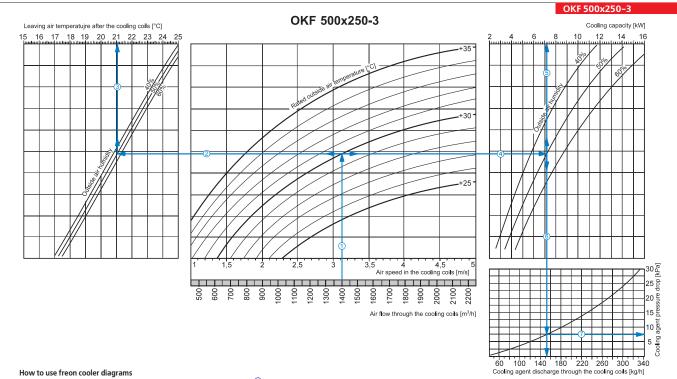
3

### (A) I/ENTS





Air Speed. Starting from 950 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\bigcirc$  till the air speed axis. It makes 3.35 m/s.

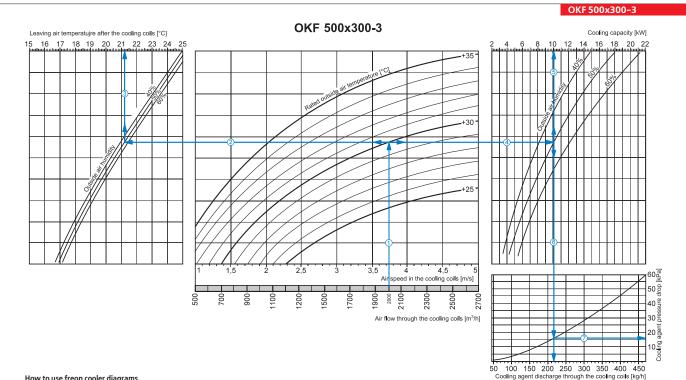

Supply air temperature. prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line 🖉 from this point to the left till crossing the outside air

Cooling capacity. Profond the point draw a vertical line (3) to the supply air temperature at cooling capacity (4,7 kW).
 Cooling capacity, Store at a cooling capacity (4,7 kW).

Cooling agent pressure drop. Draw the line ③ down to cooling agent discharge axis at the bottom of the graphic ⑥ (100 kg/hour).
 Cooling agent pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (6.5 kPa).

FREON COOLER

### **FREON COOLERS**



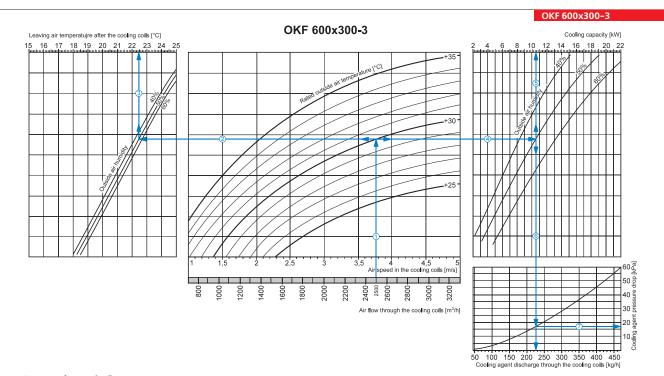

Air Speed. Starting from 1400 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 3.1 m/s.

Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point to the left till crossing the outside air temperature at cooler outlet axis on top of the graphic (+21.1°C).

Ecologic participation of the line  $\Theta$  up to the point where it crosses the outside air temperature (e.g. + 30°C) and draw a horizontal line  $\Theta$  from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (7.2 kW).

Cooling agent discharge. Prolong the line S down to cooling agent discharge axis at the bottom of the graphic (G) (152 kg/hour).
 Cooling agent pressure drop. Draw the line D from the point where the line G crosses the black curve to the pressure drop axis. (7.5 kPa).



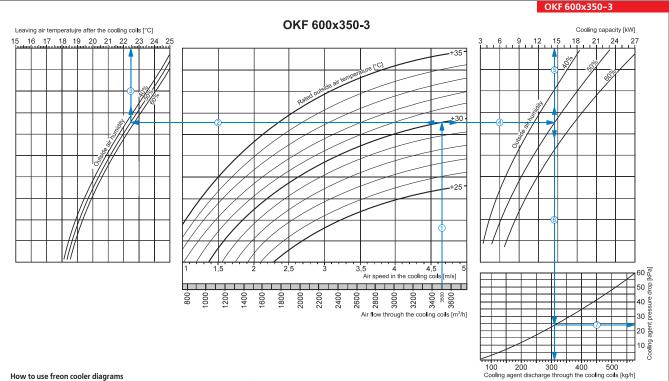

### How to use freon cooler diagrams

Air Speed. Starting from 2000 m<sup>2</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.75 m/s. Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+21.2°C).

Cooling capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line 🛈 from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (10 kW).

Cooling agent discharge. Prolong the line () down to cooling agent discharge axis at the bottom of the graphic () (215 kg/hour).

Cooling agent pressure drop. Draw the line 🖉 from the point where the line 🕲 crosses the black curve to the pressure drop axis. (16.0 kPa).




### How to use freon cooler diagrams

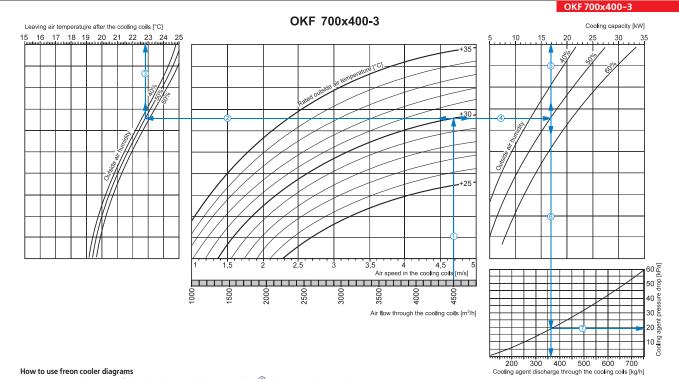
Air Speed. Starting from 2500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 3.75 m/s.

Supply a transmission provide an investigation of the outside air temperature (e.g. +30°C); then draw a horizontal line O from this point to the left till crossing the outside air temperature (e.g. +30°C); then draw a horizontal line O from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line O to the supply air temperature a cooler outlet axis on top of the graphic (+22.5°C).

Cooling capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and fraw a horizontal line ④ from the point where the line ⑤ crosses the bottom of the graphic ⑤ (225 kg/hour).
Cooling agent pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (17.0 kPa).



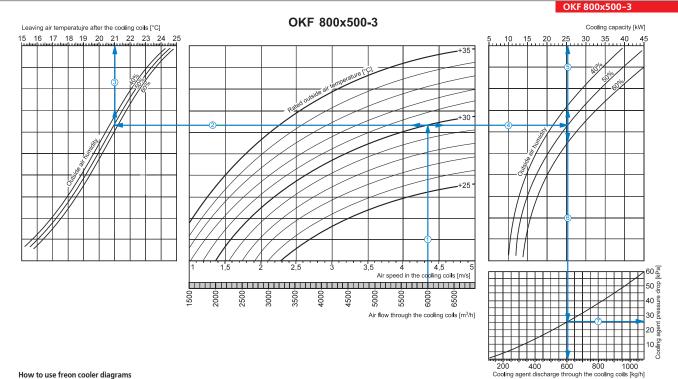
### How to use freon cooler diagrams


Air Speed. Starting from 3500 m<sup>3</sup>/h on the air flow scale draw a vertical line  $\oplus$  till the air speed axis. It makes 4.65 m/s.

Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C).

Cooling agent discharge. Prolong the line () down to cooling agent discharge axis at the bottom of the graphic () (310 kg/hour).

Cooling agent pressure drop. Draw the line 🗇 from the point where the line 🕲 crosses the black curve to the pressure drop axis. (24.0 kPa).


### **FREON COOLERS**



Air Speed. Starting from 4500 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.7 m/s. ■ Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+22.8°C).

• Cooling coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +3°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (17.0 kW).

- Cooling agent discharge. Prolong the line () down to cooling agent discharge axis at the bottom of the graphic () (360 kg/hour).
- Cooling agent pressure drop. Draw the line 🕖 from the point where the line 6 crosses the black curve to the pressure drop axis. (19.0 kPa).



### How to use freon cooler diagrams

Air Speed. Starting from  $6000 \text{ m}^3/\text{h}$  on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.35 m/s. ■ Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+21.0°C).

Cooling coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line 🕘 from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (25.5 kW).

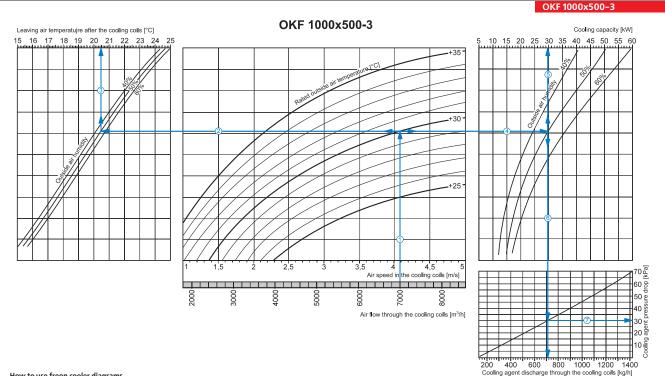
Cooling agent discharge. Prolong the line <sup>(5)</sup> down to cooling agent discharge axis at the bottom of the graphic <sup>(6)</sup> (605 kg/hour).
 Cooling agent pressure drop. Draw the line <sup>(5)</sup> down to cooling agent discharge axis at the bottom of the graphic <sup>(6)</sup> (605 kg/hour).
 Cooling agent pressure drop. Draw the line <sup>(5)</sup> from the point where the line <sup>(6)</sup> crosses the black curve to the pressure drop axis. (26.0 kPa).

age

rge

ng

### OKF 900x500-3 OKF 900x500-3 Leaving air temperatujre after the cooling coils [°C] Cooling capacity [kW] 17 18 19 20 21 22 23 24 25 15 16 45 50 +30 +25 4.5 70 ron [kPa Air speed in the c ina coils [m/s] 60 2000 2500 3000 4000 1500 6500 0002 3500 5000 5500 7500 8000 50 6000 40 Air flow through the cooling coils [m3/h] 30 30 tu 20 gent 20 a 02 Cooling a 800 ) 1200 bils [kg/h] 400 600 1000


### How to use freon cooler diagrams

Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.4 m/s. ■ Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+20.7°C). ■ Cooling coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C) and draw a horizontal line ④ from this point to the right until it crosses the outside air temperature (e.g. +30°C).

air humidity curve (e.g., 50%), from here draw a vertical line (5) up to the scale representing the cooling capacity (28.0 kW).

Cooling agent discharge. Prolong the line () down to cooling agent discharge axis at the bottom of the graphic () (640 kg/hour).

Cooling agent pressure drop. Draw the line 🗇 from the point where the line 🕲 crosses the black curve to the pressure drop axis. (26.0 kPa).



### How to use freon cooler diagrams

Air Speed. Starting from 7000 m<sup>3</sup>/h on the air flow scale draw a vertical line ① till the air speed axis. It makes 4.1 m/s.
 Supply air temperature. prolong the line ① up to the point where it crosses the outside air temperature (e.g. +30°C); then draw a horizontal line ② from this point to the left till crossing the outside air humidity (e.g. 50%). From this point draw a vertical line ③ to the supply air temperature at cooler outlet axis on top of the graphic (+20.5°C).

Ecoling coil capacity. Provide the one of the point where it crosses the outside air temperature (e.g. + 30°C) and draw a horizontal line 0 from this point to the right until it crosses the outside air temperature (e.g. + 30°C) and draw a horizontal line 0 from this point to the right until it crosses the outside air humidity curve (e.g., 50%), from here draw a vertical line 0 up to the scale representing the cooling capacity (30.0 kW).

Cooling agent discharge. Prolong the line (5) down to cooling agent discharge axis at the bottom of the graphic (6) (710 kg/hour).

Cooling agent pressure drop. Draw the line 🗇 from the point where the line 🜀 crosses the black curve to the pressure drop axis. (30.0 kPa).

FREON COOLER

OKF

### **BACKDRAFT DAMPERS**





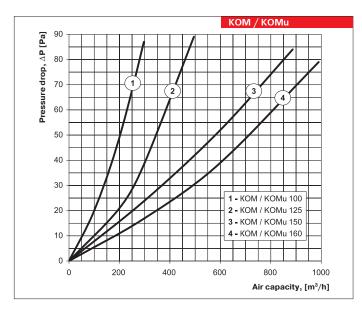
### Applications

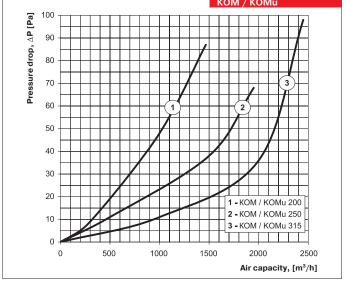
Backdraft spring-loaded damper designed for automatic shutoff of the round ducts and preventing back draft of air when ventilation system is switched off. Damper vanes are opened with the pressure generated by air stream and are closed by the spring.

### Design

The damper housing is made of galvanized steel and the vanes are made of aluminium sheet. The damper has two spring-loaded vanes.

### Modifications


**KOMu** – damper with a special microporous rubber sealer for noise absorption during the damper operation and airtightness.


### Mounting

The damper design ensures its mounting on the round air ducts by means of clamps. Ensure the vertical position of vane rotation axis. When installing the damper in the ventilation system the air stream direction shall be considered.

### **Overall dimensions:**

| Туре           | Dimensi | ons [mm] | Mass |
|----------------|---------|----------|------|
| , ypc          | ØD      | L        | [kg] |
| KOM / KOMu 100 | 99      | 80       | 0,18 |
| KOM / KOMu 125 | 124     | 100      | 0,27 |
| KOM / KOMu 150 | 149     | 115      | 0,38 |
| KOM / KOMu 160 | 159     | 120      | 0,42 |
| KOM / KOMu 200 | 199     | 145      | 0,63 |
| KOM / KOMu 250 | 249     | 165      | 0,90 |
| KOM / KOMu 315 | 314     | 190      | 1,31 |





**Designation key:** 

 Series
 Flange diameter, [mm]

 KOM / KOMu
 100; 125; 150; 160; 200; 250; 315

### BACKDRAFT DAMPERS

### Series KOM1



### Applications

Backdraft damper based on gravitation actuation is designed for automatic duct shutoff and preventing air back draft.

### Design

The casing and the rotary vane are made of galvanized sheet steel. The rubber seals provide airtight connection to the air ducts. The vane is opened by means of air flow and is closed automatically at no flow. The damper lever is equipped with a counter balancing weight to regulate the sensitivity of the damper opening/closing.

### Mounting

The damper design ensures its mounting on the round ducts by means of clamps. The vane shall be gravitationally closed. While mounting the damper in the ventilation system consider the air stream direction.

Series

KOM1

### Applications


The backdraft damper based on gravitation actuation is designed for automatic air duct shutoff when the fan is switched off.

### Design

The casing and the rotary vane are made of galvanized sheet steel. The vane is opened by means of air flow and is closed automatically at no flow. The damper lever is equipped with a counter balancing weight to regulate the sensitivity of the damper opening/ closing.

### Mounting

The damper is designed for mounting into rectangular air ducts of the ventilation systems with the horizontal position of the wide side. The vane is closed gravitationally. While mounting the damper in the ventilation system consider the air stream direction.





### **Overall dimensions:**

| Turne    | Dime | nsions | [mm] | Mass |  |  |
|----------|------|--------|------|------|--|--|
| Туре     | ØD   | В      | L    | [kg] |  |  |
| KOM1 100 | 99   | 139    | 150  | 0,65 |  |  |
| KOM1 125 | 124  | 162    | 170  | 0,81 |  |  |
| KOM1 150 | 149  | 194    | 180  | 0,97 |  |  |
| KOM1 160 | 159  | 204    | 190  | 1,06 |  |  |
| KOM1 200 | 199  | 238    | 220  | 1,57 |  |  |
| KOM1 250 | 249  | 290    | 270  | 2,2  |  |  |
| KOM1 315 | 314  | 356    | 340  | 3,24 |  |  |
| KOM1 355 | 348  | 400    | 400  | 3,9  |  |  |

### **Overall dimensions:**

| Tuno         |     | Dimensions [mm] |     |     |     |     |     |     |      |  |  |
|--------------|-----|-----------------|-----|-----|-----|-----|-----|-----|------|--|--|
| Туре         | В   | B1              | B2  | B3  | Н   | H1  | H2  | L   | [kg] |  |  |
| KOM1 400x200 | 400 | 420             | 440 | 461 | 200 | 220 | 240 | 202 | 2,9  |  |  |
| KOM1 500x250 | 500 | 520             | 540 | 561 | 200 | 270 | 290 | 202 | 3,73 |  |  |
| KOM1 500x300 | 500 | 520             | 540 | 561 | 300 | 320 | 340 | 202 | 4,1  |  |  |
| KOM1 600x300 | 600 | 620             | 640 | 661 | 300 | 320 | 340 | 202 | 4,64 |  |  |
| KOM1 600x350 | 600 | 620             | 640 | 661 | 350 | 370 | 390 | 202 | 5,03 |  |  |

Series KOM 1 **Flange diameter, [mm]** 100; 125; 150; 160; 200; 250; 315; 355 Series KOM 1 Flange designation (WxH) [mm] 400x200; 500x250; 500x300; 600x300; 600x350

### **AIR SHUTTERS**

## Series **KR**



### Applications

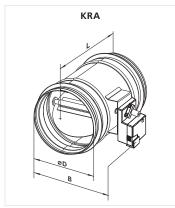
Air shutters are designed for manual air flow controlling (KR) or automatic round air duct shutoff (KRA).

### Design

The casing and the rotary vane are made of galvanized



Series


sheet steel. Provided with rubber seals for airtight connection to the air ducts.

**KR** - manually controlled air shutter equipped with metal leverage as well as locking device to fix the position by means of butterfly bolt.

**KRA** - air shutter equipped with an actuator to ensure automatic opening or closing of a ventilation duct.

### Mounting

The air shutter design ensures its mounting on the round ducts by means of clamps. While mounting the automatic air shutters with actuator the space for easy access to the drive shall be ensured.



# KR

### **Overall dimensions:**

| Turne   | D   | Dimensions [mm] |     |           |  |  |  |  |  |  |
|---------|-----|-----------------|-----|-----------|--|--|--|--|--|--|
| Туре    | ØD  | В               | L   | Mass [kg] |  |  |  |  |  |  |
| KRA 100 | 99  | 185             | 150 | 1,2       |  |  |  |  |  |  |
| KRA 125 | 124 | 211             | 170 | 1,4       |  |  |  |  |  |  |
| KRA 150 | 149 | 237             | 180 | 1,6       |  |  |  |  |  |  |
| KRA 160 | 159 | 243             | 190 | 1,7       |  |  |  |  |  |  |
| KRA 200 | 199 | 287             | 220 | 2,2       |  |  |  |  |  |  |
| KRA 250 | 249 | 339             | 270 | 2,8       |  |  |  |  |  |  |
| KRA 315 | 314 | 405             | 340 | 3,9       |  |  |  |  |  |  |
| KRA 355 | 348 | 450             | 400 | 5,0       |  |  |  |  |  |  |

### **Designation key:**

| Series   |
|----------|
| KR / KRA |

| Flange diameter, [mm]                  |
|----------------------------------------|
| 100; 125; 150; 160; 200; 250; 315; 355 |
|                                        |



**Overall dimensions:** 

| Turne  | D   | Mass [kg] |     |           |
|--------|-----|-----------|-----|-----------|
| Туре   | ØD  | В         | L   | Mass [kg] |
| KR 100 | 99  | 131       | 150 | 0,6       |
| KR 125 | 124 | 159       | 170 | 0,8       |
| KR 150 | 149 | 186       | 180 | 0,96      |
| KR 160 | 159 | 196       | 190 | 1,04      |
| KR 200 | 199 | 230       | 220 | 1,56      |
| KR 250 | 249 | 282       | 270 | 2,18      |
| KR 315 | 314 | 348       | 340 | 3,23      |

### AIR SHUTTERS

# Series



### Applications

Air shutters are designed for manual air flow controlling (KR) or automatic round air duct shutoff (KRA).

### Design

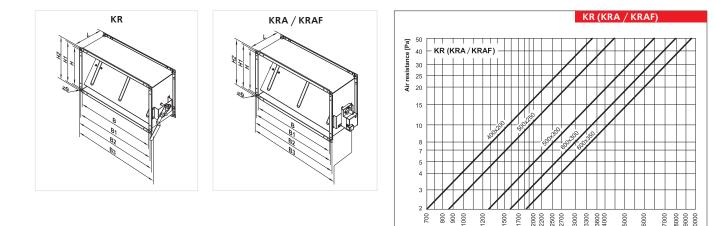
The casing and the rotary vane are made of galvanized sheet steel.

 ${\bf KR}$  - manually controlled air shutter equipped with metal leverage as well as locking device to fix the



Series

**KRA / KRAF** 


position by means of butterfly bolt.

**KRA** - air shutter equipped with an actuator to ensure automatic opening or closing of a ventilation duct.

**KRAF** - regulating and shutoff damper with the actuator and the pullback spring for automatic shutting of ventilation duct. Shutter closing is effected by means of the spring actuator that enables the damper application as a component of freezing protection system for water heating.

### Mounting

The shutter shall be mounted by means of a flange connection. The mounting inside the ventilation system is performed through connection of the end flanges of the shutter to the mating flanges of the air ducts and other units of the system. The fixing is effected by means of galvanized bolts and brackets. While mounting the dampers with the actuator ensure easy access to the actuator.



### **Overall dimensions:**

| Turne |            | Dimensions [mm] |     |     |     |     |     |     |     |      |  |
|-------|------------|-----------------|-----|-----|-----|-----|-----|-----|-----|------|--|
|       | Туре       | В               | B1  | B2  | B3  | Н   | H1  | H2  | L   | [kg] |  |
|       | KR 400x200 | 400             | 420 | 440 | 460 | 200 | 220 | 240 | 202 | 3,0  |  |
|       | KR 500x250 | 500             | 520 | 540 | 560 | 250 | 270 | 290 | 202 | 3,8  |  |
|       | KR 500x300 | 500             | 520 | 540 | 560 | 300 | 320 | 340 | 202 | 3,1  |  |
|       | KR 600x300 | 600             | 620 | 640 | 660 | 300 | 320 | 340 | 202 | 4,2  |  |
|       | KR 600x350 | 600             | 620 | 640 | 660 | 350 | 370 | 390 | 202 | 5,1  |  |

### **Overall dimensions:**

| Turno              |     |     | Dim | ensio | ons [r | nm] |     |     | Mass |
|--------------------|-----|-----|-----|-------|--------|-----|-----|-----|------|
| Туре               | В   | B1  | B2  | В3    | Н      | H1  | H2  | L   | [kg] |
| KRA / KRAF 400x200 | 400 | 420 | 440 | 503   | 200    | 220 | 240 | 202 | 3,6  |
| KRA / KRAF 500x250 | 500 | 520 | 540 | 603   | 250    | 270 | 290 | 202 | 4,4  |
| KRA / KRAF 500x300 | 500 | 520 | 540 | 603   | 300    | 320 | 340 | 202 | 4,8  |
| KRA / KRAF 600x300 | 600 | 620 | 640 | 703   | 300    | 320 | 340 | 202 | 5,4  |
| KRA / KRAF 600x350 | 600 | 620 | 640 | 703   | 350    | 370 | 390 | 202 | 5,8  |

A / KRAF SHUTTER

Air capacity [m<sup>3</sup>/h]

### **Designation key:**

Series KR / KRA / KRAF

### Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350

### **AIR FLOW CONTROL DAMPERS**

# Series **RRV**

Series RRVA



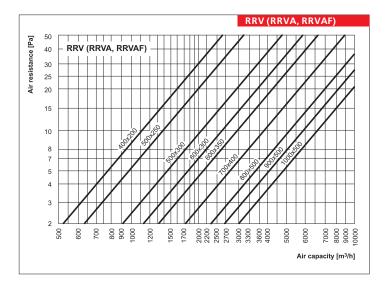


### Applications

The air flow control damper consists of a number of blades which close towards each other. It is designed for manual air flow control (RRV) or for automatic rectangular ventilation duct shuttoff (RRVA, RRVAF).

### Design

The casing is made of galvanized steel sheet. The blades are made of aluminium shape. The plastic gears enable their rotation.


**RRV** - manual air flow capacity regulator and shutoff

damper, equipped with metal leverage and locking device to fix the position by means of butterfly bolt. **RRVA** - regulating and shutoff damper with the actuator to provide ventilation shaft automatic opening or shutoff.

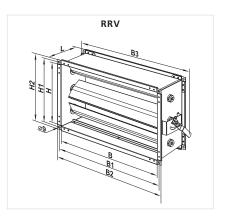
**RRVAF** - regulating and shutoff damper with the actuator and the pullback spring for automatic shutting of ventilation duct. Shutter closing is effected by means of the spring actuator that enables the damper application as a component of freezing protection system for water heating.

### Mounting

Mounting of air flow control damper is effected by means of flange connection. Mounting inside the ventilation system is performed through fastening of end flanges of shutters to the mating flanges of air ducts or other ventilation system units. The fastening is effected with galvanized bolts and clamps. While mounting the dampers with the actuator ensure easy access to the drive.

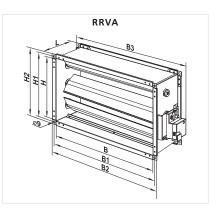


### **Designation key:**


Series RRV RRVA RRVAF

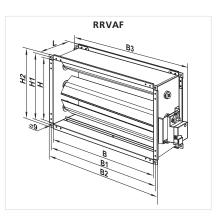
Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500


### **Overall dimensions:**

| Turne        |      | Dimensions [mm] |      |      |     |     |     |     |      |  |  |
|--------------|------|-----------------|------|------|-----|-----|-----|-----|------|--|--|
| Туре         | В    | B1              | B2   | B3   | Н   | H1  | H2  | L   | [kg] |  |  |
| RRV 400x200  | 400  | 420             | 440  | 475  | 200 | 220 | 240 | 170 | 3,5  |  |  |
| RRV 500x250  | 500  | 520             | 540  | 575  | 250 | 270 | 290 | 170 | 4,2  |  |  |
| RRV 500x300  | 500  | 520             | 540  | 575  | 300 | 320 | 340 | 170 | 4,9  |  |  |
| RRV 600x300  | 600  | 620             | 640  | 675  | 300 | 320 | 340 | 170 | 5,4  |  |  |
| RRV 600x350  | 600  | 620             | 640  | 675  | 350 | 370 | 390 | 170 | 5,7  |  |  |
| RRV 700x400  | 700  | 720             | 740  | 775  | 400 | 420 | 440 | 170 | 7,7  |  |  |
| RRV 800x500  | 800  | 820             | 840  | 875  | 500 | 520 | 540 | 170 | 8,8  |  |  |
| RRV 900x500  | 900  | 920             | 940  | 975  | 500 | 520 | 540 | 170 | 9,6  |  |  |
| RRV 1000x500 | 1000 | 1020            | 1040 | 1075 | 500 | 520 | 540 | 170 | 10,3 |  |  |




### **Overall dimensions:**

| Type          | Dimensions [mm] |      |      |      |     |     |     |     |      |
|---------------|-----------------|------|------|------|-----|-----|-----|-----|------|
| туре          | В               | B1   | B2   | B3   | Н   | H1  | H2  | L   | [kg] |
| RRVA 400x200  | 400             | 420  | 440  | 515  | 200 | 220 | 240 | 170 | 3,5  |
| RRVA 500x250  | 500             | 520  | 540  | 615  | 250 | 270 | 290 | 170 | 4,2  |
| RRVA 500x300  | 500             | 520  | 540  | 615  | 300 | 320 | 340 | 170 | 4,9  |
| RRVA 600x300  | 600             | 620  | 640  | 715  | 300 | 320 | 340 | 170 | 5,4  |
| RRVA 600x350  | 600             | 620  | 640  | 715  | 350 | 370 | 390 | 170 | 5,7  |
| RRVA 700x400  | 700             | 720  | 740  | 815  | 400 | 420 | 440 | 170 | 8,0  |
| RRVA 800x500  | 800             | 820  | 840  | 915  | 500 | 520 | 540 | 170 | 9,2  |
| RRVA 900x500  | 900             | 920  | 940  | 1015 | 500 | 520 | 540 | 170 | 9,9  |
| RRVA 1000x500 | 1000            | 1020 | 1040 | 1115 | 500 | 520 | 540 | 170 | 10,7 |



### **Overall dimensions:**

| Turne          | Dimensions [mm] |      |      |      |     |     |     |     |      |  |
|----------------|-----------------|------|------|------|-----|-----|-----|-----|------|--|
| Туре           | В               | B1   | B2   | B3   | Н   | H1  | H2  | L   | [kg] |  |
| RRVAF 400x200  | 400             | 420  | 440  | 530  | 200 | 220 | 240 | 170 | 4,5  |  |
| RRVAF 500x250  | 500             | 520  | 540  | 630  | 250 | 270 | 290 | 170 | 5,2  |  |
| RRVAF 500x300  | 500             | 520  | 540  | 630  | 300 | 320 | 340 | 170 | 5,9  |  |
| RRVAF 600x300  | 600             | 620  | 640  | 730  | 300 | 320 | 340 | 170 | 6,4  |  |
| RRVAF 600x350  | 600             | 620  | 640  | 730  | 350 | 370 | 390 | 170 | 6,7  |  |
| RRVAF 700x400  | 700             | 720  | 740  | 830  | 400 | 420 | 440 | 170 | 9,1  |  |
| RRVAF 800x500  | 800             | 820  | 840  | 930  | 500 | 520 | 540 | 170 | 10,2 |  |
| RRVAF 900x500  | 900             | 920  | 940  | 1030 | 500 | 520 | 540 | 170 | 11   |  |
| RRVAF 1000x500 | 1000            | 1020 | 1040 | 1030 | 500 | 520 | 540 | 170 | 11,7 |  |



RRV AIR FLOW CONTROL DAMPER RRVAF

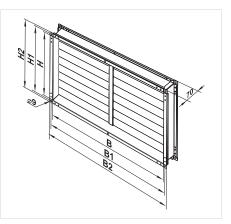
### LOUVRE BACKDRAFT SHUTTERS

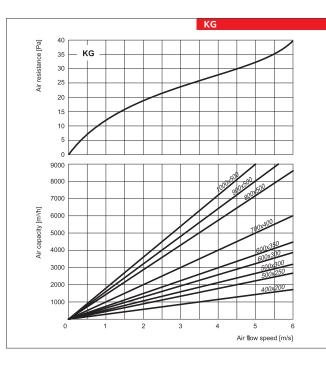


### Applications

Louvre backdraft shutter based on gravitation actuation is designed for automatic air duct shutoff when fan is switched off.

### Design


The casing is made of galvanized steel. The louvre shutter is equipped with light plastic gravitationally actuated profiled vanes placed on pivot shafts that are built in the external grille. The damper vanes are opened due to the air pressure and automatically close when no flow.


### Mounting

The shutter is designed for mounting into air ducts with the horizontal position of the wide side. The vanes shall be gravitationally closed. The air stream direction shall be considered during mounting the louvre shutter into the ventilation system.

### **Overall dimensions:**

| Туре        | Dimensions [mm] |      |      |     |     |     |      |
|-------------|-----------------|------|------|-----|-----|-----|------|
| туре        | В               | B1   | B2   | Н   | H1  | H2  | [kg] |
| KG 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 1,29 |
| KG 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 1,58 |
| KG 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 1,83 |
| KG 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 2,05 |
| KG 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 2,21 |
| KG 700x400  | 700             | 720  | 740  | 400 | 420 | 440 | 3,0  |
| KG 800×500  | 800             | 820  | 840  | 500 | 520 | 540 | 3,6  |
| KG 900×500  | 900             | 920  | 940  | 500 | 520 | 540 | 3,8  |
| KG 1000x500 | 1000            | 1020 | 1040 | 500 | 520 | 540 | 4,0  |





### **Designation key:**

Series KG

### Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500

WWW.VENTILATION-SYSTEM.COM

### INENTS

### LOUVRE BACKDRAFT SHUTTERS

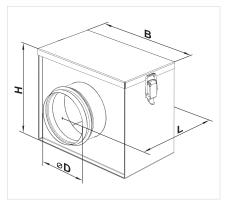
### Series KG

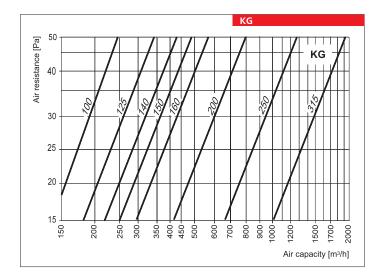


### Applications

Louvre backdraft shutter based on gravitation actuation is designed for automatic air duct shutoff when fan is switched off.

### Design


The casing is made of galvanized steel. The louvre shutter is equipped with light plastic gravitationally actuated profiled vanes placed on pivot shafts that are built in the external grille. The damper vanes are opened due to the air pressure and automatically close when no flow.


### Mounting

The shutter is designed for mounting into air ducts with the horizontal position of the wide side. The vanes shall be gravitationally closed. The air stream direction shall be considered during mounting the louvre shutter into the ventilation system.

### **Overall dimensions:**

| Turne  |     | Mass |     |     |       |
|--------|-----|------|-----|-----|-------|
| Туре   | D   | В    | Н   | L   | [kg]  |
| KG 100 | 99  | 225  | 216 | 232 | 1,814 |
| KG 125 | 124 | 225  | 216 | 232 | 1,794 |
| KG 140 | 139 | 225  | 216 | 232 | 1,798 |
| KG 150 | 149 | 225  | 216 | 232 | 1,774 |
| KG 160 | 159 | 225  | 216 | 232 | 1,699 |
| KG 200 | 199 | 295  | 316 | 232 | 2,764 |
| KG 250 | 249 | 295  | 316 | 232 | 2,624 |
| KG 315 | 314 | 365  | 366 | 232 | 3,238 |





### **Designation key:**

| Series | Branch pipe diameter, [mm]             |
|--------|----------------------------------------|
| KG     | 100; 125; 140; 150; 160; 200; 250; 315 |

LOUVRE BACKDRAFT SHUTTER

### FLEXIBLE ANTI-VIBRATION CONNECTORS

Flexible connectors are designed to exclude the

vibration transmission from fans or ventilating units

to the air duct as well as for the thermal distortion

Series
VVG / VVGF







Series

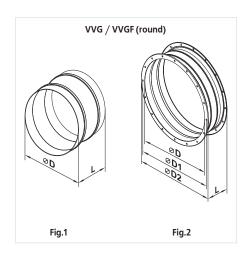
VVG

compensation within the air duct. Applied in ventila-

tion systems with the transferred air temperature over

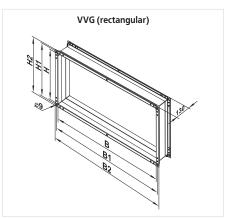
the range of -40°C to +80°C.

### Design


Flexible connectors are two flanges made of galvanized sheet steel interconnected by vibrationisolating material made of polyethylene tape reinforced with polyamide fiber. The connectors are not designed for mechanical load and cannot be used as a part of load-bearing construction.

### Mounting

Mounting of flexible connector into the ventilation system is effected by means of end flanges fixing to the mating flanges in the ventilation system. Fixing is performed by means of galvanized bolts and brackets.


### Overall dimensions:

| Turne    |     | Dimensio | Mass, | Figure |      |     |
|----------|-----|----------|-------|--------|------|-----|
| Туре     | ØD  | ØD1      | ØD2   | L      | [kg] | no. |
| VVG 100  | 101 | -        | -     | 130    | 0,14 | 1   |
| VVG 125  | 126 | -        | -     | 130    | 0,17 | 1   |
| VVG 150  | 151 | -        | -     | 130    | 0,21 | 1   |
| VVG 160  | 161 | -        | -     | 130    | 0,22 | 1   |
| VVG 200  | 201 | -        | -     | 130    | 0,28 | 1   |
| VVG 250  | 251 | -        | -     | 130    | 0,35 | 1   |
| VVG 315  | 316 | -        | -     | 130    | 0,44 | 1   |
| VVG 355  | 356 | -        | -     | 130    | 0,50 | 1   |
| VVG 400  | 401 | -        | -     | 130    | 0,56 | 1   |
| VVG 450  | 451 | -        | -     | 130    | 0,64 | 1   |
| VVG 500  | 501 | -        | -     | 130    | 0,71 | 1   |
| VVGF 200 | 200 | 250      | 380   | 130    | 1,1  | 2   |
| VVGF 250 | 250 | 295      | 320   | 130    | 1,4  | 2   |
| VVGF 315 | 314 | 380      | 397   | 130    | 1,8  | 2   |
| VVGF 355 | 355 | 442      | 460   | 130    | 2,0  | 2   |
| VVGF 400 | 400 | 504      | 528   | 130    | 2,3  | 2   |
| VVGF 450 | 450 | 578      | 607   | 130    | 2,8  | 2   |



### **Overall dimensions:**

| Туре         | Dimensions [mm] |      |      |     |     |     |      |  |  |
|--------------|-----------------|------|------|-----|-----|-----|------|--|--|
| туре         | В               | B1   | B2   | Н   | H1  | H2  | [kg] |  |  |
| VVG 400x200  | 400             | 420  | 440  | 200 | 220 | 240 | 1,1  |  |  |
| VVG 500x250  | 500             | 520  | 540  | 250 | 270 | 290 | 1,4  |  |  |
| VVG 500x300  | 500             | 520  | 540  | 300 | 320 | 340 | 1,6  |  |  |
| VVG 600x300  | 600             | 620  | 640  | 300 | 320 | 340 | 1,82 |  |  |
| VVG 600x350  | 600             | 620  | 640  | 350 | 370 | 390 | 1,95 |  |  |
| VVG 700x400  | 700             | 720  | 740  | 400 | 420 | 440 | 2,4  |  |  |
| VVG 800x500  | 800             | 820  | 840  | 500 | 520 | 540 | 2,8  |  |  |
| VVG 900x500  | 900             | 920  | 940  | 500 | 520 | 540 | 3,0  |  |  |
| VVG 1000x500 | 1000            | 1020 | 1040 | 500 | 520 | 540 | 3,2  |  |  |



Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350;

700x400; 800x500; 900x500; 1000x500

### Designation key:

| Series      | Flange diameter, [mm]                                 |
|-------------|-------------------------------------------------------|
| VVG<br>VVGF | 100; 125; 150; 160; 200; 250; 315; 355; 400; 450; 500 |

| 211 |  |
|-----|--|
| 344 |  |

### **MIXING CHAMBERS**

# Series



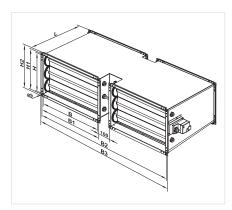
### Applications

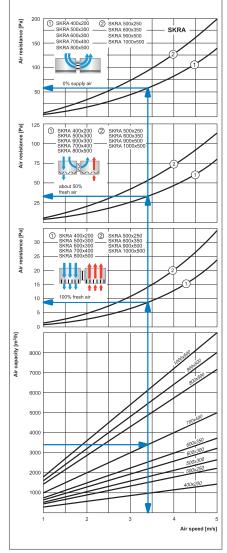
Mixing chamber is designed for mixing (recirculation) of a part of the extract air together with the supply air in the ratio required. The recirculation (recuperation of a part of the extract air) provides using a part of warm extract air and its recirculation to the premise.

### Design

The casing is made of galvanized sheet steel. The rotating gear driven blades are made of structural aluminium shape. Two chamber inlets incorporate air dampers that enable flow-ratio controlling for supply and exhaust recirculated air (0-100%) effected by actuators. SKRA mixing set has two 24V actuators for automatic air flow regulation.

Control voltage 0-10 V supplied for the actuator regulates the blades opening and set the flow-ratio control for the supply and recirculated air (0 to 100% recirculation).


### Mounting


Mounting is effected by means of flange connection. Mounting inside the ventilation system is effected by means of fixing end flanges to the mating flanges of the air ducts or other ventilation system units. Fixing is performed by means of galvanized bolts and clamps. The mixing chambers are designed for indoor or outdoor installation at any operating position. While mounting the space for the access for the actuators shall be provided.

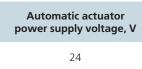
SKRA

### **Overall dimensions:**

| Туре             | Dimensions [mm] |      |      |      |     |     |     |     |      |  |
|------------------|-----------------|------|------|------|-----|-----|-----|-----|------|--|
| туре             | В               | B1   | B2   | B3   | Н   | H1  | H2  | L   | [kg] |  |
| SKRA 400x200/24  | 400             | 420  | 940  | 960  | 200 | 220 | 240 | 390 | 20   |  |
| SKRA 500x250/24  | 500             | 520  | 1140 | 1160 | 250 | 270 | 290 | 440 | 25   |  |
| SKRA 500x300/24  | 500             | 520  | 1140 | 1160 | 300 | 320 | 340 | 490 | 33   |  |
| SKRA 600x300/24  | 600             | 620  | 1340 | 1360 | 300 | 320 | 340 | 490 | 36   |  |
| SKRA 600x350/24  | 600             | 620  | 1340 | 1360 | 350 | 370 | 390 | 540 | 40   |  |
| SKRA 700x400/24  | 700             | 720  | 1540 | 1560 | 400 | 420 | 440 | 590 | 45   |  |
| SKRA 800x500/24  | 800             | 820  | 1740 | 1760 | 500 | 520 | 540 | 690 | 55   |  |
| SKRA 900x500/24  | 900             | 920  | 1940 | 1960 | 500 | 520 | 540 | 740 | 60   |  |
| SKRA 1000x500/24 | 1000            | 1020 | 2140 | 2160 | 500 | 520 | 540 | 740 | 65   |  |






9

### **Designation key:**

| Series |  |
|--------|--|
| SKRA   |  |

Flange designation (WxH) [mm]

400x200; 500x250; 500x300; 600x300; 600x350; 700x400; 800x500; 900x500; 1000x500



### CLAMPS



### Applications

Quick-detachable clamp is designed for quick and reliable fixing of various round components of ventilation system.

### Design

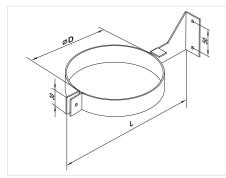
The clamps are made of galvanized steel strip with the layer of microporous rubber for vibration damping. The clamp design allows its wall or cell mounting.

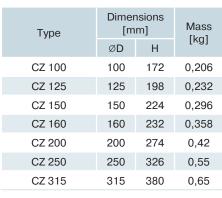


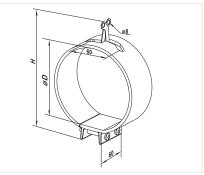
Series

### Applications

**Overall dimensions:** 


The quick-detachable clamp is designed for quick and reliable mounting and connection of various round components of ventilation system. The clamps facilitate installation and removal of fans for maintenance and cleaning.


### Design


The clamp is made of galvanized steel strip sealed at one side with microporous rubber for the better airtight characteristics and vibration damping. The quick-detachable clamps are tightened with two bolts.

### **Overall dimensions:**

| Туре    | Dimer<br>[m | Mass |      |
|---------|-------------|------|------|
|         | ØD          | L    | [kg] |
| CZK 100 | 100         | 204  | 0,21 |
| CZK 125 | 125         | 229  | 0,22 |
| CZK 150 | 150         | 254  | 0,25 |
| CZK 160 | 160         | 264  | 0,26 |
| CZK 200 | 200         | 304  | 0,31 |
| CZK 250 | 250         | 354  | 0,35 |
| CZK 315 | 315         | 419  | 0,42 |







**Designation key:** 

Series CZK CZ

Flange diameter, [mm]



### Applications

The clamps are designed for quick and reliable mounting and connection of various round ventilation system components. The clamps facilitate the installation and removal of fans for maintenance and cleaning.

### Design

• C series clamps are made of stainless steel (C series) or galvanized steel (C.. Z.) strips. The clamps are tightened with screws. CB series clamps are the quick detachable clamps of stainless steel with the swing screw of stainless steel. The clamps are tightened with screw.
 CBR 3000 series clamps are the band clamps in

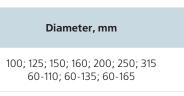
a plastic covering (roll 30 m x 9 mm x 0.8 mm + 50 SU 50 locking devices). Using a band of the worm drive clip of the required length and locking device you have the required diameter clamp. The clamps are tightened with screws.

Tin snips are everything you need to have the required length clamp as the plastic casing has a

special design and marking. Application:

- 1. Bend the clamp edge;
- 2. Fix the bent edge of the band into the band holder;
- 3. Turn the band holder till the mark of the required diameter on the casing;
- 4. Cut the band away as applicable for the casing;
- 5. Fix the locking device on the clamp.

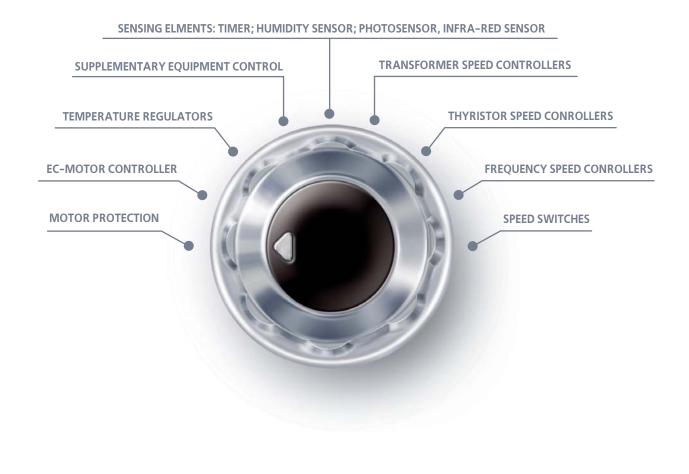
### Overall dimensions:


| Type  | Dimensions [mm] |   |  |  |  |
|-------|-----------------|---|--|--|--|
| туре  | ØD              | Н |  |  |  |
| C 100 | 90-110          | 9 |  |  |  |
| C 125 | 110-130         | 9 |  |  |  |
| C 130 | 120-140         | 9 |  |  |  |
| C 150 | 140-160         | 9 |  |  |  |
| C 160 | 150-170         | 9 |  |  |  |
| C 200 | 190-210         | 9 |  |  |  |
| C 250 | 240-260         | 9 |  |  |  |
| C 315 | 300-330         | 9 |  |  |  |
|       |                 |   |  |  |  |

### **Overall dimensions:**

| Turno     | Dimensions [mm] |   |  |  |  |
|-----------|-----------------|---|--|--|--|
| Туре      | ØD              | Н |  |  |  |
| CB 60-110 | 60-110          | 9 |  |  |  |
| CB 60-135 | 60-135          | 9 |  |  |  |
| CB 60-165 | 60-165          | 9 |  |  |  |

### **Designation key:**






SU 50 locking device for CBR 3000

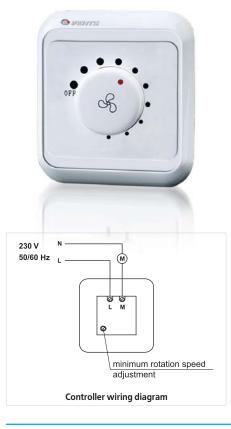








|         | Thyristor speed controller                      | page<br>352        |
|---------|-------------------------------------------------|--------------------|
|         | Transformer speed controllers                   | page<br>356        |
|         | Frequency speed controllers                     | page<br>361        |
|         | Temperature regulators                          | <b>page</b><br>362 |
| artises | Speed control switches                          | <b>page</b><br>365 |
|         | EC-motors regulators                            | <b>page</b><br>367 |
| C Parra | Sensors                                         | <b>page</b><br>368 |
|         | Differential pressure switch                    | <b>page</b><br>369 |
|         | Thermostat                                      | page<br>370        |
|         | Electric triac temperature controller           | page<br>371        |
| æ       | Duct temperature sensors                        | page<br>372        |
|         | External temperature regulator for chimney fans | page<br>373        |
|         | CO <sub>2</sub> sensor                          | page<br>374        |


### VENTS AUTOMATION FOR FAN CONTROL

| Model                                                                    |           | Phase   | Current                                                            | Protection   | Casing                                             | Functions                                                                                                                                                    |
|--------------------------------------------------------------------------|-----------|---------|--------------------------------------------------------------------|--------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          |           |         | Thyristor sp                                                       | eed controll | er                                                 |                                                                                                                                                              |
| RS-1-300                                                                 |           | 1 phase | up to 1,5 A                                                        | IP40         | Plastic casing for flush mounting                  | Smooth fan speed control with built-in switch.                                                                                                               |
| RS-1-400                                                                 | WENTS     |         | up to 1,8 A                                                        | IP40         | nusin mounting                                     | buit-in switch.                                                                                                                                              |
| RS-1 N (V)<br>RS-1,5 N (V)<br>RS-2 N (V)<br>RS-2,5 N (V)                 | 0<br>0 1  | 1 phase | up to 1,0 A<br>up to 1,5 A<br>up to 2,0 A<br>up to 2,5 A           | IP44         | Plastic casing for<br>flush or surface<br>mounting | Smooth fan speed control with built-in switch.                                                                                                               |
| RS-0,5-PS<br>RS-1,5-PS<br>RS-2,5-PS<br>RS-4,0-PS                         | 9         | 1 phase | 0,1 - 0,5 A<br>0,15 - 1,5 A<br>0,25 - 2,5 A<br>0,4 - 4,0 A         | IP44         | Plastic casing for<br>flush or surface<br>mounting | Smooth fan speed control with built-in switch, minimum speed setting.                                                                                        |
| RS-1,5-T<br>RS-3,0-T<br>RS-5,0-T<br>RS-10,0-T                            | -         | 1 phase | 0,2 - 1,5 A<br>0,3 - 3,0 A<br>0,5 - 5,0 A<br>1,0 - 10,0 A          | IP54         | Plastic casing for surface mounting                | Smooth fan speed control with<br>built-in switch, minimum speed<br>setting.                                                                                  |
| RS-1,5-TA<br>RS-3,0-TA<br>RS-5,0-TA<br>RS-10,0-TA                        | 1 1000    | 1 phase | 0,2 - 1,5 A<br>0,3 - 3,0 A<br>0,5 - 5,0 A<br>1,0 - 10,0 A          | IP54         | Plastic casing for surface mounting                | Smooth fan speed control. Control<br>input 0-10 V or 4-20 mA, built-in<br>switch, minimum speed setting.                                                     |
|                                                                          |           |         | Transforme                                                         | speed cont   | rollers                                            |                                                                                                                                                              |
| RSA5E-2-P                                                                |           | 1 phase | up to 2,0 A                                                        | IP54         | Plastic casing for surface mounting                | Step fan speed control. Overheating<br>motor protection, thermostat and<br>actuator driven air shutoff damper<br>connections. Mechanical speed<br>switching. |
| RSA5E-2-M<br>RSA5E-3-M<br>RSA5E-4-M<br>RSA5E-12-M                        | 20.       | 1 phase | up to 2 A<br>up to 3 A<br>up to 4 A<br>up to 12 A                  | IP21<br>IP44 | Metal casing for surface mounting                  | Step fan speed control. Overheating<br>motor protection, thermostat and<br>actuator driven air shutoff damper<br>connections. Mechanical speed<br>switching. |
| RSA5E-1,5-T<br>RSA5E-3,5-T<br>RSA5E-5,0-T<br>RSA5E-8,0-T<br>RSA5E-10,0-T | 1000 CO.  | 1 phase | up to 1,5 A<br>up to 3,5 A<br>up to 5 A<br>up to 8 A<br>up to 10 A | IP54         | Plastic casing for surface mounting                | Step fan speed control. Overheating<br>motor protection, thermostat and<br>actuator driven air shutoff damper<br>connections. Mechanical speed<br>switching. |
| RSA5D-1,5-T<br>RSA5D-3,5-T                                               | 1 · · · · | 3 phase | up to 1,5 A<br>up to 3,5 A                                         | IP44         | Plastic casing for surface mounting                | Step fan speed control. Overheating<br>motor protection, thermostat and<br>actuator driven air shutoff damper<br>connections. Mechanical speed<br>switching. |
| RSA5D-5-M<br>RSA5D-8-M<br>RSA5D-10-M<br>RSA5D-12-M                       |           | 3 phase | up to 5 A<br>up to 8 A<br>up to 10 A<br>up to 12,0 A               | IP44         | Metal casing for surface mounting                  | Step fan speed control. Overheating<br>motor protection, thermostat and<br>actuator driven air shutoff damper<br>connections. Mechanical speed<br>switching. |

| Model                                                                     |         | Phase                                 | Current                                                                      | Protection   | Casing                                 | Functions                                                                                                                                                                                             |                                                     |                                   |
|---------------------------------------------------------------------------|---------|---------------------------------------|------------------------------------------------------------------------------|--------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|
| Frequency speed controllers                                               |         |                                       |                                                                              |              |                                        |                                                                                                                                                                                                       |                                                     |                                   |
| VFED-200-TA<br>VFED-400-TA<br>VFED-750-TA<br>VFED-1100-TA<br>VFED-1500-TA |         | 3 phase                               | 200 W / 1A<br>400 W / 2A<br>750 W / 3,5 A<br>1,1 kW / 5,5A<br>1,5 kW / 7,5 A | IP54         | Plastic casing for surface mounting    | Smooth speed control of three<br>phase fan. Power supply 220V,<br>motor overheating protection.<br>Control input 0-10 V or 4-20 mA,<br>series port RS232, remote LED<br>display (ordered on request). |                                                     |                                   |
|                                                                           |         |                                       | Temperatur                                                                   | e regulators |                                        |                                                                                                                                                                                                       |                                                     |                                   |
| RTS -1-400<br>RTSD -1-400                                                 |         | 1 phase                               | up to 2,0 A                                                                  | IP40         | Plastic casing for flush mounting      | Temperature mode control in<br>ventilation, air conditioning and<br>heating systems. Equipped with<br>digital LED display. Automatic<br>heating/cooling rate control.                                 |                                                     |                                   |
| RT-10                                                                     | The     | 1 phase                               | up to 10 A                                                                   | IP40         | Plastic casing for surface mounting    | Maintaining the set temperature<br>level and control of ventilation,<br>heating and air conditioning sys-<br>tems. Temperature control range<br>from +10 up to +30°C.                                 |                                                     |                                   |
|                                                                           |         |                                       | Speed cont                                                                   | rol switches |                                        |                                                                                                                                                                                                       |                                                     |                                   |
| P2-5,0 N (V)                                                              |         |                                       |                                                                              |              |                                        | 2 speed step switching                                                                                                                                                                                |                                                     |                                   |
| P3-5,0 N (V)                                                              |         |                                       |                                                                              |              |                                        | 3 speed step switching                                                                                                                                                                                |                                                     |                                   |
| P5-5,0 N (V)                                                              | S' E    | i i i i i i i i i i i i i i i i i i i | States I                                                                     | 1 phase      | up to 5,0 A                            | IP40                                                                                                                                                                                                  | Plastic casing for<br>surface and flush<br>mounting | 5 speed step switching            |
| P2-1-300                                                                  |         | 1 phase                               | up to 5 A                                                                    | IP40         | Plastic casing for                     | 2 speed step switching                                                                                                                                                                                |                                                     |                                   |
| P3-1-300                                                                  | GHENTH  |                                       |                                                                              |              | flush mounting                         | 3 speed step switching                                                                                                                                                                                |                                                     |                                   |
|                                                                           |         |                                       | EC-motors                                                                    | regulators   |                                        |                                                                                                                                                                                                       |                                                     |                                   |
| R-1/010                                                                   | • VENTS | 1 phase                               | up to 1,1 mA                                                                 | IP40         | Plastic casing for flush mounting      | Smooth control of speed, tem-<br>perature and other characteris-<br>tics. 0-10V output is equipped<br>with max. 3A built-in switch.                                                                   |                                                     |                                   |
|                                                                           |         |                                       | Sen                                                                          | sors         |                                        |                                                                                                                                                                                                       |                                                     |                                   |
| T-1,5N                                                                    | 0<br>   |                                       |                                                                              |              |                                        | Fan operation with running-out timer.                                                                                                                                                                 |                                                     |                                   |
| TH-1,5N                                                                   |         |                                       |                                                                              |              |                                        |                                                                                                                                                                                                       |                                                     | Fan humidity-dependent operation. |
| TF-1,5N                                                                   |         | 1 phase                               | 1 phase up to 1,5 A                                                          | IP54         | Plastic casing for<br>surface mounting | Fan operation with photo-<br>sensor and running-out timer.                                                                                                                                            |                                                     |                                   |
| TP-1,5N                                                                   |         |                                       |                                                                              |              |                                        | Fan operation with infra-red sensor and running-out timer.                                                                                                                                            |                                                     |                                   |

### THYRISTOR SPEED CONTROLLERS

# Speed controller **RS-1-300**



Speed controller

**RS-1-400** 

### Applications

Applied in ventilation systems for switching ON/ OFF and speed controlling of single-phase powercontrolled motors. Several fans can be operated synchronously in case their total consumption current does not exceed the maximum permissible current value.

### Design and control

The controller casing is made of plastic. The controller is featured with high efficiency and control accuracy. Switching to the maximum speed is effected by means of regulating the control knob. Regulating starts from the minimum to the maximum voltage value for the fan stable running. The minimum speed is set by means of the potentiometer at PCB.

### Protection

The controller incorporates a thermal fuse for motor overload protection.

### Mounting

The controller is designed for indoor mounting into standard round electric junction boxes.

### **Technical data:**

|                                  | RS-1-300 |
|----------------------------------|----------|
| Voltage, [V/50 Hz]               | 1~ 230   |
| Rated current, [A]               | 1,5      |
| Overall dimensions LxWxH [mm]    | 95x85x60 |
| Maximum ambient temperature [°C] | 40       |
| Protection rating                | IP 40    |
| Mass [kg]                        | 0,11     |

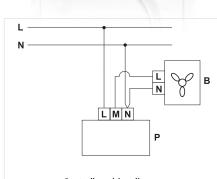
### Applications

Applied in ventilation systems for speed switching ON/OFF and speed control of the single-phase power-controlled motors. Several fans can be controlled synchronously in case their total current does not exceed the maximum permissible values for the controller current.

### Design and control

The controller casing is made of plastic. The controller is featured with high efficiency and control accuracy. Switching to the maximum speed is effected by means of regulating the control knob. Regulating starts from the minimum to the maximum voltage value for the fan stable running. The minimum speed is set by means of the potentiometer at PCB.

### Protection

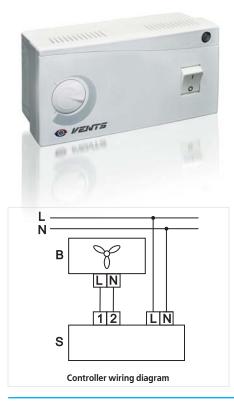

The controller incorporate a removable thermal fuse for motor overload protection and transient filter.

### Mounting

The controller is designed for indoor mounting into standard round electric junction boxes.

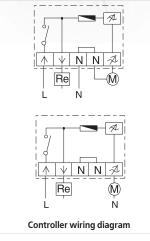
### Technical data:

|                                  | RS-1-400 |
|----------------------------------|----------|
| Voltage, V/ 50/60 Hz             | 1~ 230   |
| Rated current, [A]               | 1,8      |
| Overall dimensions LxWxH [mm]    | 78x78x63 |
| Maximum ambient temperature [°C] | 35       |
| Protection rating                | IP 40    |
| Mass [kg]                        | 0,11     |




VENTS

-


Controller wiring diagram

# Speed controller **RS-...N (V)**



Speed controller





### Applications

Applied in ventilation systems for speed switching ON/OFF and speed control of the single-phase power-controlled motors. Several fans can be controlled synchronously in case their total current does not exceed the maximum permissible values for the controller current.

### Design and control

Controller has the plastic casing with the control knob, ON/OFF button and pilot light. The controller is featured with high efficiency and control accuracy. Regulation starts from the minimum fan stable running voltage value to the maximum one. The minimum rotation speed is set by means of the potentiometer on the PCB.

### Protection

Input circuit of the speed controller has a thermal fuse for overload protection. The controller is fitted with a transient filter.

### Mounting

The controller is designed for indoor wall mounting either on the wall (H modification) or through the wall (V modification).

### **Technical data:**

| RS-1 N (V) | RS-1,5 N (V)                              | RS-2 N (V)                                                                                            | RS-2,5 N (V)                                                                                                                                           |
|------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1~ 230     | 1~ 230                                    | 1~ 230                                                                                                | 1~ 230                                                                                                                                                 |
| 1,0        | 1,5                                       | 2,0                                                                                                   | 2,5                                                                                                                                                    |
| 162x80x70  | 162x80x70                                 | 162x80x70                                                                                             | 162x80x70                                                                                                                                              |
| 40         | 40                                        | 40                                                                                                    | 40                                                                                                                                                     |
| IP 44      | IP 44                                     | IP 44                                                                                                 | IP 44                                                                                                                                                  |
| 0,3        | 0,3                                       | 0,3                                                                                                   | 0,3                                                                                                                                                    |
|            | 1~ 230<br>1,0<br>162x80x70<br>40<br>IP 44 | 1~230     1~230       1,0     1,5       162x80x70     162x80x70       40     40       IP 44     IP 44 | 1~230     1~230     1~230       1,0     1,5     2,0       162x80x70     162x80x70     162x80x70       40     40     40       IP 44     IP 44     IP 44 |

### Applications

Applied in ventilation systems for speed switching ON/OFF and speed control of single-phase powercontrolled motors. Several fans can be controlled synchronously in case their total current does not exceed the maximum permissible value of the controller current.

### Design and control

The controller casing is made of pastic. The control knob is equipped with the pilot light. The controller is featured with high efficiency and control accuracy. Switching is effected by means of pressing the control knob. Regulating starts from the minimum to the maximum voltage value for the fan stable running. The minimum speed is set by means of the potentiometer at the PCB. The controller is equipped with extra 230 V terminal for connection and control of the external equipment.

### Protection

Input circuit of the speed controller has a thermal fuse for overload protection. The controller is fitted with a transient filter.

### Mounting

The universal design of the controller enables its mounting either on the wall (H modification) or through the wall (V modification), suitable for installation into standard round electric junction boxes.

### Technical data:

|                                  | RS-0,5-<br>PS | RS-1,5-<br>PS | RS-2,5-<br>PS | RS-4,0-<br>PS |
|----------------------------------|---------------|---------------|---------------|---------------|
| Voltage, V/ 50 Hz                | 1~ 230        | 1~ 230        | 1~ 230        | 1~ 230        |
| Minimum current [A]              | 0,1           | 0,15          | 0,25          | 0,4           |
| Maximum current [A]              | 0,5           | 1,5           | 2,5           | 4,0           |
| Overall dimensions LxWxH [mm]    | 82x82x65      | 82x82x65      | 82x82x65      | 82x82x65      |
| Maximum ambient temperature [°C] | 35            | 35            | 35            | 35            |
| Protection rating                | IP 44         | IP 44         | IP 44         | IP 44         |
| Mass [kg]                        | 0,23          | 0,24          | 0,29          | 0,36          |

### THYRISTOR SPEED CONTROLLERS





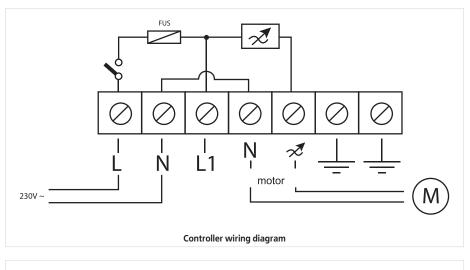
### Applications

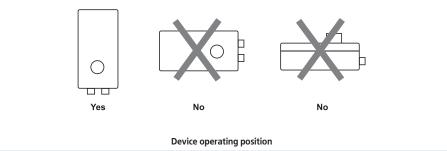
Applied in ventilation systems for speed switching ON/OFF and speed control of single-phase powercontrolled motors. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

### Design and control

The controller casing is made of flame-retardant thermoplastic and fitted with ON/OFF knob with pilot light. The controller is featured with high efficiency and control accuracy. Output power is controlled from 25 to 100% as a function of the control knob position. The minimum speed is set by means of the potentiometer at the PCB. The controller is equipped with extra 230 V terminal for connection and controlling such external equipment as actuatordriven air dampers.

### Protection


Input circuit of the speed controller has a thermal fuse for overload protection. The controller is fitted with a transient filter.


### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air circulation for inner circuit cooling. The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

### **Technical data:**

|                                  | RS-1,5-T   | RS-3,0-T   | RS-5,0-T   | RS-10,0-T  |
|----------------------------------|------------|------------|------------|------------|
| Voltage, [V/50 Hz]               | 1~ 230     | 1~ 230     | 1~ 230     | 1~ 230     |
| Minimum current [A]              | 0,2        | 0,3        | 0,5        | 1,0        |
| Maximum current [A]              | 1,5        | 3,0        | 5,0        | 10,0       |
| Overall dimensions LxWxH [mm]    | 123x191x97 | 123x191x97 | 123x191x97 | 123x191x97 |
| Maximum ambient temperature [°C] | +5+40      | +5+40      | +5+40      | +5+40      |
| Protection rating                | IP 54      | IP 54      | IP 54      | IP 54      |
| Mass [kg]                        | 0,3        | 0,3        | 0,3        | 0,3        |





# Speed controller **RS-...-TA**



### Applications

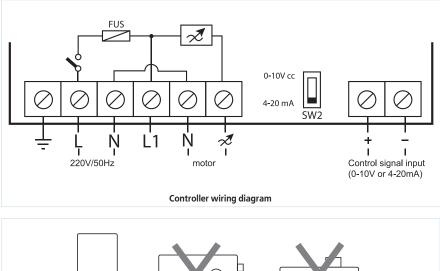
Applied in ventilation systems for switching ON/ OFF and speed controlling of single-phase powercontrolled motors. Several fans can be operated synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

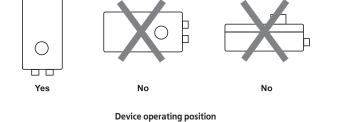
### Design and control

The controller casing is made of flame-retardant thermoplastic and fitted with ON/OFF knob. Output power is controlled from 25 to 100% as a function of the control signal 0...10V or 4-20mA over the range set during the controller adjustment. The control signal type 0...10V or 4-20mA is selected with SW2 control switch located in the controller casing. Control can be performed by means of remote control panel, i.e., R-1/010

controller (page 367). The minimum speed is set by means of the potentiometer at PCB inside the controller. The controller is equipped with a supplementary 230V terminal for connection and control of such external equipment as actuator driven air dampers.

### Protection


Input circuit of the speed controller has a thermal fuse for overload protection.


### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air circulation for inner circuit cooling. The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

### **Technical data:**

|                                  | RS-1,5-<br>TA | RS-3,0-<br>TA | RS-5,0-<br>TA | RS-10,0-<br>TA |
|----------------------------------|---------------|---------------|---------------|----------------|
| Voltage, [V/50 Hz]               | 1~ 230        | 1~ 230        | 1~ 230        | 1~ 230         |
| Minimum current [A]              | 0,2           | 0,3           | 0,5           | 1,0            |
| Maximum current [A]              | 1,5           | 3,0           | 5,0           | 10,0           |
| Overall dimensions LxWxH [mm]    | 180x127x95    | 180x127x95    | 180x127x95    | 180x127x95     |
| Maximum ambient temperature [°C] | +5+40         | +5+40         | +5+40         | +5+40          |
| Protection rating                | IP 54         | IP 54         | IP 54         | IP 54          |
| Mass [kg]                        | 0,3           | 0,3           | 0,3           | 0,3            |





SPEED CONTROLLERS

### TRANSFORMER SPEED CONTROLLER





Speed control enables not only selecting the comfortable ventilation mode for the periodically visited premises but reducing the energy consumption for the ventilation.

### Applications

RSA5E-2-P series speed controller is applied for air capacity control of single-phase fans by means of step control of motor speed. The controller has five speeds. Speed is set by means of rotating the control knob at the casing front panel. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

### Design

The controller casing is made of flame-retardant thermoplastic. The controller has five speeds with the output power 110V-130V-160V-190V-230V and incorporates ON/OFF button with pilot light, the control knob for speed switching and the emergency operation LED indicator. The integral motor protection device is included which cuts the supply voltage to the fan if the thermal contact in the fan

motor is activated. After the temperature drops to the operating level the motor restarts.

The controller has the following supplementary functions:

- terminals for connection to the room thermostat or to the thermostat for the icing protection. In case of the circuit breaking the power supply to the motor is disabled.

- terminals of 230 V, max. 2A for connection and controlling such external equipment actuator driven air damper.

- provision for remote speed control (refer the connection options).

### Mounting

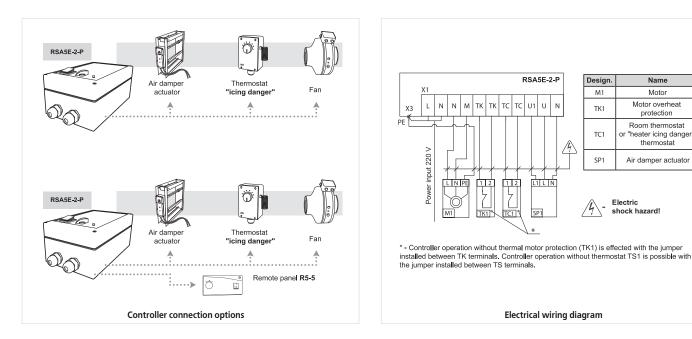
The controller is designed for indoor mounting. Installation shall be performed with respect to the free air recirculation for inner circuit cooling.

Name

Motor

Motor overheat

protection Room thermostat "heater icing danger


thermostat

Air damper actuator

Electric shock hazard!

### Technical data:

|                                  | RSA5E-2-P   |
|----------------------------------|-------------|
| Voltage, [V/50 Hz]               | 1~ 230      |
| Rated current, [A]               | 2,0         |
| Overall dimensions LxWxH [mm]    | 222x120x100 |
| Maximum ambient temperature [°C] | 40          |
| Protection rating                | IP 54       |
| Mass [kg]                        | 3,1         |





Speed controls enables not only selecting the comfortable ventilation mode for the periodically visited premises but reducing the energy consumption for the ventilation.

### Applications

RSA5E-...-M series speed controllers are applied for air capacity control of single-phase fans by means of step speed control. The controller has five speeds. Speed is set by means of rotating the control knob at the casing front panel. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

### Design and control

Casing is made of steel with polymeric coating. The controller has five speeds with the output power 110V-130V-160V-190V-230V (for RSA5E-12-M modification-80V-105V-130V-160V-230V). The controller incorporates ON/OFF button with pilot light, control knob for speed switching and controller emergency operation LED indicator.

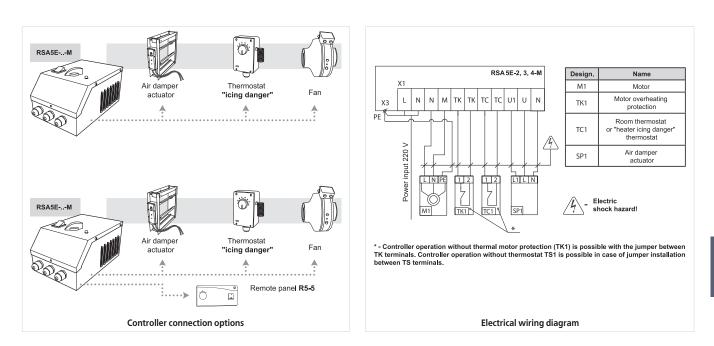
### Protection

The integral motor protection device is included which cuts the supply voltage to the fan if the thermal contact in the fan motor is activated. After the temperature drops to the operating level the motor restarts.

The controller has the following supplementary functions:

 terminals for connection to the room thermostat or to the icing protection thermostat. In case of the circuit breaking the power supply to the motor is cut.
 terminals of 230 V, max. 2A/3A/4A for

connection and controlling such external equipment as actuator driven air damper.


- provision for remote speed control (refer the connection options).

### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air circulation for inner circuit cooling.

### **Technical data:**

|                                  | RSA5E-2-M   | RSA5E-3-M   | RSA5E-4-M   | RSA5E-12-M  |
|----------------------------------|-------------|-------------|-------------|-------------|
| Voltage, [V/50 Hz]               | 1~ 230      | 1~ 230      | 1~ 230      | 1~ 230      |
| Rated current, [A]               | 2,0         | 3,0         | 4,0         | 12,0        |
| Overall dimensions LxWxH [mm]    | 226x144x120 | 241x164x138 | 241x184x132 | 325x250x245 |
| Maximum ambient temperature [°C] | 40          | 40          | 40          | 40          |
| Protection rating                | IP 21       | IP 21       | IP 21       | IP 44       |
| Mass [kg]                        | 3,4         | 4,1         | 4,5         | 4,5         |



SPEED CONTROLLERS

RSA5E-2-P

SA5E-.

### TRANSFORMER SPEED CONTROLLER

Single phase speed controller



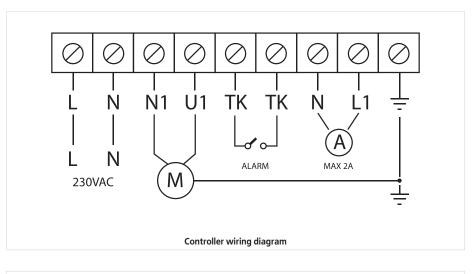
### Applications

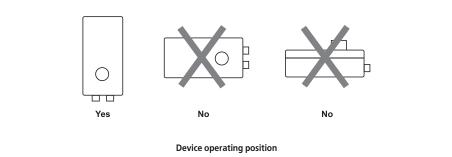
RSA5E-...T series speed controllers are applied for air capacity control of single-phase fans by means of motor step speed control. The controllers have five speeds. Speed is set by means of rotating the control knob at the casing front panel to one of five available fixed positions. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

### Design and control

The controller casing is made of flame-retardant thermoplastic. The controller has five speeds with the output power 80V - 105V - 130V -160V - 230V and incorporates ON/OFF pilot light for operation indication, control knob for speed switching and controller emergency operation LED indicator. The integral motor protection device is included which cuts the supply voltage to the fan if the thermal contact in the fan motor is activated. After the temperature drops to the operating level the motor restarts.

The controller has the following supplementary functions:


- terminals of 230 V, max. 2A for connection and controlling such external equipment as actuator driven air dampers.


### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air recirculation for inner circuit cooling .The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

### Technical data:

|                                  | RSA5E-1,5-T | RSA5E-3,5-T | RSA5E-5,0-T | RSA5E-8,0-T | RSA5E-10,0-T |
|----------------------------------|-------------|-------------|-------------|-------------|--------------|
| Voltage [V/50 Hz]                | 1~ 230      | 1~ 230      | 1~ 230      | 1~ 230      | 1~ 230       |
| Rated current, [A]               | 1,5         | 3,5         | 5,0         | 8,0         | 10,0         |
| Overall dimensions LxWxH [mm]    | 205x110x85  | 255x170x140 | 255x170x140 | 305x200x180 | 305x200x180  |
| Maximum ambient temperature [°C] | +5+35       | +5+35       | +5+35       | +5+35       | +5+35        |
| Protection rating                | IP 44        |





# Three-phase speed controller **RSA5D-...-T**



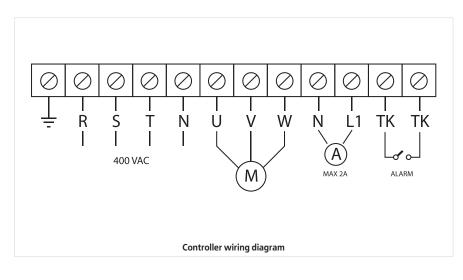
### Applications

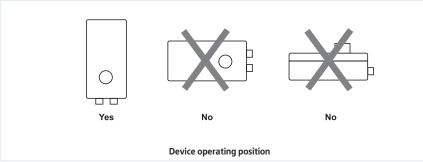
RSA5D-...T series speed controllers are applied for air capacity control of three-phase fans by means of step speed control. The controllers have five speeds. Speed is set by means of rotating the control knob at the casing front panel to one of five available fixed positions. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

### Design and control

The controller casing is made of flame-retardant thermoplastic. The controller has five speeds with the output power 90V - 150V - 200V - 280V - 400V and incorporates control speed knob, pilot light and controller emergency operatrion LED indicator.

The integral motor protection device is included which cuts the supply voltage to the fan if the thermal contact in the fan motor is activated. After the temperature drops to the operating level the motor restarts.


As supplementary functions the controller is fitted with terminals of 230 V, max. 2A for connection and controlling such external equipment as actuator driven air damper.


### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air recirculation for inner circuit cooling. The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

### **Technical data:**

|                                  | RSA5D-1,5-T | RSA5D-3,5-T |
|----------------------------------|-------------|-------------|
| Voltage, [V/ 50 Hz]              | 3~ 400      | 3~ 400      |
| Rated current, [A]               | 1,5         | 3,5         |
| Overall dimensions LxWxH [mm]    | 305x200x180 | 305x200x180 |
| Maximum ambient temperature [°C] | +5+35       | +5+35       |
| Protection rating                | IP 44       | IP 44       |





SPEED CONTROLLERS

RSA5E-... SA5D-...

### TRANSFORMER SPEED CONTROLLER





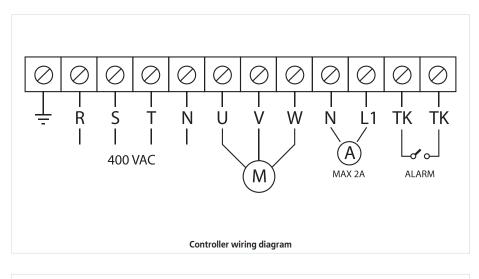
#### Applications

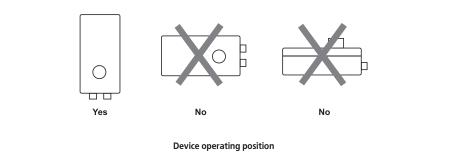
RSA5D-...M series speed controllers are applied for air capacity control of three-phase fans by means of step control of motor speed. The controllers have five speeds. Speed is set by means of rotating the control knob at the casing front panel to one of five available fixed positions. Several fans can be controlled synchronously in case their total consumption current does not exceed the maximum permissible value of the controller current.

#### Design and control

The controller casing is made of flame-retardant thermoplastic. The controller has five speeds with the output power 90V - 150V - 200V -280V - 400V and incorporates control speed knob, light indication for operation and pilot lamp to indicate the emergency

operation of the controller. The controller has builtin motor overheating protection which cuts power supply in case of exceeding the set temperature threshold. After the temperature drops to the operating level the motor restarts.


The controller is fitted with terminals of 230 V, max. 2A for connection and controlling such external equipment as actuator driven air damper.


#### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air recirculation for inner circuit cooling. The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

#### **Technical data:**

|                                  | RSA5D-5,0-M | RSA5D-8,0-M | RSA5D-10,0-M | RSA5D-12,0-M |
|----------------------------------|-------------|-------------|--------------|--------------|
| Voltage, [V/ 50 Hz]              | 3~ 400      | 3~ 400      | 3~ 400       | 3~ 400       |
| Rated current, [A]               | 5,0         | 8,0         | 10,0         | 12,0         |
| Overall dimensions LxWxH [mm]    | 325x250x245 | 325x250x245 | 425x300x250  | 425x300x250  |
| Maximum ambient temperature [°C] | +5+35       | +5+35       | +5+35        | +5+35        |
| Protection rating                | IP 44       | IP 44       | IP 44        | IP 44        |





## Frequency speed controller



Frequency speed controllers are the energy saving devices which ensure maximum utilization of actuator power with minimum energy consumption.

#### Applications

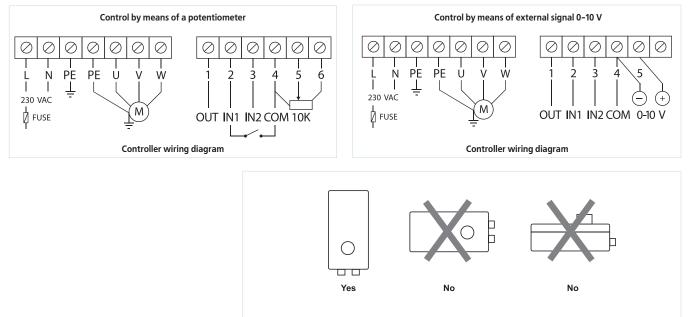
VFED-...-TA series controllers or inverters are designed for frequency control of three-phase asynchronous AC motors. Speed control is effected by means of variation of supplied voltage frequency. Applied for air capacity control of three-phase motors.

#### Design and control

The controller casing is made of flame-retardant thermoplastic. The assembly transforms voltage of 220V, 50Hz supply mains into output impulse voltage with the frequency 3Hz to 400 Hz. Motor rotor is powered with simple sinusoidal current and has the rotation speed as a function of the supplied

voltage frequency. Single-phase 220V, 50Hz power is supplied to the frequency controller inlet. Threephase voltage with the frequency up to 400 Hz for asynchronous motor supply is generated at the controller outlet.

#### Control by means of external device


Power output variation as a function of the external control signal 0...10V or 4-20mA over the range set during the controller adjustment. The external device is connected through RS-232 serial port.

#### Mounting

The controller is designed for indoor mounting. Installation shall be performed with respect to the free air circulation for inner circuit cooling. The controller is for vertical installation. Do not install the controller above the heaters and in bad air convection areas.

#### **Technical data:**

|                                                                 | VFED-200-TA   | VFED-400-TA   | VFED-750-TA   | VFED-1100-TA  | VFED-1500-TA  |
|-----------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Voltage supplied to the controller [V/50 Hz]                    | 1~ 230        | 1~ 230        | 1~ 230        | 1~ 230        | 1~ 230        |
| Voltage supplied from the controller to the electric motor, [V] | 3~ 230        | 3~ 230        | 3~ 230        | 3~ 230        | 3~ 230        |
| Frequency output supplied to the motor, [Hz]                    | from 3 to 400 |
| Maximum load current [A]                                        | 1,0           | 2,0           | 3,5           | 5,5           | 7,5           |
| Maximum electric motor power [W]                                | 200           | 400           | 750           | 1100          | 1500          |
| Maximum ambient temperature [°C]                                | +5+40         | +5+40         | +5+40         | +5+40         | +5+40         |
| Protection rating                                               | IP 54         |



**Device operating position** 

SA5D-...-VFED-...-1

SPEED CONTROLLERS

## **TEMPERATURE REGULATORS**

## Temperature regulator RTS -1- 400 RTSD -1- 400



#### Applications

Applied for temperature mode control in ventilation, heating and air conditioning systems. Can be applied for control of fans and fancoil valves, air heating units with 230V three speed fans. Automatic heating or cooling rate control.

#### Design and control

The temperature sensor is built into the plastic control panel casing. A digital light-up LCD display and control knobs are located at the control face panel. The display shows the current and set indoor air temperature, selected mode for cooling, heating or automatic mode as well as set motor speed. The rotation speed can be adjusted manually by means of control knob rotation. Provision is made for automatic control of rotation speed (quick/medium/ low) depending on the indoor temperature.

- The light-up display enables the regulator operation in bad light conditions

- Temperature maintaining within up to 1°C.
- saving settings at no power supply.

- RTSD-1-400 model is equipped with remote control panel.

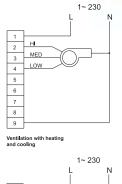
- night duty operation (refer to operation mode for night duty below).

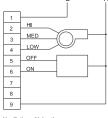
#### Mounting

Control panel is designed for indoor surface mounting. The recommended installation height is 1.5 m. Do not install the control panel close to windows, doors, heating or cooling devices.

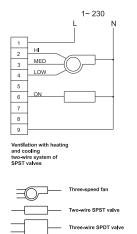
#### **Technical data:**

|                                   | RTS-1-400 | RTSD-1-400 |
|-----------------------------------|-----------|------------|
| Voltage, V/ 50 Hz                 | 1~ 230    | 1~ 230     |
| Rated current, [A]                | 2,0       | 2,0        |
| Number of selected speeds         | 3         | 3          |
| Temperature adjustment range [°C] | +10+30    | +10+30     |
| Overall dimensions LxWxH [mm]     | 88x88x51  | 88x88x51   |
| Maximum ambient temperature [°C]  | 40        | 40         |
| Protection rating                 | IP 40     | IP 40      |
| Remote control panel              | no        | yes        |
|                                   |           |            |





#### **NIGHT DUTY OPERATION peculiarities**

► Operation of the temperature regulator in the heating mode: in 30 minutes after switching to the night duty the indoor temperature goes automatically down by 1°C and in 1 hour the temperature goes down by 1°C more. One hour later the temperature goes down by 1°C more and will be kept at this level within 8 hours. After switching the timer off the temperature will be reset to the reference set level automatically.


▶ Operation of the temperature regulator in cooling mode: in 30 minutes after switching to the night duty the indoor temperature goes automatically up by 1°C and in 1 hour the temperature goes up by 1°C more and will be kept at that level up to 8 hours. After switching the timer off the temperature will be reset to the reference level automatically.







Ventilation with heating and cooling three-wire system of SPDT valves



## Temperature regulator TST-3 TSTD-3



#### Applications

Applied for temperature mode control in ventilation, heating and air conditioning systems. Can be applied for control of fans and fancoil valves, air heating units with 230V three speed fans. Automatic heating or cooling rate control.

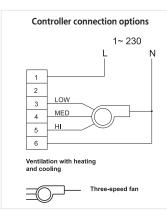
#### Design and control

The temperature sensor is built into the plastic control panel casing. A digital light-up LCD display and control knobs are located at the control face panel. The display shows the current and set indoor air temperature, selected mode for cooling, heating or automatic mode as well as set motor speed. The rotation speed can be adjusted manually by means of control knob rotation. Provision is made for automatic control of rotation speed (quick/medium/low) depending on the indoor temperature.

- The light-up display enables the regulator operation in bad light conditions

- Temperature maintaining within up to 1°C.

- saving settings at no power supply.


- TSTD-3 model is equipped with remote control panel.

#### Mounting

Control panel is designed for indoor surface mounting. The recommended installation height is 1.5 m. Do not install the control panel close to windows, doors, heating or cooling devices.

#### **Technical data:**

| TST-3    | TSTD-3                                           |
|----------|--------------------------------------------------|
| 1~ 230   | 1~ 230                                           |
| 1 (0,6A) | 1 (0,6A)                                         |
| 3        | 3                                                |
| +10+30   | +10+30                                           |
| 40       | 40                                               |
| IP 40    | IP 40                                            |
| no       | yes                                              |
|          | 1~ 230<br>1 (0,6A)<br>3<br>+10+30<br>40<br>IP 40 |



## **TEMPERATURE REGULATORS**



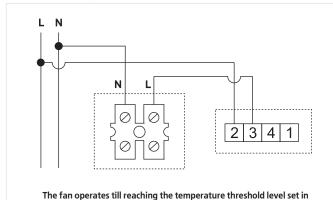


#### Applications

Applied for control of the set indoor temperature as well as ventilation and air conditioning systems control.

#### Design and control

The casing is made of high-quality durable plastic. During the temperature increase or decrease with respect to the set value the thermostat opens or closes the contacts (the pattern is selected during the connection. The temperarture adjustment range is  $\pm 10 \text{ up to } \pm 30^{\circ}\text{C}.$ 


#### Mounting

The temperature regulator is designed for indoor surface mounting. The recommended installation height is 1.5 m. Do not install the temperature regulator close to windows, doors, heating or cooling devices.

#### Technical data:

|                                  | RT-10      |
|----------------------------------|------------|
| Voltage [V/50/60 Hz]             | 1~ 220-240 |
| Overall dimensions LxWxH [mm]    | 84x84x35   |
| Maximum ambient temperature [°C] | 40         |
| Protection rating                | IP 40      |

LN



The fan starts operation after reaching the temperature threshold set in the temperature threshold set in the temperature regulator

fig. 2

#### Temperature regulator connection options

#### Wiring diagram, fig. 1

- maximum current of active load no more 10A;

the temperature regulator

fig. 1

- maximum current of inductive load no more 3A.

#### Wiring diagram, fig. 2

- maximum current of active load no more 6A;

- maximum current of inductive load no more 2A.

WWW.VENTILATION-SYSTEM.COM

#### **MULTI-SPEED FAN SWITCHES**

## Switch P2-5,0 N(V) P3-5,0 N(V) P5-5,0 N(V)

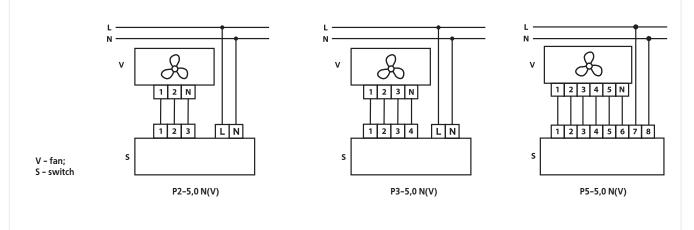


#### Applications

Applied for speed ON/OFF switching and speed selection in the fans with multi-speed motors.

#### Design and control

The switch casing is made of plastic and fitted with ON/OFF knob with operating mode indicator light. The fan speeds can be switched directly or by


means of the remote panel for speed switching for multistage transformer speed controller as P5-5,0 for five-stage transformer speed controller.

#### Mounting

The universal design of the controller enables its indoor wall mounting either on the wall (H modification) or through the wall (V modification).

#### **Technical data:**

|                                  | P2-5,0    | P3-5,0    | P5-5,0    |
|----------------------------------|-----------|-----------|-----------|
| Voltage, [V/ 50 Hz]              | 1~ 230    | 1~ 230    | 1~ 230    |
| Rated current, [A]               | 5,0       | 5,0       | 5,0       |
| Number of selected speeds        | 2         | 3         | 5         |
| Overall dimensions LxWxH [mm]    | 162x80x70 | 162x80x70 | 162x80x70 |
| Maximum ambient temperature [°C] | 40        | 40        | 40        |
| Protection rating                | IP 40     | IP 40     | IP 40     |
| Mass [kg]                        | 0,25      | 0,25      | 0,25      |
|                                  |           |           |           |



Switch connection options

## **MULTI-SPEED FAN SWITCHES**

## Switch P2-1-300 P3-1-300



L

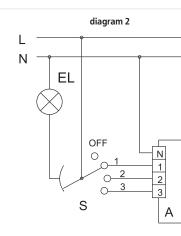
Ν

#### Applications

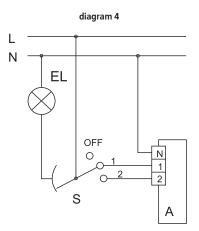
Applied for speed ON/OFF switching and speed select switching in the fans with multi-speed motors.

#### Design and control

The casing is made of plastic. Provision is made for the direct switching of the motor speeds (wiring diagram 1 and 3) as well as fan switching ON and control


synchronically with lightening in the room (wiring diagram 2 and 4).

#### Mounting


Speed switch is designed for indoor wall mounting inside a flush mounting box. It can be installed into standard round electric junction boxes.

#### **Technical data:**

|                                  | P2-1-300 | P3-1-300 |
|----------------------------------|----------|----------|
| Voltage, V/ 50 Hz                | 1~ 230   | 1~ 230   |
| Rated current, [A]               | 5,0      | 5,0      |
| Number of selected speeds        | 2        | 3        |
| Overall dimensions LxWxH [mm]    | 88x88x51 | 88x88x51 |
| Maximum ambient temperature [°C] | 40       | 40       |
| Protection rating                | IP 40    | IP 40    |
| Mass [kg]                        | 0,13     | 0,13     |
|                                  |          |          |



The fan can be manually switched ON to one of three speeds by means of such external S speed switch as P3-1-300. When switching the fan ON the light is switched in parallel ON. The fan can be switched OFF with parallel switching the light OFF. The fan operates both with light or without it.



The fan can be manually switched ON to one of the two

Ν

1

A

The fan can be manually switched ON to one of three speeds by means of the external S speed switch as P2-1-300. When switching the fan ON the light is switched in parallel ON. The fan can be switched OFF with parallel switching the light OFF. The fan operates both with light or without it.

Switch connection options

## Ν 1 2 3

The fan can be manually switched ON to one of the three required speeds or switched OFF by means of external speed switch as P3-1-300.

S

OFF

 $\cap$ 

A

0

diagram 1

diagram 3

OFF

С

O

S

L

Ν

required speeds or switched OFF by means of the external speed switch as P2-1-300.

## SPEED CONTROLLERS FOR EC-MOTORS

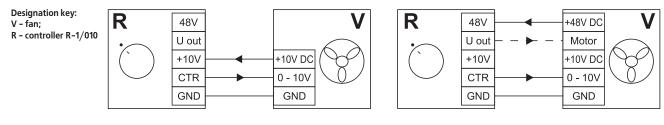
# Speed controller R-1/010



#### Applications

Applied for smooth speed control of EC motors with the control input 0-10 V.

#### Design and control


The controller casing is made of plastic. Switching ON/ OFF is effected by means of control knob rotation. The control range starts from the minimum possible value and includes the maximum possible values.

#### Mounting

The speed controller is designed for indoor flush mounting box. It can be also installed into standard round electric junction boxes.

#### **Technical data:**

|                                  | R-1/010  |
|----------------------------------|----------|
| Voltage [V]                      | 10-48VDC |
| Control signal [V]               | 0-10     |
| Maximum current [mA]             | 5mA      |
| Overall dimensions LxWxH [mm]    | 78x78x63 |
| Maximum ambient temperature [°C] | 35       |
| Protection rating                | IP 40    |
| Mass [kg]                        | 0,12     |



Controller wiring diagram

## SENSOR

| Time s      | sens | or |
|-------------|------|----|
| T-1         | ,5 I | Ν  |
| <b>TH-1</b> | ,5   | Ν  |
| TF-1        | ,5   | Ν  |
| TP-1        | ,5   | Ν  |



#### T-1,5 N - run out timer

Enables the fan operation within the set time period after pressing the knob for switching the fan OFF. After the set time from 2 to 30 minutes the fan switches automatically OFF. The run-out timer is generally applicable for the fans installed in bathrooms, WC or kitchens.

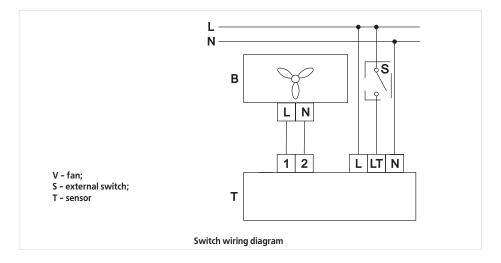
#### TH-1,5 N - humidity sensor

The fan with such sensor switches automatically ON in case of exceeding the set humidity level. A user can independently adjust the required humidity level based on personal preferences. The humidity sensor is generally applicable for the fans installed in the premises with increased humidity as bathrooms, kitchens, washing rooms or pools.

#### TF-1,5 N - timer + photo sensor

The built-in photo sensor responds to the indoor illumination rate fluctuations and has the provisions for automatic switching the fan ON accordingly. In case of light switching OFF the fan will be switched OFF with respect to the built-in run-out timer with the time period set between 2 to 30 minutes. In such a way the ventilation system fitted with a photo sensor is fully automated and requires no human control. The photo sensor is generally applicable for the fans installed in periodically visited premises.

#### TP-1,5 N - infra-red sensor


The built-in infra-red sensor responds to movement in a room and switches the fan automatically ON. If the room is empty the fan switches OFF with respect to the built-in run-out timer adjustable between 2 to 30 minutes. In such a way the ventilation system fitted with infra-red sensor is fully automated and requires no human control. The infra-red sensor is generally applicable for the fans installed in periodically occupied spaces.

#### Mounting

The sensors are designed for indoor wall surface installation (Modification N).

#### Technical data:

|                                  | T-1,5 N / TH-1,5 N<br>TF-1,5 N / TP-1,5 N |
|----------------------------------|-------------------------------------------|
| Voltage, [V / 50 Hz]             | 220-240                                   |
| Max. power, [VA]                 | 330                                       |
| Max. current, [A]                | 1,5                                       |
| Overall dimensions LxWxH, [mm]   | 162x80x70                                 |
| Timer operating conditions, [°C] | from 0 up to +40                          |
| Protection rating                | IP30                                      |
| Weight, [g]                      | 400                                       |



#### **DIFFERENTIAL PRESSURE SWITCH**

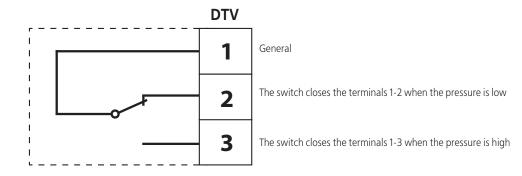
## Pressostat **DTV 500**



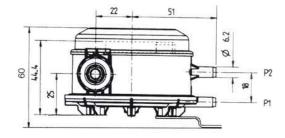
#### Application

The pressure differential switch is used to determine air rarefaction or air (non-aggressive gases) pressure drop. It is used in ventilation systems to determine air filter clogging degree or belt breaking in centrifugal fans, etc.

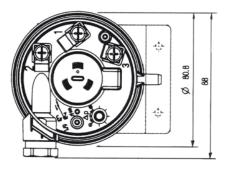
#### Design and control


The pressostatt switch of made of plastic. The pressure differential for the pressure switch actuation is set by turning the disk in the casing. The delivery set includes 2 plastic pressure outlets for pressure tap-off, PVC tubes Ø 5 mm and 2 m long.

#### Mounting


The pressure switch is designed for surface wall mounting or installation into air ducts on the mounting bracket with two Ø 5 mm openings located at 40 mm center-to-center distance. The switch is suitable both for vertical and horizontal installation. However vertical orientation is preferable because in case of horizontal orientation the switching point will be shifted for 11 Pa. The length of pressure outlet tubes is variable but the relay actuation time increases if the tube length is above 2 m. Install the differential pressure switch above the pressure tapping points. Connect the tubes in such a way as to avoid formation of tubular loops to prevent condensate accumulation inside the tubes.

| Technical data            |                  |
|---------------------------|------------------|
|                           | DTV 500          |
| Number of contacts        | 1                |
| Contact data [A]          | 5 (0.8) 250 V AC |
| Reset mechanism           | changeover       |
| Pressure range [Pa]       | 50500            |
| Hysteresis loop           | 25 Pa +/- 8 Pa   |
| Ingress protection rating | IP 54            |


#### Pressostat wiring diagram



#### Overall dimensions



**P1** connector for high pressure **P2** connector for low pressure



## THERMOSTAT

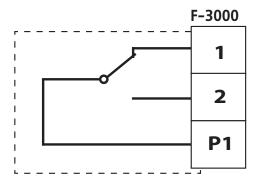


#### Application

The thermostats with bridging contacts are designed for regulation of air temperature, temperature of liquids and gases and are widely used in electric water heaters, dishwashing and clothe washing machines, drying machines, electric furnaces, etc. The thermostat is used to prevent freezing of water heaters and heat exchangers according to exhaust air temperature readings.

#### Design and control

The operating logic is based on volumetric thermal extension. The thermostatic bulb is located in the copper sleeve. Liquid placed inside the thermostatic bulb is heated, expanded and its excessive volume is transferred through the capillary tube to the bellows. The bellows are elongated and transmit force to the relay contact. Thus the set temperature is maintained in the system. The thermostat casing is made of plastic. The temperature probe is made of copper. The response temperature is set by rotation of the disk in the casing.


#### Mounting

The thermostat is suitable for wall surface mounting or installation in the duct in any position. The casing is fixed to the surface with screws on the front panel. The thermostatic bulb is designed for operation in tempersture-controlled environment. The thermostat is connected with the thermal bellows with 1.5 m long capillary tube.

#### Technical data

|                                  | F-3000                  |
|----------------------------------|-------------------------|
| Relay switching capacity         | 16A 230 V (active load) |
| Length of the capillary tube [m] | 1,5                     |
| Operating temperature range [°C] | от -30 до +30           |
| Reset mechanism                  | changeover              |
| Operating pressure range [Pa]    | 50500                   |
| Number of contacts               | 1 per switch            |
| Ingress protection rating        | IP 54                   |
|                                  |                         |

#### Thermostat wiring diagram



If current temperature is below set value the contacts P1 and 1 are closed

If current temperature is above set value the contacts P1 and 2 are closed

General

Electric triac temperature controllers for single and two-phase electric heaters

## **PULSER-M**



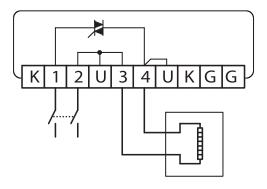
#### Application

The triac controller **PULSER-M** is designed for control of electric heaters power output. The controller design allows connecting to single- or two-phase heaters.

#### Design and control

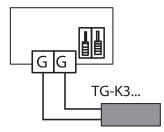
Technical data

**PULSER-M** is equipped with a built-in temperature controller for indoor temperature control and external main sensor as well as input terminals for connection of the built-in temperature sensor that can be used as a main sensor and the sensor for minimum and maximum limitations. The temperature controller selects required voltage automatically depending on 230 or 400 V operation. P or PI control law is selected automatically. Temperature setting range depends on the used temperature sensor, refer temperature sensors TG-K.


#### Mounting

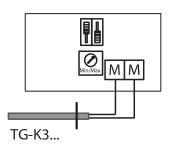
The controller is designed for mounting on the vertical level surface between power supply and the electric heater.

| PULSER-M           |
|--------------------|
| 16 A (3400/6000 W) |
| 230/400            |
| 60 s               |
| 94x150x43          |
| 0,3                |
| IP 20              |
|                    |

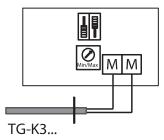

Wiring diagrams

Connection to electric heater and power mains

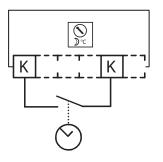



Built-in sensor and settings






Connection of external sensors


Connection of the sensor for minimum temperature



Connection of the sensor for maximum temperature



Connection for night set-back



## DUCT TEMPERATURE SENSORS

## Duct temperature sensors **TG-K**



#### Application

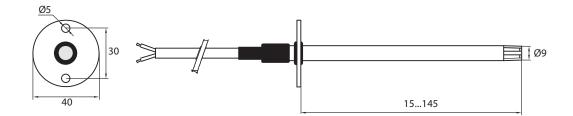
The duct sensors are used jointly with PULSER-M temperature controllers.

#### Design and control

The sensor is installed in the air duct. The sensors are supplied with connecting cable 1.5 m long and have adjustable length. The sensors differ in temperature sensitivity range.

#### Mounting

The sensor is installed in the air stream area. It is connected to the wall through a flange with two  $\emptyset$  5 mm openings located at 40 mm center-to-center distance.


#### Technical data

|                           | TG-K                  |
|---------------------------|-----------------------|
| Insertion length [mm]     | 15145 (adjustable)    |
| Length cable [m]          | 1,5                   |
| Sensitive element         | linearized NTC sensor |
| Accuracy                  | above + /-1 °C        |
| Pressure range [Pa]       | 50500                 |
| Ingress protection rating | IP 54                 |

#### Duct sensor model range

| Model   | Temperature range |
|---------|-------------------|
| TG-K300 | -30+30 °C         |
| TG-K330 | 030 °C            |
| TG-K350 | 2050 °C           |
| TG-K360 | 060 °C            |

#### Overall dimensions



## EXTERNAL TEMPERATURE REGULATOR FOR CHIMNEY FANS

External temperature regulator **TS-1-90** for chimney fans

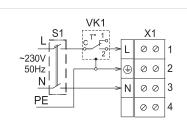


#### Applications

The temperature regulator is designed for chimney fan control and applied for hot air distribution from chimney to the premises VENTS KAM T1, VENTS KAM Eco T1, VENTS KAM EcoDuo T1.

#### Design and control

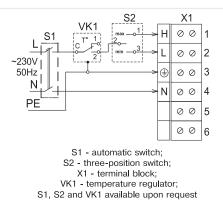
The temperature regulator casing is made of metal and equipped with the temperature control knob. The casing is connected with the temperature probe by means of a capillary tube of 1 m length. The temperature level is followed by the temperature probe which is installed directly inside the fireplace heat-exchanger. The temperature regulator controls the fan operation and switches the chimney fan on or off depending on the set temperature increase or decrease.


#### Mounting

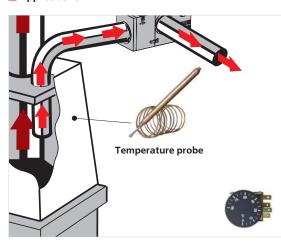
The temperature regulator is mounted in the concealed or external mounting box. The temperature probe is installed inside the fireplace heat-exchanger. The temperature regulator shall be installed away from the source of air heating.

#### Technical data:

|                                                                       | TS-1-90      |
|-----------------------------------------------------------------------|--------------|
| Voltage [V/50/60 Hz]                                                  | 1~ 230       |
| Maximum load current [A]                                              | 2,2          |
| Maximum fan power [W]                                                 | 500          |
| Range of controllable temperatures [°C]                               | 0+90         |
| Overall dimensions of the thermostat casing, [mm]                     | 55 x 56 x 56 |
| Capillary tube length [mm]                                            | 1000         |
| Temperature probe [mm]                                                | Ø 6,5 x 95   |
| Maximum ambient temperarture for the casing [°C]                      | +80          |
| Maximum temperature for the temperature probe and capillary tube [°C] | +150         |
| Protection rating                                                     | IP40         |


#### Wiring diagrams




Wiring diagram for KAM T1 single-phased motor fan to AC network

S1 - automatic switch; X1 - terminal block; VK1 - temperature regulator; S1 and VK1 available upon request

Wiring diagram for KAM EcoDuo T1 single-phased motor fan to AC network.



Applications



TG-K DUCT TEMPERATURE SENSORS TS-1-90 EXTERNAL TEMPERATURE REGULATOR

## CO<sub>2</sub> SENSORS

CO<sub>2</sub> sensor **CO2-1** 

CO<sub>2</sub> sensor **CO2**- **2** 





#### Application

The sensor is designed for indoor carbon dioxide concentration measurement and respective air capacity regulation through the control output signal to the fan. Air capacity control based on  $CO_2$  concentration is an efficient energy saving solution.

#### Design and compatability

The sensor has two separate ports. Relay normally opened dry contact and analogue output 0...10 V (this output is adjustable for 2...10 V/0...20 mA/4...20 mA). The relay output is designed to switch the ventilation systen on/off depending on CO<sub>2</sub> concentration and the analogue output enables smooth fan speed control. Smooth fan speed control by CO<sub>2</sub> sensor is possible only for the units equipped with EC motors or with an external fan speed controller with 0...10 V input, refer RS...TA or VFED. At smooth fan speed

control the fan speed changes proportionally to carbon dioxide emissions. The relay and analogue outputs make the sensor compatible with any ventilation system. The integrated self-calibration system ensures reliable sensor operation during the sensor service life.

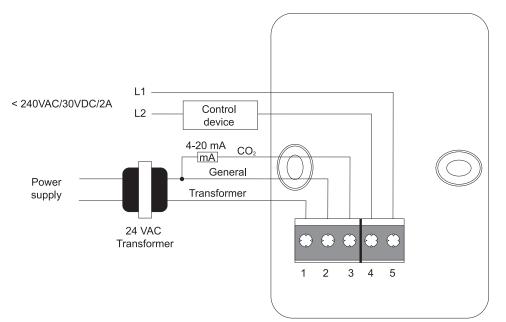
#### Modifications

The sensor is available in two modifications - CO2-1 and CO2-2. The CO2-1 model incorporates LED lights for CO<sub>2</sub> concentration and operation buttons for three operation modes: 1 - on, 2 - off, 3 - operation by CO<sub>2</sub> concentration. The button is used to switch the ventilation system on or off when CO<sub>2</sub>-based operation is not required. The CO2-2 model has no LED-lights and on/off button. The model is applied for premises requiring permanent ventilation, i.e. at schools.

#### Mounting and power supply

The sensor is for wall surface mounting. Power supply from low-current 24 V ac. If power supply 24 V is not available, connect the TRF 24 AC plug that is offered as an accessory.

#### Accessories


Power supply unit **TRF 24 AC** is applied for connection of the sensor to 220 V or 120 V AC power mains.



#### Technical data

| Power supply / consumption                                        | 24 VAC (50/60 Hz ± 10%), 24 VDC/1.6 W Max                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas detection analyzer                                            | nondispersive infrared analyzer (NDIR) with self-calibrating system                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CO <sub>2</sub> detection range                                   | 0~2000 ppm (parts per million)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Accuracy at 25°C (77°F), 2000 ppm                                 | ± 40 ppm +3% reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Response time                                                     | <2 minutes when 90% fluctuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Warm-up time at start-up                                          | <5 min. (in action), 48 часов (first time)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analogue output                                                   | 0~10VDC (factory setting), 2~10VDC, 0~20mA, 4~20mA                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Output on/off                                                     | <240VAC/30VDC 3A switching current (load resistance)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 LED lights –<br>CO <sub>2</sub> indicators<br>(for model CO2-1) | 1st green light indicator when $CO_2$ concentration $\leq 600$ ppm<br>1st and 2nd green light indicators when 600 ppm $< CO_2$ concentration $\leq 800$ ppm<br>1st yellow light indicator when 800 ppm $< CO_2$ concentration $\leq 1200$ ppm<br>1st and 2nd yellow light indicators when 1200 ppm $< CO_2$ concentration $\leq 1400$ ppm<br>1st red light indicator when 1400 ppm $< CO_2$ concentration $\leq 1600$ ppm<br>1st and 2nd red light indicators when $CO_2$ concentration $\geq 1600$ ppm |
| Operating conditions / storage recommendations                    | 0~50 °C (32~122 °F); 0~95% relative humidity without condensation -40~70 °C (-40~158 °F); 0~95% relative humidity without condensation                                                                                                                                                                                                                                                                                                                                                                  |
| Net weight / Dimensions                                           | 120 г./100 mm x 80 mm x 30 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Sensor connection diagram



## ALPHABETIC INDEX

## Α

| C     |     |
|-------|-----|
| C     | 347 |
| СВ    | 347 |
| CBR   | 347 |
| CO2-1 | 374 |
| CO2-2 | 374 |
| CZ    | 346 |
| CZK   | 346 |

## D

| DRF-VKM  | 274 |
|----------|-----|
| DRF-VKMz | 274 |
| DTV 500  | 369 |

### F

| F-3000 | 370      |
|--------|----------|
| FB     | 290, 291 |
| FBK    | 292, 294 |
| FBV    | 290      |
| FFK    | 94       |
| FKV    | 171      |
| FVC    | 132      |
|        |          |

## G

| GFK | 94  |
|-----|-----|
| GKV | 170 |

## Κ

| KAM        | 94       |
|------------|----------|
| KAM Eco    | 94       |
| KAM EcoDuo | 94       |
| KFK        | 94       |
| KG         | 342, 343 |
| KKV        | 170      |
| KOM        | 336      |
| KOM1       | 337      |
| KR         | 338, 339 |
| KRA        | 338, 339 |
| KRAF       | 339      |
| KSA        | 108      |
| KSB        | 112      |
| KSD        | 116      |
|            |          |

## Μ

| MFK     | 94  |
|---------|-----|
| MK-AOW  | 264 |
| MKP-AOW | 264 |
| MKU-AOW | 264 |
| MPAE    | 186 |
| MPAW    | 186 |

## Ν

### 0

| OKF   | 330 |
|-------|-----|
| OKW   | 324 |
| OV    | 142 |
| OV1   | 148 |
| OV1 R | 152 |
| OVK   | 142 |
| OVK1  | 148 |

#### Ρ

| P2-1-300 | 366     |
|----------|---------|
| P2-5,0   | 365     |
| P3-1-300 | 366     |
| P3-5,0   | 365     |
| P5-5,0   | 365     |
| PAE      | 196     |
| PAW      | 196     |
| РК       | 278     |
| PR       | 278,280 |
| PULSER-M | 371     |
| PVZ      | 270     |

### R

| R-1/010  | 367           |
|----------|---------------|
| RKV      | 171           |
| RM       | 150           |
| RRV      | 340           |
| RRVA     | 340           |
| RRVAF    | 340           |
| RS       | 353, 354, 355 |
| RS-1-300 | 352           |
| RS-1-400 | 352           |
| RSA5D    | 359, 360      |
| RSA5E    | 356, 357, 358 |
| RT       | 364           |

| RTS     | 362      |
|---------|----------|
| RTSD    | 362      |
| RVC     | 132      |
|         |          |
| S       |          |
| SF      | 290, 291 |
| SFK     | 292, 294 |
| SFV     | 290      |
| SKRA    | 345      |
| SR      | 282, 288 |
| SRF     | 282      |
| SRN     | 286      |
| SRP     | 286      |
| т       |          |
| Т       | 368      |
| TST-3   | 363      |
| TSTD-3  | 363      |
| TF      | 368      |
| TG-K    | 372      |
| TH      | 368      |
| ТР      | 368      |
| TS-1-90 | 373      |
| ΤΤ      | 26       |
| TTP     | 30       |
| TTS     | 30       |
|         |          |

## V

| VA      | 204 |
|---------|-----|
| VC      | 46  |
| VC-VK   | 46  |
| VC-VN   | 46  |
| VC-PK   | 46  |
| VC-PN   | 46  |
| VCN     | 50  |
| VCU     | 126 |
| VCUN    | 130 |
| VFED    | 361 |
| VK VMS  | 36  |
| VK      | 32  |
| VKF     | 142 |
| VKH     | 158 |
| VKHA    | 158 |
| VKH EC  | 164 |
| VKHA EC | 164 |
| VKM     | 38  |
| VKMK    | 172 |

VKMKp...... 172

| VKMz           | 42            |
|----------------|---------------|
| VKOM           | 148           |
| VKP            | 54, 84        |
| VKP EC         | 76            |
| VKP mini       | 58            |
| VKPF           | 68            |
| VKPFI          | 68            |
| VKPI           | 84            |
| VKPI EC        | 80            |
| VKV            | 158           |
| VKVA           | 158           |
| VKV EC         | 164           |
| VKVA EC        | 164           |
| VL             | 278           |
| VOK            | 174           |
| VOK1           | 176           |
| VP             | 56            |
| VPA            | 182           |
| VPG            | 102, 103      |
| VS             | 102           |
| VUE 100 P mini | 216           |
| VUT mini       | 212           |
| VUT mini EC    | 214           |
| VUTEH          | 224           |
| VUTEH EC       | 234           |
| VUTH           | 218           |
| VUTH EC        | 222           |
| VUTPE EC       | 240           |
| VUTPW EC       | 240           |
| VUT R EH EC    | 248           |
| VUT R WH EC    | 248           |
| VUTWH          | 224           |
| VUTWH EC       | 234           |
| VVCr           | 132           |
| VVCp           | 132           |
| VVG            | 102, 103, 344 |
| VVGF           | 344           |
|                |               |

## U

Х

| UWT-1E | 264 |
|--------|-----|
| USWK   | 322 |

| X-Vent | 254 |
|--------|-----|
|--------|-----|



## ventilation systems www.ventilation-system.com



VENTS reserves the rights to modify any of its products' features, designs, components and specifications at any time and without notice to maintain the development and quality of manufactured goods.



2012